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Abstract This paper discusses the stress intensity factor (SIF) for an edge interfacial crack in a wide bimaterial
plate under uniform temperature change. The results shows that the SIF is controlled by the singular stress
field including a constant term appearing at the interface end of the bimaterial plate without the crack. Since
the constant term peculiar to thermal loading is necessary to be considered, it is confirmed that the SIF is
analyzed by superposing the SIF under tension and the SIF under uniform interface stress. Finally, the SIF
under thermal stress is systematically calculated and tabulated for arbitrary material combination in the whole
range of Dundurs parameters α and β. When α � 2β, the SIF is presented as a function of α ( � 2β) by
considering the logarithmic-type edge singularity, which is also peculiar to the thermal loading.

List of symbols

SIF Stress intensity factor
ISSF Intensity of singular stress field
FEM Finite element method
Kσ , kσ Intensity of singular stress field (ISSF)
K1, K2 Stress intensity factors (SIF) for interface crack in target problem
K1

∗, K2
∗ Stress intensity factors (SIF) for interface crack in reference problem

F1, F2 Dimensionless SIF
C1, C2, D1, D2 Dimensionless coefficients of SIF
c1, c2, d1, d2 Dimensionless coefficients of SIF
�T Uniform temperature change
σy(r), τxy(r) Normal or shearing stress along the interface
GA, GB Shear modulus of material A, B
νA, νB Poisson’s ratio of material A, B
ηA, ηB Thermal expansion coefficient of material A, B
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α, β Dundurs composite parameters
λ Singularity index at interface end
ε Oscillation singular index for interface crack
a Interface crack length
W Plate width
T, S Tensile and shear stresses in reference problem
σy0, FEM, τxy0, FEM Crack tip stress calculated byFEMinunknownproblemunder uniform temperature change
σ ∗
y0, FEM, τ ∗

xy0, FEM Crack tip stress calculated by FEM in reference problem under the remote stresses T and
S

σ T�1∗
y0, FEM, τ T�1∗

xy0, FEM Crack tip stress calculated by FEM in reference problem under the tensile stress T � 1 (S
� 0)

σ S�1∗
y0, FEM, τ S�1∗

xy0, FEM Crack tip stress calculated by FEM in reference problem under the shear stress S � 1 (T
� 0)

σy0 Equivalent stress in y-direction when α(α − 2β) > 0
σx0 Equivalent stress in x-direction when α(α − 2β) � 0

1 Introduction

In recent years, electronic components such as semiconductors have become highly integrated, and thermal
stress caused by the different expansion coefficient becomes more problematic. Furthermore, the temperature
change in automobiles, computers, etc. in a day increases greatly causing many mechanical failures such as
reduced strength at the joint interface due to thermal stress, cracking of constituent materials and delamination
at the interface of dissimilar materials. Several previous studies have considered the singular stress field at
the interface end to evaluate such problems [1–6]. Since fracture of the bonding material often occurs from
the interface end, the analysis of the edge interface crack is mandatory for evaluating the interface failure.
To evaluate the stress intensity factor (SIF) of an edge interface crack, care should be taken for two distinct
singular stress fields existing: One is caused by the bonded plate end before cracking and the other is due to
the interface crack itself after cracking. Figure 1 illustrates the double singular stress fields whose SIF was
clarified by applying the proportional method in the preceding papers [7, 8]. As shown in Sect. 3 and Appendix
A, the proportional method may provide exact solutions. Then, the results showed that when the relative crack
length a/W ≤ 10−2 (see Fig. 10), the SIF is dominated by the singular stress field in Fig. 1b [8]. Noda and
Lan [8] presented a suitable form to express the stress intensity factor for arbitrary material combinations by
taking into account the edge singularity.

However, the singular stress field under thermal loading has some differences compared to the one under
tensile loading [3, 9, 10]. First, unlike under mechanical loading, a constant term existing around the interface
end peculiar to thermal loading must be taken into account [9, 10]. Due to the constant term before cracking,
the thermal SIF becomes more complex compared to mechanical loading. Therefore, to understand the double
singular stress fields is more important especially for thermal loading. Second, no analytical thermal loading
solution is available for interface edge crack under arbitrarymaterial combinations except for the semi-infinitely
long cracks [11, 12]. Third, certain specific material combinations may cause a logarithmic-type singular stress
field unlike tensile loading where only a power function-type singular stress field appears [10].

Therefore, in this study, the SIF of the edge interface crack under uniform temperature change will be
clarified in comparison with the one under tension. The SIF is controlled by the thermal stress generated
when a uniform temperature change is applied. Since the SIF becomes larger especially when the crack length
is smaller due to the singular stress before cracking, the problem of small edge crack will be focused. The
small edge crack is essential because the SIFs of large edge cracks is quite small under thermal loading
(see Table 10 in Appendix B). First, the difference of the singular stress field without crack will be clarified
under mechanical and thermal loading. Then the SIF will be analyzed systematically by varying the material
combination. Finally, the SIF will be newly provided under arbitrary material combinations. The proposed
solution for the edge interface crack will be able to provide SIFs for arbitrary material combinations under
mechanical and thermal loads without numerical calculations.
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Fig. 1 Illustration of double singular stress fields: a The stress intensity factor (SIF) controlling the singular stress field of an
edge interface crack in a is controlled by b the intensity of the singular stress field (ISSF) controlling the singular stress field of
the bonded AB plate without crack in b

2 Difference of singular stress field of a bimaterial plate before cracking under tension and thermal
loading

To understand the SIF of an edge interface crack under thermal loading, it is necessary to know the singular
stress without crack since the double singularities in Fig. 1 must be considered. In the previous studies, Bogy
pointed out the existence of logarithmic singularity in dissimilar bonded plates under surface traction without
mentioning the equivalent tensile stress of the thermal loading [13]. Chen et al. [6] explained that the stress
distribution due to thermal loading can be expressed by the stress distribution under tension and the constant
uniform stress without mentioning that the meaning of the constant stress value. Therefore, in this Sect. 2,
the interfacial stress distributions under tension and thermal loading will be indicated with the difference of
the singular stress distribution. Then, the value of the constant stress will be clarified to understand the edge
interface crack problem [6, 13].

2.1 Interface stress distribution under tension when α(α − 2β) > 0

Figure 2a shows the stress distribution σy(r ) at the interface end due to the remote tensile stress σ∞
y (x) � σ0

when α � 0.8, β � 0.3. Without losing generality, the remote tensile stress can be put as σ∞
y (x) � σy0,

which will be defined later in Eq. (6) as shown in Fig. 2a. The singular stress distribution near the interface
edge σy(r ) can be expressed in Eq. (1).

σy(r) � Kσ

r1−λ
(1)

Here, Kσ is the intensity of the singular stress field (ISSF) and λ is the edge singularity index whose value
is given by the characteristic equation of Eq. (2) [14].
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Fig. 2 Interface stress distribution σy(r) under mechanical loading and thermal loading. Those results are obtained when α �
0.8, β � 0.3, (GA/GB � 10.93, νA/νB � 0.0314, plane stress), �T � T0 � − 100 deg, thermal expansion coefficient ratio
ηA/ηB � 10
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Table 1 Behaviors of the interface stress σy(r) when r → 0 in Fig. 2 under mechanical loading and thermal loading

Material combination Under thermal loading Under mechanical loading

α(α − 2β) > 0 (bad pair) σy(r) � Kσ

r1−λ + σy0 → ∞(r → 0) σy(r) � Kσ

r1−λ → ∞(r → 0)

α(α − 2β) � 0 (equal pair) σy(r) � kσ log(r) → ∞(r → 0) (α �� 0) σy(r) → finite(r → 0)

α(α − 2β) < 0 (good pair) σy(r) → finite(r → 0) σy(r) → 0(r → 0)

In Eq. (2), Dundurs parameters α, β are determined from the material combination as follows [14].

α � GA(κB + 1) − GB(κA + 1)

GA(κB + 1) + GB(κA + 1)
,β � GA(κB − 1) − GB(κA − 1)

GA(κB + 1) + GB(κA + 1)
, (3)

κm �
⎧⎨
⎩

(3 − νm)/(1 + νm) (plane stress)

3 − 4νm (plane strain)
(m � A, B) (4)

The singularity index λ < 1 obtained from Eq. (2) characterizes the presence of the singular stress in
Fig. 1b in the following way.

(1) When α(α − 2β) > 0 (bad pair), 0 < λ < 1.
(2) When α(α − 2β) � 0 (equal pair), λ � 1.
(3) When α(α − 2β) < 0 (good pair), λ > 1.

Table 1 summarizes the characteristic of singular stress fields under mechanical loading in comparison
within the case of thermal loading.

2.2 Interface stress distribution under thermal loading when α(α − 2β) > 0

The presence or absence of the interface stress singularity was discussed in the previous studies [6, 10]. Table
1 summarizes the behaviors of the interface stress σy(r) when r → 0 in Fig. 2 under mechanical loading
and thermal loading. The interface stress behavior varies depending on α(α − 2β) > 0, α(α − 2β) � 0, α

(α − 2β) < 0.
Figure 2b shows the stress distribution σy(r ) at the interface edge due to the thermal loading by cooling the

plate’s temperature uniformly as�T � T0 < 0. Fig. 2b is an example when α � 0.8, β � 0.3, T0 � − 100 deg
and thermal expansion coefficient ratio ηA/ηB � 10. To conform the constant term peculiar to the thermal
loading, Fig. 2c shows the subtracted distribution of Fig. 2b from Fig. 2a. As shown in Fig. 2c, a constant
interface stress distribution σ c

y (r) � σy0 is confirmed as can be expressed σ c
y (r) � σ a

y (r) − σ b
y (r) � σy0. The

dashed line in Fig. 2b is the stress σy at the interface due to the uniform temperature change �T � −T 0 < 0
subtracting the constant term σy � σy0 in Fig. 2c.

From Fig. 2, it can be confirmed that the singular stress distribution under thermal loading in Fig. 2b at the
interface end σy(r ) can be expressed in Eq. (5).

σy(r) � Kσ

r1−λ
+ σy0 (5)

In other words, under the bad pair condition satisfying α(α − 2β) > 0 the power function-type singular
stress field r1−λ occurs in the case of the thermal load as well as in the case of the mechanical load causing σy
(r) → ∞ as r → 0.

The constant termσy0 is knownas the equivalent remote tensile stress that should be applied to the bimaterial
plate (see Fig. 2a) to produce the same ISSF (see Fig. 2b). Under the remote tensile stress σy0 defined in Eq. (6),
the same intensity of the singular stress Kσ due to the uniform temperature change �T � −T 0 < 0 can be
obtained [6].

σy0 � 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η∗
m �

⎧⎨
⎩

ηm (plane stress)

(1 + νm) ηm (plane strain)
(m � A, B) (6)
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Fig. 3 a Singular interface stress due to uniform thermal loading �T � T0 < 0 can be expressed by superposing b tensile
loading and c constant interface stress when α(α − 2β) > 0. The constant interface stress in c can be obtained from compressive
σy0 and �T � T0 < 0

Fig. 4 Stress distribution near the interface edge in bimaterial plate when α − 2β � 0, α � 0.6, β � 0.3, �T � −100 deg,
thermal expansion coefficient ratio ηA/ηB � 10.

Here, GA, GB are shear modulus, νA, νB are Poisson’s ratio and η∗
A, η

∗
B are thermal expansion coefficient

of material A, B, respectively.
Figure 3 illustrates the idea of the analysis method used later in Sect. 4. The stress distribution in Fig. 3a

under thermal loading consists of the one under the tensile loading in Fig. 3b and the constant interface stress
in Fig. 3c. The SIF solution in Fig. 3b was analyzed previously. As shown in Fig. 3c, the uniform interface
stress in Fig. 3c is expressed by the sum of the compressive remote loading and the thermal loading. In this
study, the stress intensity factor of the edge crack in the bimaterial plate under uniform temperature change
will be discussed on the basis of the superposition in Fig. 3.

2.3 Interface stress distribution under thermal loading when α(α − 2β) � 0

It is known that even when α(α − 2β) � 0, which is named equal pair condition under mechanical loading,
a logarithmic singularity occurs for thermal loading [10]. In other words, under the equal pair condition α

(α − 2β) � 0, σy(r) → finite as r → 0 in the case of mechanical load, whereas in the case of thermal load,
logarithmically singular stress field is generated and σy(r) → ∞ when r → 0. Figure 4 shows an example
of logarithmic singular stress distribution under equal pair conditions, and σy(r) → ∞ when r → 0 when
α � 0.6, β � 0.3.
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Fig. 5 Unknown problem for an edge interface crack in bimaterial rectangular plate subjected to uniform temperature change
�T . The stress values at the crack tip σy0, FEM , τxy0, FEM are calculated by FEM considering the elastic modulus GA, νA, GB ,
νB and thermal expansion coefficients ηA, ηB

2.4 Interface stress distribution under thermal loading when α(α − 2β) < 0

Under good pair condition α(α − 2β) < 0, the stress singularity disappears in the case of the thermal load
as well as in the case of the mechanical load, and σy(r) → 0 as r → 0. In the case of α(α − 2β) < 0, no
singular stress field occurs, so in this sense α(α − 2β) < 0 is a good pair even for thermal loading.

3 Analysis method of interfacial cracks under thermal load and influence of material combination

3.1 Proportional method to analyze thermal interface stress intensity factors

Figure 5 shows a bimaterial plate with an edge interface crack subjected to uniform temperature change �T ,
which is the target problem in this study. In the FEM analysis, a uniform temperature change �T is applied
to the entire element in Fig. 5 considering elastic modulus and thermal expansion coefficient. Then, the stress
value at the crack tip is calculated. In a similar way, an interface edge crack under heat flow may be solved
after analyzing temperature distribution [19]. Since the singular field appears at the interface end of the bonded
plate without crack, the discussion in Sect. 2 must be useful for heat flow problems. In this study, the SIF of the
interface crack under uniform temperature change�T is focused by applying the proportionalmethod [15–17].
As shown in the preceding papers aswell as the following explanation in Sects. 3 and 4, the proportionalmethod
may provide exact solutions [7, 8, 15–17].

In the method, stress values at the crack tip node are used and a stress intensity factor is determined by
the ratio of the crack tip stress values between an unknown problem in Fig. 5 and the reference problem in
Fig. 6. The method gives the singular stress field equal to the unknown problem by adjusting load stress T
and S of the reference problem whose stress intensity factor is already known. The single interface crack
in a bonded semi-infinite plate subjected to the tension T and shear S is selected as the reference problem
because the interface crack tip is always mixed mode state. The stress values at the interface crack tip node
calculated by FEM in the reference problem under the tensile stress T � 1 (S � 0) or shear stress S � 1 (T
� 0) are written by σ T�1∗

y0, FEM , τ T�1∗
xy0, FEM and σ S�1∗

y0, FEM , τ S�1∗
xy0, FEM , respectively, in Fig. 6. The crack tip stress

values of the unknown problem under the uniform temperature change in Fig. 5 are also denoted by σy0, FEM ,
τxy0, FEM . By using the same crack tip stress condition between the reference and the unknown problems,
that is, σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM , the external loading stress T and S in the reference

problem can be determined from the next expression.
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Fig. 6 Reference problem for an interface crack in a bonded semi-infinite plate subjected to tension T and shear S

T � σy0,FEM · τ S�1∗
xy0,FEM − σ S�1∗

y0,FEM · τxy0,FEM
σ T�1∗
y0,FEM · τ S�1∗

xy0,FEM − σ S�1∗
y0,FEM · τ T�1∗

xy0,FEM

,

S � σ T�1∗
y0,FEM · τxy0,FEM − σy0,FEM · τ T�1∗

xy0,FEM

σ T�1∗
y0,FEM · τ S�1∗

xy0,FEM − σ S�1∗
y0,FEM · τ T�1∗

xy0,FEM

(7)

From the loading stresses T and S obtained by Eq.(7), the stress intensity factor of the interface crack in
the reference problem in Fig.6 can be evaluated by

K ∗
1 + i K ∗

2 � (T + i S)
√

πa∗(1 + 2iε), ε � 1

2π
ln

[(
κA

GA
+

1

GB

)
/

(
κB

GB
+

1

GA

)]
(8)

Here, ε is the oscillation singular index, κm � 3 − 4νm(plane strain), (3 − νm)/(1 + νm)(plane stress).
Because the stress intensity factor of Eq. (8) is equal to that of the unknown problem, the stress intensity
factors of the unknown problem in Fig. 5 can be obtained as

K1 � K ∗
1 , K2 � K ∗

2 (9)

From K1 � K1
∗, K2 � K2

∗, (T , S) in Eq. (8) can be regarded as dimensionless SIFs (F1, F2) of
unknown problem [see Eq. (11))]. It is noted that in the proportional method the finite element models of the
reference and the unknown problems have the same crack length and the same FEM mesh pattern near the
interface crack tip [7, 8, 15–17], a � a* and e � e*. The definition of stress intensity factor shown in Eq. (8)
is expressed as follows based on the interface crack length 2a*.

σy(r) + iτxy(r) � K1 + i K2√
2πr

( r

2a∗
)iε

(10)

The detail of the accuracy discussion can be found in previous papers under mechanical loading [8, 15,
16]. The proportional method is useful for analyzing interface cracks by providing mesh-independent interface
SIFs F1, F2 efficiently. Since those FEM results are mesh-independent, the obtained SIFs K1, K2 can be
regarded as the exact solution by using the exact reference solution in the bonded infinite plate K1 + i K2 �
(T + i S)

√
πa(1 + 2iε). For the readers’ convenience, several examples are indicated in Appendix A.
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Fig. 7 Comparison between the edge interface crack and the central interface crack by taking an example of the bimaterial plate
α � 0.8, β � 0.3, a/W � 10−5 subjected to uniform temperature change �T� T0 � −100 deg, thermal expansion coefficient
ratio ηA/ηB � 10. Here, the constant term stress σy0 is defined by Eq. (6)

3.2 Importance of edge interface crack under thermal loading compared to internal crack

Figure 7 shows an edge interface crack in a bimaterial plate considered in this paper in comparison with a
central interface crack in a bimaterial plate. When a/W → 0, those problems are reduced to most fundamental
crack problems, that is, a cracked semi-infinite plate and a cracked infinite plate. For example, when the two
materials have the same material properties, they correspond to an edge crack in a homogeneous semi-infinite
plate and an internal crack in a homogeneous infinite plate. In this study, the dimensionless stress intensity
factors F1, F2 defined in Eq. (11) will be compared by applying the proportional method in Sect. 3.1.

K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε) (11)

The thermal stress intensity factors K1, K2 depend on the temperature change�T , Dunders parameter α, β,
thermal expansion coefficient ratio ηA/ηB and relative crack length a/W . When uniform temperature change
�T � T0� − 100 deg is applied to the cracked bimaterial plate with α � 0.8, β � 0.3 and a/W � 10−5,
the dimensionless SIFs are obtained as F1 � 2.568 and F2 � −0.364 in Fig. 7a. Instead, in Fig. 7b, the
dimensionless SIFs are obtained as F1 � −0.0214 and F2 � 1.7 × 10−5, whose values are much smaller
than F1 � 2.568 in Fig. 7a. Furthermore, when the tensile thermal stress appears at the interface end, the
compressive thermal stress occurs at the center of the bimaterial plate. This is because the summation of
σy along the interface is zero and only at the interface end the singular stress appears. In this way, it may
be concluded that regarding thermal stress intensity factors the small edge interface crack is essential and
practically important.

3.3 Effect of material combination on the thermal interface stress intensity factors

The thermal stress intensity factors K1, K2 depend on the temperature change �T , Dunders parameter α, β,
thermal expansion coefficient ratio ηA/ηB and relative crack length a/W . Table 2 shows the values of F1, F2
of the edge interface crack by varying material constants but under fixed α � 0.8, β � 0.3 with a/W � 10−5.
Table 2 shows that even if the material constants are different, the values of F1, F2 are the same. This is because
Dundurs parameters α, β control F1, F2.

To clarify the effects of the crack length and the material combination, Fig. 8 shows F1, F2 by varying
the crack length as a/W � 10–7 ~10–1 by taking an example when α � 0.5~0.95 and β � 0.3. When α �
0.5~0.55 with β � 0.3, the good pair condition α(α − 2β) < 0 can be satisfied; then, the dimensionless
SIF F1, F2 → finite as a/W → 0. However, when α � 0.65~0.95 with β � 0.3, the bad pair condition α

(α − 2β) > 0 can be satisfied; then, F1, |F2| → ∞ as a/W → 0. This is due to the singular stress field at the
interface end under the bad pair condition. Due to the singularity, as the crack becomes shorter as a/W → 0,
the stress at the crack tip goes to infinity. Figure 8, for the small interface crack, shows that the expression of
F1, F2 in Eq. (11) is not enough and the double singular stress fields have to be considered. In Fig. 9, the equal
pair condition α(α − 2β) > 0 is not considered, the equivalent stress σy0 → ∞. In Sect. 4, F1, F2 in Eq. (11)
will be defined in a different way of Eq. (11).
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Table 2 Confirmation of the thermal SIFs F1, F2 defined from K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε) that are controlled by
α, β by taking an example when α � 0.8, β � 0.3 and a/W � 10−5 in Fig. 5

Analysis conditions Case 1
(Plane stress)

Case 2
(Plane stress)

Case 3
(Plane strain)

Case 4
(Plane strain)

Shear modulus
[MPa]

GA 496.524 4878.049 99.999 3998.612
GB 45.426 453.515 9.091 363.625

Poisson’s ratio νA 0.007 0.025 0.000011 0.000347
νB 0.223 0.225 0.181819 0.181844

Thermal expansion
[1/K]

ηA 10 10 5 3
ηB 1 100 2 20

Temperature change
[K]

�T 100 100 100 100

Equivalent stress
(Eq. 6)

σy0 450,000 − 45,000,000 26,364 − 8,254,337

Normalized SIF F1 2.5675 2.5675 2.5675 2.5675
F2 − 0.3635 − 0.3635 − 0.3635 − 0.3635

Fig. 8 Relation between normalized SIFs F1, F2 and the relative crack length a/W when β � 0.3 in Fig. 7a, [K1 + i K2 �
(F1 + i F2)σy0

√
πa(1 + 2iε)]

Fig. 9 a Singular interface stress due to uniform thermal loading�T � T0 < 0 can be expressed by superposing b tensile loading
and c constant interface stress when α(α − 2β) > 0. The constant interface stress in Fig. 10c can be obtained from compressive
σy0 and �T � T0 < 0
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Fig. 10 Values of C1 � F1/(W/a)1−λ and C2 � F2/(W/a)1−λ in Fig. 9b by varying a/W in the range a/W � 10−7~10−1 and
also by varying α in the range α � 0.5~0.95 under fixed β=0.3

Table 3 Behaviors of dimensionless SIFs F1, F2 when a/W → 0 in Fig. 5 under mechanical loading and thermal loading
corresponding to the behaviors of the interface stress σy(r) in Table 1. [K1 + i K2 � (F1 + i F2)σ0

√
πa(1 + 2iε), where σ0 is the

equivalent stress defined by Eq. (6) or Eq. (15)]

Material combination Under thermal loading Under mechanical loading

α(α − 2β) > 0
(bad pair)

F1, F2 → ∞( a
W → 0

)
F1, F2 → ∞ (a/W → 0)

α(α − 2β)=0
(equal pair)

F1, F2 → ∞(a/W → 0)
(logarithmic singularity when α �� 0)

F1, F2 → finite (a/W → 0)

α(α − 2β) < 0
(good pair)

F1, F2 → finite(a/W → 0) F1, F2 → 0 (a/W → 0)

Table 3 summarizes the behavior of SIFs under mechanical loading and thermal loading, that is, F1,
F2 → ∞, F1, F2 → finite or F1, F2 → 0 as a/W → 0 inFig. 5. Comparison between Table 1 and Table 3
shows that σy(r) and F1, F2 have the same behavior; for example, when the singular stress field without crack
exists as σy(r ) → ∞, F1, F2 → ∞. In other words, the dimensionless SIFs F1, F2 are totally controlled by
the interface stress σy(r ) without crack.

4 Stress intensity factor for interfacial edge crack in bimaterial plate based on the principle
of superposition

4.1 Stress intensity factor of a small edge crack in bimaterial plate considering the edge singularity
of the power function type

In this section, the SIF of a small interface crack in bimaterial plate in Fig. 9a will be analyzed on the basis of
the discussion in Sect. 2. As shown in Fig. 9, the singular stress field at the edge of the interface in Fig. 9a due
to the thermal loading can be expressed by superposing the tensile loading in Fig. 9b and the constant interface
stress in Fig. 9c [6]. In Fig. 9, the uniform stress field at the interface in Fig. 9c is expressed by the sum of the
compressive remote loading and the thermal loading.

To express the SIF of the edge interface crack under uniaxial tension in Fig. 9b, the coefficients C1, C2
were newly proposed as shown in Eq. (12) [8] considering the interface end singularity without crack. Then,
the coefficients C1, C2 in Fig. 9b were obtained by the proportional method using FEM confirming more than
three digits convergence.

K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε), F1 � C1 · (W/a)1−λ, F2 � C2 · (W/a)1−λ (12)

when α(α-2β) ��0 in Fig. 9b
As shown in Fig.16 in Appendix B, as a/W → 0, F1, F2 are not suitable for expressing the SIF sinceF1

→ ∞, F2 → ∞. Instead, since C1, C2 are always finite, they can be used conveniently. This is similar to
the finite value of the SIF that can be used to evaluate cracks instead of the infinite stress value at the crack
tip σy(r) → ∞ that cannot be used when r → 0. Figure 10 illustrates the values of C1, C2 in Fig. 9b when
a/W � 10−7~10−1, α � 0.5~0.95 under fixed β � 0.3. Figure 10 shows C1 and C2 are insensitive of a/W
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Table 4 Values of C1, C2 in Eq. (12) having more than three digits accuracy in the range a/W ≤ 10−3 subjected to tension σy0

in Fig. 9(b) [K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε), F1 � C1 · (W/a)1−λ, F2 � C2 · (W/a)1−λ]

α β � − 0.2 β � − 0.1 β � 0 β � 0.1 β � 0.2 β � 0.3 β � 0.4 β � 0.45

Values of C1
0 1.071 1.103 1.122 1.103 1.071
0.05 1.009 1.074 1.114 1.132 1.120
0.1 0.952 1.034 1.093 1.142 1.166
0.15 0.881 0.991 1.063 1.138 1.201
0.2 0.947 1.024 1.119 1.221 1.570
0.3 0.863 0.938 1.046 1.202 1.530
0.4 0.786 0.852 0.952 1.113 1.449
0.5 0.711 0.773 0.857 0.991 1.306
0.6 0.645 0.702 0.771 0.872 1.103 2.485
0.7 0.637 0.694 0.769 0.920 1.593
0.75 0.606 0.659 0.723 0.843 1.297
0.8 0.576 0.627 0.679 0.777 1.086 1.868
0.85 0.546 0.595 0.640 0.719 0.928 1.408
0.9 0.533 0.565 0.603 0.666 0.815 1.075
0.95 0.519 0.537 0.568 0.619 0.727 0.869
1 0.510 0.500 0.535 0.559 0.644 0.790
Values of C2
0 − 0.210 − 0.113 0.000 0.111 0.209
0.05 − 0.212 − 0.129 − 0.027 0.085 0.198
0.1 − 0.214 − 0.145 − 0.052 0.059 0.181
0.15 − 0.209 − 0.157 − 0.074 0.031 0.159
0.2 − 0.167 − 0.093 0.004 0.133 0.349
0.3 − 0.178 − 0.123 − 0.046 0.070 0.273
0.4 − 0.183 − 0.141 − 0.083 0.008 0.181
0.5 − 0.181 − 0.151 − 0.108 − 0.041 0.089
0.6 − 0.177 − 0.155 − 0.123 − 0.075 0.013 0.195
0.7 − 0.155 − 0.132 − 0.095 − 0.037 0.130
0.75 − 0.153 − 0.134 − 0.102 − 0.054 0.065
0.8 − 0.151 − 0.135 − 0.107 − 0.067 0.020 0.134
0.85 − 0.147 − 0.136 − 0.111 − 0.076 − 0.012 0.079
0.9 − 0.145 − 0.135 − 0.113 − 0.083 − 0.033 0.024
0.95 − 0.142 − 0.134 − 0.114 − 0.088 − 0.048 − 0.011
1 − 0.139 − 0.129 − 0.101 − 0.087 − 0.061 − 0.026

when a/W ≤ 10−1 and become almost constant more than three significant digits in the range a/W ≤ 10−3.
It should be noted that when α � 0.5, α � 0.55 with β � 0.3, good pair condition α(α − 2β) < 0 can be
satisfied. However, as shown in Fig. 10, the values ofC1,C2 are also constant for α � 0.5, 0.55. In other words,
Eq. (12) can also be used for good pairs where singularity disappears. Table 4 shows C1, C2 values with more
than three digits accuracy in the range a/W ≤ 10−3 for Fig. 9b under tension σy0 based on the definition (12)
. Note that Noda–Lan [8] used another definition, K1 � F1σy0

√
πa, K2 � F2σy0

√
πa, F1 � C1 · (W/a)1−λ,

F2 � C2 · (W/a)1−λ, and their values are therefore different from the values in Table 4.
Next, consider the SIF of the interface edge crack under uniform stress field in Fig. 9c. The SIFs in

Fig. 9c have been also obtained by the proportional method using FEM confirming more than three digits
convergence. Figure 11 shows the dimensionless coefficients D1 and D2 in Eq. (13) by varying a/W in the
range a/W � 10−7~10−1 and also by varying α in the range α � 0.5~0.95 under fixed β � 0.3. As shown
in Fig. 11, the values of D1 and D2 are insensitive of a/W in the range a/W ≤ 10−2 and coincide with each
other more than three significant digits in the range a/W ≤ 10−3.

K1 + i K2 � (D1 + i D2)σy0
√

πa(1 + 2iε) (13)

Table 5 shows the values of coefficients D1, D2 defined in Eq. (13) having more than three digits accuracy
in the range a/W ≤ 10−3 in Fig. 9c by varying α, β. When α � 2β, a logarithmic singularity occurs at the
interface end and the equivalent load σy0 expressed by Eq. (6) becomes infinite, so Eq. (13) cannot be used
although D1, D2 are indicated in Table 5. Table 5 shows that the value of D1 is close to the value of edge crack
in homogeneous semi-infinite plate FI � 1.1215.

As shown in Fig. 9, the SIFF1, F2 in Fig. 9a can be expressed as Eq. (14) by superposing the problems
in Fig. 9b, c. Table 6 indicates C1, C2 in Table 4 and D1, D2 in Table 5 by taking an example when α
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Fig. 11 Values of D1, D2 in Fig. 9c by varying a/W in the range a/W � 10−7~10−1 and also by α in the range α � 0.5~0.95
under fixed β � 0.3 in Fig. 9c

Table 5 Values of D1, D2 in Eq. (13) having more than three digits accuracy in the range a/W ≤ 10−3 subjected to �T and σy0

as shown in Fig. 9c [K1 + i K2 � (D1 + i D2)σy0
√

πa(1 + 2iε)]

α β � − 0.2 β � − 0.1 β � 0 β � 0.1 β � 0.2 β � 0.3 β � 0.4 β � 0.45

Values of D1
0.00 − 1.127 − 1.123 − 1.122 − 1.123 − 1.127
0.05 − 1.128 − 1.123 − 1.121 − 1.123 − 1.127
0.10 − 1.128 − 1.123 − 1.121 − 1.122 − 1.126
0.15 − 1.128 − 1.123 − 1.120 − 1.121 − 1.124
0.20 − 1.122 − 1.119 − 1.120 − 1.123 − 1.129
0.30 − 1.120 − 1.117 − 1.117 − 1.119 − 1.125
0.40 − 1.117 − 1.113 − 1.112 − 1.114 − 1.119
0.50 − 1.112 − 1.108 − 1.107 − 1.108 − 1.112
0.60 − 1.107 − 1.102 − 1.100 − 1.100 − 1.103 − 1.111
0.70 − 1.094 − 1.091 − 1.091 − 1.094 − 1.100
0.75 − 1.090 − 1.087 − 1.086 − 1.088 − 1.094
0.80 − 1.085 − 1.081 − 1.080 − 1.082 − 1.087 − 1.091
0.85 − 1.080 − 1.076 − 1.074 − 1.076 − 1.080 − 1.084
0.90 − 1.074 − 1.070 − 1.068 − 1.069 − 1.072 − 1.076
0.95 − 1.068 − 1.063 − 1.060 − 1.061 − 1.064 − 1.067
1.00 − 1.061 − 1.056 − 1.053 − 1.052 − 1.054 − 1.057
Values of D2
0.00 − 0.0647 − 0.0318 0.0000 0.0318 0.0647
0.05 − 0.0737 − 0.0408 − 0.0089 0.0229 0.0556
0.10 − 0.0828 − 0.0497 − 0.0179 0.0139 0.0466
0.15 − 0.0918 − 0.0587 − 0.0268 0.0049 0.0375
0.20 − 0.0677 − 0.0358 − 0.0041 0.0283 0.0629
0.30 − 0.0857 − 0.0538 − 0.0222 0.0100 0.0441
0.40 − 0.1038 − 0.0736 − 0.0405 − 0.0087 0.0251
0.50 − 0.1221 − 0.0902 − 0.0590 − 0.0274 0.0058
0.60 − 0.1407 − 0.1089 − 0.0778 − 0.0465 − 0.0140 0.0217
0.70 − 0.1278 − 0.0970 − 0.0660 − 0.0338 0.0009
0.75 − 0.1374 − 0.1067 − 0.0759 − 0.0440 − 0.0097
0.80 − 0.1472 − 0.1166 − 0.0860 − 0.0544 − 0.0206 − 0.0020
0.85 − 0.1571 − 0.1266 − 0.0962 − 0.0649 − 0.0314 − 0.0132
0.90 − 0.1671 − 0.1368 − 0.1066 − 0.0756 − 0.0425 − 0.0248
0.95 − 0.1774 − 0.1472 − 0.1172 − 0.0865 − 0.0539 − 0.0363

� 0.8, 0.9, β � 0.3. By substituting those values into Eq. (14), the values ofF1 � C1 · (W/a)1−λ + D1,
F2 � C2 · (W/a)1−λ + D2 are estimated and indicated in Table 6 as “F1 in Eq. (14)” and “F2 in Eq. (14).”

K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε), F1 � C1 · (W/a)1−λ + D1,

F2 � C2 · (W/a)1−λ + D2, (14)

when α(α − 2β) > 0, a/W ≤ 10−3in Fig. 9a
To confirm the validity those values, the proportional method described in Sect. 3.1 is applied and the

obtained F1, F2 values are indicated in Table 6 as “Proportional method.” It is seen that F1, F2 values from
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Table 6 Confirmation of F1, F2 values estimated fromTable 4 and Table 5 coincident with the results obtained by the proportional
method [K1 + i K2 � (F1 + i F2)σy0

√
πa(1 + 2iε)]

β � 0.3 F1 F2

α a/W C1 in
Table 4

D1 in
Table 5

F1 from
Eq.(14)

Proportional
method

C2 in
Table 4

D2 in
Table 5

F2 from
Eq. (14)

Proportional
method

0.8 10−6 0.777 − 1.0822 3.892 3.8918 − 0.067 − 0.0544 − 0.476 − 0.4757
10−5 0.777 − 1.0822 2.568 2.5675 − 0.067 − 0.0544 − 0.364 − 0.3635
10−4 0.777 − 1.0822 1.596 1.5956 − 0.067 − 0.0544 − 0.281 − 0.2813

0.9 10−6 0.666 − 1.0683 10.38 10.380 − 0.083 − 0.0756 − 1.491 − 1.491
10−5 0.666 − 1.0683 6.058 6.0577 − 0.083 − 0.0756 − 0.957 − 0.9567
10−4 0.666 − 1.0683 3.367 3.3671 − 0.083 − 0.0756 − 0.624 − 0.6242

Fig. 12 Singular interface stress due to thermal loading expressed by the equivalent tensile stress in thex-direction σx0when
α − 2β � 0 a the thermal loading in bimaterial plate b tensile loading in thex-direction

C1, C2, D1, D2 and F1, F2 values from proportional method coincide with each other more than three
significant digits. In this way, it is confirmed that Table 4 and Table 5 are useful for obtained the SIF in Fig. 9a.

4.2 Stress intensity factor of an edge crack in a wide bimaterial plate considering the logarithmic singular
stress field without crack

Regarding the singularity at the joint end, it is known that a logarithmic singular stress field occurs as shown
in Fig. 12 when α − 2β � 0 in terms of Dundurs parameter [10, 13]. Furthermore, when α − 2β � 0, the
equivalent tensile stress σy0 defined in Eq. (6) goes to infinity although σy0 can be used to express the thermal
singular stress field as shown in Fig. 9a when α − 2β �� 0. Therefore, instead of σy0, the uniform temperature
change is expressed by applying the stress σx0 defined in Eq. (15) in thex-direction as shown in Fig. 12. As
shown in Appendix C, the equivalent stress σx0 of Eq. (15) can be derived from the condition that the strain
εx at the interface is equal between the upper and lower materials [6, 18].

σx0 � 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB + 1) − GB(κA + 1)
(15)

The equivalent stress replacement in Fig. 12 by using σx0 defined in Eq. (15) is useful not only when
α − 2β � 0, but also for all material combinations α, β [11]. However, the replacement in Fig. 12 cannot
clarify the difference between the tensile load and the thermal load unlike the replacement in Fig. 9 by using
σy0 defined in Eq. (15). Therefore, it is inconvenient to use the replacement in Fig. 12b as well as the direct
analysis results of the thermal load in Fig. 12a itself especially in experiments that combine thermal loads and
tensile loads conducted previously. In other words, the substitution method in Fig. 9 is more useful than the
one in Fig. 12 for the previous experiments combining thermal and tensile loads [5, 6]. Therefore, this paper
uses the replacement in Fig. 12 only when α − 2β � 0.
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Fig. 13 Relation between F1, F2 and the relative crack length a/W in Fig. 12 when α − 2β � 0

Figure 13 shows the stress intensity factors F1, F2 vs. log (a/W ) relation. Figure 13 indicates F1, F2
of edge cracks are controlled by interface edge logarithmic singularity when there is no crack. Then, they
are proportional to log (a/W ) when a/W ≤ 10−3. Therefore, as shown in the dashed line in Fig. 13 when
a/W ≤ 10−3, F1, F2 can be expressed by Eq. (16).

K1 + i K2 � (F1 + i F2)σx0
√

πa(1 + 2iε), F1 � c1 log(a/W ) + d1,

F2 � c2 log(a/W ) + d2, (16)

where (α − 2β) � 0, a/W ≤ 10−3 in Fig. 12a
As shown in Fig. 14, the values of c1, c2, d1, d2 are insensitive of a/W in the range a/W ≤ 10−2 and

coincide with each other more than three significant digits in the range a/W ≤ 10−3. Figure 15 shows the
values of c1, c2, d1, d2 obtained by the proportional method in the whole range of α. Since those values depend
on only α (� 2β), they can be approximated as a function of α as shown in Eq. (17), which can be conveniently
used to obtain the values c1, c2, d1, d2 for any value of α. They are odd functions with respect to α. It is
confirmed that the calculation formula (17) may provide F1, F2 values with less than 1% error.

c1 � 10.7035α6 − 20.9471α5 + 18.3439α4 − 6.6708α3 + 3.2555α2 − 0.0671α

c2 � 0.3721α6 − 0.6765α5 + 0.5463α4 − 0.1638α3 + 0.0334α2 − 0.0022α

d1 � −25.5432α6 − 49.8314α5 − 41.8688α4 − 15.1837α3 − 4.9974α2 − 0.1509α

d2 � 4.0137α6 − 9.6898α5 + 9.4712α4 − 4.0005α3 + 0.8521α2 + 0.6590α

(17a)

where α � 2β ≥ 0, a/W ≤ 10−3

c1 � −10.7035α6 − 20.9471α5 − 18.3439α4 − 6.6708α3 − 3.2555α2 − 0.0671α

c2 � −0.3721α6 − 0.6765α5 − 0.5463α4 − 0.1638α3 − 0.0334α2 − 0.0022α

d1 � −25.5432α6 − 49.8314α5 − 41.8688α4 − 15.1837α3 − 4.9974α2 − 0.1509α

d2 � −4.0137α6 − 9.6898α5 − 9.4712α4 − 4.0005α3 − 0.8521α2 + 0.6590α

(17b)

where α � 2β ≤ 0, a/W ≤ 10−3.
Finally, Table 7 summarizes suitable expressions considering the double singular stress fields in Fig. 9 under

mechanical loading and thermal loading. Even when F1, F2 → ∞, the coefficients C1,C2,D1,D2,c1,c2,d1, d2
are always finite and suitable to express F1, F2. This is similar to the finite value of the stress intensity factors
that can be used to evaluate cracks instead of the infinite stress value at the crack tip σy(r) → ∞ that cannot
be used when r → 0. In Table 7, the expressions of F1, F2 are chosen to express the singular stress fields
considering the difference between thermal loading and mechanical loading.
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Fig. 14 Relation between c1, d1, c2, d2 and the relative crack length a/W in Fig. 12 when α − 2β � 0

Fig. 15 Valuses of c1, c2, d1, d2 in Eq. (17) when −0.9 ≤ α(� 2β) ≤ 0.9
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Table 7 Suitable expression of F1, F2 in Fig. 9 when a/W ≤ 10−3 considering the double singular stress fields in Fig. 9 under
mechanical loading and thermal loading. [K1 + i K2 � (F1 + i F2)σ0

√
πa(1 + 2iε), σ0 is the equivalent stress defined by Eq. (6)

or Eq. (15)]

Material combination Under thermal loading Under mechanical loading

Edge singularity Dimensionless SIFs Edge singularity Dimensionless SIFs

α(α − 2β) > 0
(bad pair)

0 < λ < 1 F1 � C1 · (W/a)1−λ + D1

→ ∞ (a/W → 0)
F2 � C2 · (W/a)1−λ + D2→ ∞ (a/W → 0)

0 < λ < 1 F1 � C1 · (W/a)1−λ

→ ∞ (a/W → 0)
F2 � C2 · (W/a)1−λ

→ ∞ (a/W → 0)

α(α − 2β) � 0
(equal pair)

log(r )
(α �� 0)

F1 � c1log(a/W ) + d1
→ ∞ (a/W → 0)
F2 � c2log(a/W ) + d2→ ∞ (a/W → 0)

λ � 1 F1 � finite � C1

(a/W → 0)
F2 � finite � C2
(a/W → 0)

α(α − 2β) < 0
(good pair)

λ > 1 F1 � C1 · (W/a)1−λ + D1

→ D1 (a/W → 0)
F2 � C2 · (W/a)1−λ + D2→ D2 (a/W → 0)

λ > 1 F1 � C1 · (W/a)1−λ

→ 0 (a/W → 0)
F2 � C2 · (W/a)1−λ

→ 0 (a/W → 0)

5 Conclusions

In recent years, mechanical failures due to thermal stress such as cracking and delamination at the interface of
dissimilar materials are becoming more problematic in automobiles, computers, etc. To evaluate such thermal
load-induced damage in terms of the singular stress field, it is necessary to consider a constant term as well
as the singular term at the interface end, unlike in the case of mechanical loading. In this study, therefore, the
stress intensity factors (SIFs) of an interface edge crack in a wide bimaterial plate due to uniform temperature
change were analyzed and they were indicated under arbitrary material combination. It was confirmed that the
values are independent of the crack length when the crack length is sufficiently small when the relative crack
length a/W ≤ 10−3. The conclusion can be summarized as follows.

Care should be taken for the SIF under thermal loading when α(α − 2β) � 0 and α(α − 2β) < 0 (see
Table 7). When α(α − 2β) � 0, the dimensionless SIF F1, F2 → ∞ as a/W → 0 under thermal loading
although F1, F2 → finite under mechanical loading. When α(α − 2β) < 0, F1, F2 → finite as a/W → 0
under thermal loading although F1, F2 → 0 under mechanical loading.

When α−2β �� 0 and a/W ≤ 10−3 in Fig. 9a, the SIF under uniform temperature change can be expressed
by superposing the SIF under tension in Fig. 9b and the SIF due to a uniform interface stress in Fig. 9c as
shown in the following equations.

K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε), F1 � C1(W/a)1−λ + D1, F2 � C2(W/a)1−λ + D2

σy0 � 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η∗
m �

{
ηm (plane stress)

(1 + νm) ηm (plane strain) (m � A, B)

In this study, the coefficients C1,C2, D1, D2 are tabulated in Tables 4, 5 in the whole range of α, β. The
values of C1,C2, D1, D2 are insensitive of a/W in the range a/W ≤ 10−2 and coincide with each other more
than three significant digits in the range a/W ≤ 10−3. Therefore, the SIFs of the thermal stress field were
presented under arbitrary material combinations.

When α − 2β � 0 and a/W ≤ 10−3 in Fig. 12a, due to the peculiar logarithmic singularity under thermal
loading, the SIF of an interfacial edge crack in a bonded plate under uniform temperature change in Fig. 12a
can be expressed in the following equations.

K1 + i K2 � (F1 + i F2)σx0
√

πa(1 + 2iε), F1 � c1 log(a/W ) + d1, F2 � c2 log(a/W ) + d2

σy0 � 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB + 1) − GB(κA + 1)
,
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η∗
m �

{
ηm (plane stress)

(1 + νm) ηm (plane strain) (m � A, B)

The values of c1, c2, d1, , d2 are insensitive of a/W in the range a/W ≤ 10−2 and coincide with each other
more than three significant digits in the range a/W ≤ 10−3. In this study, the coefficients c1, c2, d1, , d2 are
expressed in Eq. (17), which can be used conveniently in the whole range of α (� 2β) with less than 1% error.

Suitable expressions of F1, F2 are summarized in Table 7 by considering the double singular stress fields
in Fig. 9 under arbitrary material combination. It should be noted that even when F1, F2 → ∞, the coefficients
C1, C2, D1, D2, c1, c2, d1, d2 are always finite and suitable to expressF1, F2. This is similar to the finite value
of the stress intensity factors that can be used to evaluate cracks instead of the infinite stress value at the crack
tip σy(r) → ∞ that cannot be used when r → 0. In Table 7, the expressions of F1, F2 are chosen to express
the singular stress fields considering the difference between thermal loading and mechanical loading.
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Appendix A. Mesh independence of interface stress intensity factor obtained by the proportional
method

The proportional method is useful for analyzing interface cracks by providing mesh-independent interface
SIFs efficiently. Since the FEM results are mesh-independent, the obtained results can be regarded as the exact
solution by using the exact reference solution. The detail of the accuracy discussion can be found in previous
papers under mechanical loading [8, 15, 16]. For the readers’ convenience, in this paper, several examples of
mesh independence will be shown by varying the minimum element size e/a under thermal and mechanical
loading.

Table 8 shows the SIFs F1, F2 of the short and long edge cracks in the bimaterial plate when a/W � 10−5

and a/W � 0.8. By varying the minimum element size e/a around the crack, the SIFs are indicated under
thermal and mechanical loading. The four-node quadrilateral elements are used and the minimum element
sizes are e/a � 3−6/11, 3−7/11, 3−8/11 for each FE model. The FEM mesh around the crack tip in the
reference problem is the same as that of the unknown problem. In the analysis, the elastic parameters are fixed
as α � 0.8 and β � 0.3. Table 8 shows that the results of F1, F2 are mesh-independent to more than three digits
for both short and long cracks. Under the thermal loading, the proportional method provides the same level of
accuracy under the mechanical loading. The expression F1 � C1(W/a)1−λ + D1, F2 � C2(W/a)1−λ + D2 is
significant in thermal loading since the SIF of a larger crack is always smaller (see Appendix B).

The coefficients C1, C2, D1, D2 in Eq. 14 can be analyzed by applying the proportional method on the
basis of the illustration in Fig. 9a–c. Table 9 shows that the results of F1, F2 are mesh-independent to more than
three digits when a/W � 10−5 and 10−7. All values of C1, C2, D1, D2 in Table 4 and Table 5 are obtained
by confirming more than three digits accuracy as shown in Table 9. As shown in Table 9, C1, C2, D1, D2 are
useful for expressing short cracks because the constant values can be used for a/W ≤ 10−3. Instead, F1, F2
increase with decreasing a/W.

See Tables 8 and 9.

Table 8 Mesh− independence of F1, F2 obtained by the proportionalmethod in Fig. 9a, b (K1+i K2 � (F1+i F2)σy0
√

πa(1+2iε),
α � 0.8, β � 0.3, a/W � 10−5 and a/W � 0.8)

a/W e/a Thermal loading Mechanical loading

F1 F2 F1 F2

10−5
3−6/11=1/8019 2.5714 − 0.3636 3.6521 − 0.3095
3−7/11=1/24057 2.5704 − 0.3635 3.6522 − 0.3096
3−8/11=1/72171 2.5705 − 0.3635 3.6539 − 0.3097

0.8 3−6/11=1/8019 − 0.00265 − 0.03099 11.856 − 1.3787
3−7/11=1/24057 − 0.00264 − 0.03099 11.860 − 1.3780
3−8/11=1/72171 − 0.00263 − 0.03102 11.861 − 1.3765
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Table 9 Mesh− independence of C1, C2, D1, D2 obtained by the proportional method in Fig. 9b , c (K1 + i K2 �
(F1 + i F2)σy0

√
πa(1 + 2iε), α � 0.8, β � 0.3)

a/W e/a Figure 9a Figure 9b Figure 9c

F1* F2* C1 C2 D1 D2

10−5
1/8019
1/24057
1/72171

2.5711
2.5706
2.5701

− 0.3636
− 0.3643
− 0.3642

0.7773
0.7768
0.7767

− 0.0658
− 0.0659
− 0.0658

− 1.0839
− 1.0821
− 1.0821

− 0.05423
− 0.05438
− 0.05437

10−7
1/8019
1/24057
1/72171

5.7031
5.7001
5.6991

− 0.6286
− 0.6284
− 0.6283

0.7768
0.7765
0.7764

− 0.0658
− 0.0657
− 0.0657

− 1.0816
− 1.0820
− 1.0821

− 0.05436
− 0.05437
− 0.05439

*In Table 9, F∗
1 , F

∗
2 are obtained from F∗

1 � C1 · (W/a)1−λ + D1, F∗
2 � C2 · (W/a)1−λ + D2

Appendix B. Stress intensity factor solution of an edge interface crack in a bimaterial plate
under thermal and mechanical loading in the whole range a/W � 0~1.0

The stress intensity factor (SIF) was previously analyzed for an edge interface crack in a bimaterial plate
subjected to tension σ0 in Fig. 1 by varying material combinations systematically [7, 8]. Figure 16a shows
some examples of F1-a/W relations as well as K1-a/W relations whenα � 0.4~0.95 under fixed β � 0.3. As
shown Fig.16a, F1 → ∞ as a/W → 0 when α(α − 2β)> 0. Figure 16b shows the log–log plot of F1-a/W
relations to confirm the double singular stress behavior of F1 in detail. According to Fig. 16b, it can be seen
that F1 can be expressed as shown in Eq. (B1) in the range of a/W ≤ 10−3. Here, λ is the singularity index
at the interface end without crack.

F1 � C1 · (W/a)1−λ (B1)

In otherwords, Fig. 16b shows that the dimensionless stress intensity factor F1 � C1(W/a)1−λ is controlled
by the singular stress fieldwithout crack, which can be expressed as shown in Eq. (1), that is, σy(r ) � Kσ /r1−λ.
As shown in Fig. 10, the values of C1 and C2 are independent of a/W and coincide with each other more than
four significant digits in the range a/W ≤ 10−3. In the previous studies, the SIF solution when a/W ≤ 10−3

in Fig.16 was provided under arbitrary material combinations. The SIFs are expressed by considering the
character of the double singular stress field as shown in Eq. (B2).

K1 + i K2 � (F1 + i F2)σ0
√

πa(1 + 2iε) in Fig. 1 when a/W ≤ 10−3:
⎧⎨
⎩
When α(α − 2β) > 0 : F1 � C1(W/a)1−λ, F2 � C2(W/a)1−λ,C1,C2 → finite (a/W → 0), 0 < λ < 1
When α(α − 2β) � 0 : F1 � C1 � 1.121 + 0.0128β − 0.253β2, F2 � C2 � 0.029β + 0.0526β2, λ � 1
When α( α − 2β) < 0 : F1 � C1(W/a)1−λ, F2 � C2(W/a)1−λ,C1,C2 → finite (a/W → 0), λ > 1

(B2)

Figure 16c shows some examples of K1−a/W relations subjected to the remote tensile stress σ0 � 1 when
α � 0.4~0.95 under fixed β � 0.3. As shown Fig.16c, the stress intensity factor K1 increases with increasing
the relative crack length a/W . The value of K2 also increases with increasing a/W in a similar way of K1.

See Fig. 16.
Table 10 shows the SIFs F1, F2 of the edge crack in the bimaterial plate subjected to thermal andmechanical

loading analyzed for various crack sizes a/W � 10−5 ∼ 0.8. For thermal loading, F1, F2 decrease rapidly
with increasing a/W . Therefore, the expression F1 � C1(W/a)1−λ+D1, F2 � C2(W/a)1−λ+D2 is significant
in thermal loading since the SIF of a larger crack is always smaller.

See Table 10.
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Fig. 16 F1 in Eq. B1 as K1 + i K2 � (F1 + i F2)σ0
√

πa(1 + 2iε) for an edge interface crack in a bimaterial plate when α �
0.4~0.95 under fixed β � 0.3
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Table 10 SIFs F1, F2 in 9a, b in the range a/W � 10−5 ∼ 0.8 (K1 + i K2 � (F1 + i F2)σy0
√

πa(1 + 2iε), α� 0.8, β� 0.3)

a/W Thermal loading Mechanical loading

F1 F2 F1 F2

10−5
2.5675 − 0.3635 3.6496 − 0.3091

10−4
1.5956 − 0.2813 2.6777 − 0.2269

10−3
0.8830 − 0.2214 1.9651 − 0.1671

10−2
0.37239 − 0.1776 1.4562 − 0.12330

0.1 0.06995 − 0.13148 1.2440 − 0.0831
0.2 0.02854 − 0.10759 1.3798 − 0.0724
0.3 0.01443 − 0.08947 1.6624 − 0.0747
0.4 0.00731 − 0.07438 2.1080 − 0.0930
0.5 0.00338 − 0.06183 2.8154 − 0.1389
0.6 0.00062 − 0.05086 3.9980 − 0.2446
0.8 − 0.00264 − 0.03099 11.856 − 1.3787

Appendix C. Derivation of equivalent stress σ y0 and σ x0 to express thermal singular stress field

In this study, the equivalent stress is used to express the stress intensity factor of the edge interfacial crack
under the thermal loading [6]. Then, the equivalent tensile stress σy0 acting in they-direction defined in Eq. (6)
is used to express the power-type singularity rλ−1 at the interface end, and the equivalent tensile stress σx0
acting in thex-direction defined in Eq. (15) is used to express the logarithmic-type singularity at the interface
end.

See Fig. 17.
Figure 17 illustrates that the stress field due to a uniform temperature change �T in Fig. 17a can be

expressed by superposing the stress fields caused by the boundary conditions in Fig. 17d,e. Figure 17a shows
a bonded strip subjected to a uniform temperature change of �T . As shown in Fig. 17b, if both materials are
separated from each other, a difference of thermal strain along the interface, εTx , A − εTx , B , is produced because
of the difference of the thermal expansion coefficients. This difference can be canceled by applying a certain
uniform pressure σy � −σy0 to those plates, as shown in Fig. 17c. Assuming that the difference due to the
uniform pressure σy � −σy0 is equal to εσ

x , A − εσ
x , B , the condition along the interface in Fig. 17c can be

expressed in Eq. (C1).

εTx ,A − εTx ,B − (
εσ
x ,A − εσ

x ,B

) � 0 → (
η∗
A − η∗

B

)
�T −

(
− ν∗

A

E∗
A
+

ν∗
B

E∗
B

)
σy0 � 0 (C1)

Fig. 17 Singular stress field caused by temperature change is equivalent to that caused by uniaxial tension in they-direction
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Fig. 18 Singular stress field caused by temperature change is equivalent to that caused by uniaxial tension in thex-direction

As shown in Fig. 17d, two plates have no difference in the width of interface and can be bonded to each
other. In order to be the same as the boundary conditions in Fig. 17a, an additional tensile stress σy � σy0
should be applied in Fig. 17e. Therefore, the equivalent stress σy0 can be expressed in Eq. (C2).

σy0 � (η∗
B − η∗

A)�T
ν∗
B

E∗
B

− ν∗
A

E∗
A

(C2)

Equation (C2) can be written as shown in Eq. (C3) by using the relations Em � 2(1 + νm)Gm and
κm � (3 − νm)/(1 + νm) for plane stress, κm � 3 − 4νm for plane strain (m � A, B).

σy0 � 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η∗
m �

{
ηm (plane stress)

(1 + νm)ηm (plane strain) (m � A, B) (C3)

When α − 2β � 0, the logarithmic singularity occurs near the interface end. As shown in Eq. (C4), the
denominator of Eq. (C3) becomes zero, and the equivalent stress σy0 cannot be applied.

α − 2β � 0 → GA(κB − 1) − GB(κA − 1) − 2(GA − GB) � 0 (C4)

See Fig. 18.
Figure 18 illustrates that the stress field due to a uniform temperature change�T in Fig. 18a canbe expressed

as the one due to the equivalent tensile stress in thex-direction. As shown in Fig. 18b, if both materials are
separated from each other, a difference of thermal strain along the interface, εTx , A − εTx , B , is produced because
of the difference of the thermal expansion coefficients. Fig. 18c shows that the same difference can also be
produced by applying a certain uniform tension in thex-direction to those plates as shown in Eq. (C5).

εTx ,A − εTx ,B � εσ
x ,A − εσ

x ,B → (η∗
A − η∗

B)�T �
(

1

E∗
A

− 1

E∗
B

)
σx0 (C5)

Therefore, the equivalent stress σx0 in thex-direction can be expressed in Eq. (C6).

σx0 � (η∗
B − η∗

A)�T
1
E∗
B

− 1
E∗
A

� 8GAGB
(
η∗
B − η∗

A

)
�T

GA(κB + 1) − GB(κA + 1)
(C6)
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