連載(続)産業用ロール・ローラの技術的課題と解決(3)

残留応力 0 として複合圧延ロールに生じる 熱間圧延時の負荷を明確にしたときの 複合圧延ロールに生じる圧延応力

野田 尚昭・佐野 義一・高瀬 康・堀田 源治

はじめに

鋼の熱間圧延では、圧延ロールの耐摩耗・耐肌 あれ性と耐熱き裂性を改善する様々な研究が行わ れており $^{1)\sim6}$, 現在では、熱間圧延でハイス製複 合ロール (ハイスロールともいう) が、幅広く用い られている⁷⁾⁸⁾. このロールは、遠心鋳造法で製 造され、高炭素系高速度鋼(HSS)と球状黒鉛鋳鉄 (DCI) がそれぞれ外層材と内層材として使用され ている9. ハイス製複合ロールはロール寿命に達 するまでの総圧延長さが、それ以前の高合金グレ ンロールや高クロムロールに対比して10倍以上 に達するものもある。 圧延ロール表層は、表面肌 荒れ等による表面粗さや摩耗を除去するために. バックアップロールよりも少ない圧延量で頻繁に 研削される. このため, バックアップロールで問 題となるスポーリング(ロール表面から発生した 転がり疲労き裂が内部に向かって生じる表層剥離) はほとんど生じない. しかし, 使用中に研削され る外層と異なり、ロール内部の HSS/DCI 境界部 および内層は、ロール全寿命に相当する 10^7 回を 越える繰返し荷重を受ける。しかも、HSS/DCI境 界層の鋳造過程で、遠心鋳造固有の微小欠陥や不 健全なミクロ組織が生じることがあり、圧延負荷 の繰返しによって HSS/DCI 境界やその内部にお ける剥離事象を伴う. このように、ロールの長寿 命化に加えて, 圧延材の高強度化に伴う高負荷圧 延など、ロール使用条件が厳しくなる中で、ロー

ル内部を起点とする疲労破壊に関する知見が不十分である.

このような観点から、先の解説では、ロールに 導入される残留応力を考慮して、熱間圧延時にお ける複合圧延ロールの疲労強度を基に、実際の圧 延ロールの疲労強度を説明した¹⁰⁾¹¹⁾. しかし、残 留応力を考慮したため、圧延時にどのような応力 が圧延ロールに生じるかは必ずしも明確になって いない.

そこで、本研究では、4段圧延機用ハイス製複 合ロールを対象に、ロール残留応力が0のときに ロール内部に生じる圧延応力に着目して, 疲労破 壊の危険部位を明らかにする。なお、ここでは圧 延により生じる応力の意味で圧延応力を用いる. 最終的な破壊リスクの評価に、ロールの残留応力 を考慮することは、不可欠であるが、その導入の ための熱処理方法は各ロールメーカーによっても 異なる. よって, ここでは, これまで研究の見当 たらない圧延中のロールに生じる応力を明確にす るため、残留応力はゼロとする、そして、圧延応 力の観点から、これまでのロール破損事故例¹²⁾¹³⁾ も参考にして、疲労破壊危険部位を明らかにする. これまでに行われた圧縮応力場での疲労の研究は, 転がり疲労試験のような特別な試験方法に限定さ れており、一般によく用いられる通常の疲労試験 による評価は行われていない。 すなわち、 通常の 疲労破壊が圧縮応力場でどのように生じるかを考 慮した研究は極めて少ない^{14)~16)}. よって, 本稿 では、圧縮応力下での耐久限度線図を提案する.

ロール回転により生じる圧延ロール の応力変化

ロール内部起点の疲労破壊を考察するに際し て先の調査結果⁶⁾を参考にして破壊リスクの高い ロール内部 3 次元空間領域 (危険領域) を経験に基 づいて想定する. その危険領域においてロール回 転に対応して変動する半径方向応力σ_εに注目する. ロール内部疲労破壊事例によれば、破壊起点部 はr = -定面, すなわち半径方向に直行する面に 沿って見られる¹²⁾¹³⁾. 本節ではロール内部の疲労 を支配する最大応力振幅発生位置を解析結果に基 づいて考察する. 応力振幅の変動は円周方向に現 れるので、ここでは、以下の基準値を用いる。圧 延ロール径 $D_{\rm W}=660\,\mathrm{mm}$ 、バックアップロール径 $D_{\rm R} = 1400 \, \text{mm}$, 両ロール本体長 $L = 1800 \, \text{mm}$, 圧 延鋼幅 W = 1200 mm が一般的に使用されており、 多くのロールメーカーや鉄鋼会社によって典型的 な条件として認識されている。 圧延ロールとバッ

クアップロールには、標準値 $P_{\text{total}} = 16400 \text{ kN}$ である総圧延力 P_{total} がかかる $^{17)18)$. 解析に用いるロールプロフィール、圧延負荷および解析対象を表 17 に示す。

圧延ロール表面の圧延応力の周方向 の応力変化.

圧延状態の解析では圧延トルクを無視し、圧延荷重のみを考慮する。図1に解析に用いる線荷重 $p_B(z)$ 、 p_s^{ave} のモデルを示す。圧延ロールはバックアップロールと $\theta=90^\circ$ で接触し、線荷重 p_B を受ける。また、圧延材と $\theta=-90^\circ$ で接触し、線荷重 p_s^{ave} を受ける。線荷重 p_s は圧延ロール摩耗プロフィールの影響は受けにくいが、圧延材の幅方向に温度の影響を受けて変動する。その解析法は一般化されていないので、ここでは p_s^{ave} =const.として扱う。図2に圧延ロール表面のz=0に生じる σ_r , σ_θ , σ_z の周方向の変動を示す。表面応力と内部応力が周方向に同様に変化することは後述する。

表1 解析に用いるロールプロフィール, 圧延負荷および解析対象.

	ロールプロフィール (mm)			圧延荷重	解析対象
	バックアップロール		圧延ロール		
	面取り長さ <i>l</i> c	クラウン高さ hc	摩耗プロフィール hw	$P/P_{ m total}$	(MPa)
基準値	90	0	0	1.0	応力 σ_r , σ_θ , σ_z

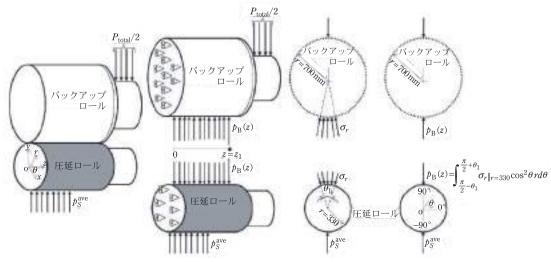


図1 線荷重 p_B(z) と p_S^{ave} の定義.

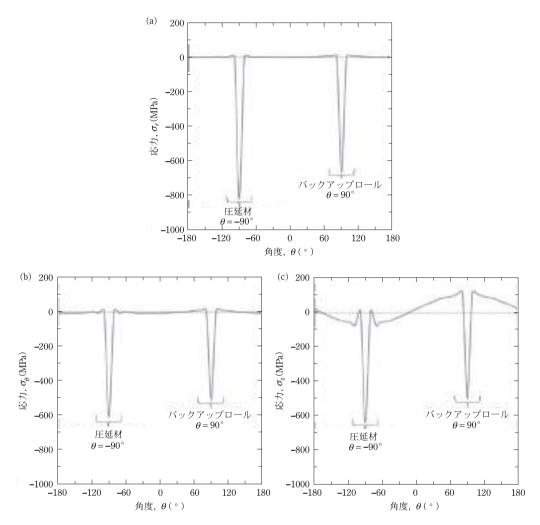


図2 圧延ロールのz=0 に作用する表面力の周方向の変化 $(P/P_{total}=1.0)$. (a) σ_r , (b) σ_θ , (c) σ_z .

図 2 より、 σ_r が $\theta = -90^\circ$ で最大の圧縮応力を取ることを示すことがわかる。よって、 σ_r に注目する。注目する応力 σ_r において接触域 $\theta = -90^\circ$ (圧延材側) が最大圧縮応力となる。 $\theta = 90^\circ$ (バックアップロール側) がそれに次いで大きい。これは、圧延材から受ける荷重幅が 1200 mm であり、バックアップロールから受ける荷重幅より短いことによる。

圧延ロール表面と HSS/DCI 境界 の軸方向の応力変化

図3に圧延ロールの表面 (r = 330 mm) と HSS/

DCI 境界面 (r = 270 mm) における 5 つの角度 $(\theta = -90^{\circ}, -45^{\circ}, 0^{\circ}, 45^{\circ}, 90^{\circ})$ での σ_r , σ_{θ} , σ_z の応力分布を比較して示す。図 3 (a), (b), (c) より, σ_r が, σ_{θ} , σ_z よりも大きく,最大の圧縮応力を与えることがわかる.また,HSS/DCI 境界に生じたき裂は,表面ならびに周方向に進展する.この観点からも,圧縮の最大をとる σ_r に注目すれば十分である.すなわち破壊は σ_r によって生じているので,ここでは,圧縮の最大をとる σ_r に注目する.

図 3 (b) にロールの表面、ならびに HSS/DCI 境界面における各角度の応力 σ_r を示す、前節では z=0 の表面で $\theta=-90^\circ$ において最も大きい圧縮

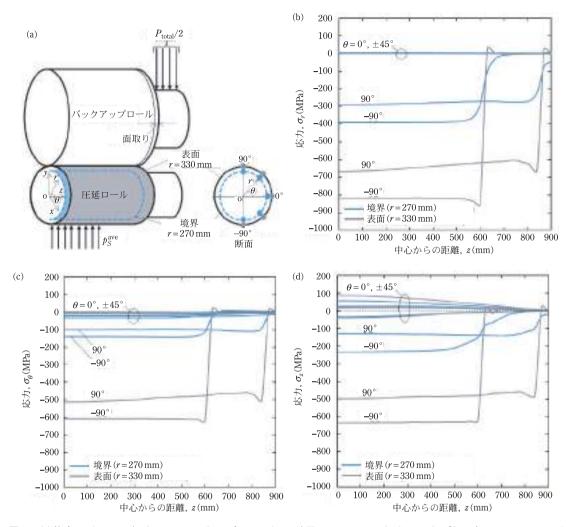


図3 (a) 複合圧延ロール表面 r=330 mm ならびに HSS/DCI 境界 r=270 mm における, それぞれ 5 本のライン $\theta=-90^\circ$, -45° , 0° , 45° , 90° に着目すること, (b) σ_r , (c) σ_θ , (d) σ_z .

応力が発生していることが示された。軸方向の表面と HSS/DCI 境界面のz 軸方向の応力分布に注目した場合でも同様に、 $\theta=-90^\circ$ (圧延材側) で最大圧縮応力が各種応力で発生している。 $\theta=90^\circ$ (バックアップロール側) がそれに次いで大きい。なお、圧縮応力 σ_r は、表面 (r=330 mm) において $\sigma_r=817$ MPa < 1270 MPa となり外層 (HSS) の降伏応力を下回っている。同様に、HSS/DCI 境界 (r=270 mm) においても $\sigma_r=388$ MPa < 410 MPa となり内層 (DCI) の降伏応力以下である。

HSS/DCI 境界付近の軸方向の応力 変化

図 4 に HSS/DCI 境界層 r=270 mm の内側近傍 からロール表面まで 255 mm $\leq r \leq 330 \text{ mm}$ の σ_r を示す。図 4 (a) は,バックアップロール側 ($\theta=90^\circ$) における圧延ロールとバックアップロールの接触 領域 $z \leq 900 \text{ mm}$ の σ_r を示す。図 4 (a) に示す r= 一定の σ_r の応力分布には,接触領域の端部付近でピークがみられる。図 4 (b) は,圧延側 ($\theta=-90^\circ$

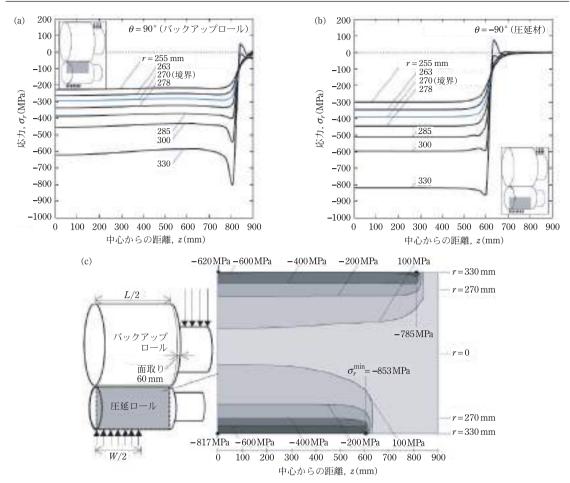


図4 HSS/DCI 境界 (r=270 mm) 近傍の σ_r の分布 (境界内側からロール表面まで 255 mm $\leq r \leq 330 \text{ mm}$). (a) バックァップロール側 $(\theta=90^\circ)$ の接触領域 $z \leq 900 \text{ mm}$ の σ_r . (b) 圧延材側 $(\theta=-90^\circ)$ の圧延材からの接触領域. (c) 応力分布のコンター図.

での圧延ロールと圧延材の σ_r を示す。同様に,接触端部でその接触領域 $z \le 600$ mm の σ_r が大きく,表面の最大応力位置は,内部でも同様である。図 4 (a),(b) を同じr で比べると図 4 (b) の圧縮応力が大きいことがわかる。図 4 (c) に応力分布のコンター図を示す。この等高線図から,圧延鋼の長さW/2 = 600 mm が,バックアップロール長さより小さいため,r が小さいロール内部まで大きな圧縮応力が生じていることがわかる。

本研究で扱う疲労破壊は、ロール内部で発生し、ハイス (HSS) と球状黒鉛鋳鉄 (DCI) の HSS/DCI 境界部を含む内部から生じる. すなわち、HSS/DCI 境界 DCI 境界近傍のき裂発生に関して、HSS/DCI 境界

付近の σ_r の応力振幅が重要である。そこで本稿では、実圧延を近似した条件を決定した後、このような、これまで研究のなされていない HSS/DCI 境界層近くの疲労破壊を対象として、HSS/DCI 境界上の内部応力 σ_r に注目して考察する。

バックアップロールに設ける面取り形状が線荷重へ及ぼす影響

本節の解析に用いるロールプロフィール、圧延 負荷および解析対象を表 2 に示す.ここでは、ロー ルプロフィール h_c 、 h_w を変化させたときの線荷重 に対する影響を考察して実圧延条件を決定する.

表2 ロールプロフィールと圧延荷重.

		ールプロフィール	(mm)	圧延荷重	解析対象
	バックアッ	ップロール	圧延ロール		
	面取り長さ <i>l</i> c	クラウン高さ h_c	摩耗プロフィール hw	$P/P_{ m total}$	(kN/mm)
基準値	90	0.5	0~0.3	0.5~1.5	線荷重 pB

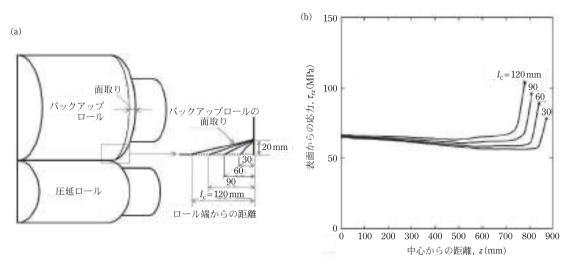


図5 (a) バックアップロール端部に設ける面取り形状, (b) 面取り形状決定のための表面のせん断応力 (面取り長さ l_c = 30, 60, 90, 120 mm, P/P_{total} = 1.0 のとき).

圧延ロールはバックアップロールから線荷重 $p_B(z)$ を,圧延材から p_s^{ave} を受ける.圧延ロールがバックアップロールから受ける線荷重 $p_B(z)$ は,式 (1) で与えられる.また,総圧延荷重 P は式 (2) で,線荷重 p_s^{ave} は式 (3) で,圧延材から受ける線荷重 p_s^{ave} は式 (4) で与えられる(図 1 参照)¹⁷⁾. なお,式 (1) と式 (3) は,線荷重の平均値 $p_B(z)$ と p_s^{ave} の違いを説明している.

$$p_{\rm B}(z) = \int_{\frac{\pi}{2} - \theta_1}^{\frac{\pi}{2} + \theta_1} \sigma_r(r, \theta, z) \bigg|_{r = 330 \, \text{mm}} \cos^2 \theta r d\theta \quad (1)$$

$$P = \int_{0}^{z_1} p_{\rm B}(z) dz \tag{2}$$

$$p_{\rm B}^{\rm ave} = P/L \tag{3}$$

$$p_{\rm S}^{\rm ave} = P/W \tag{4}$$

ここで、 θ_1 は、図 1(a) に示される接触領域の角度、 z_1 は接触長さである。また、 $\sigma_r|_{r=330}$ はロール表面の接触応力である。なお、接触角 θ_1 は小さいので応力の座標変換は無視できる。線荷重 $p_B^{ave}=P/L$ は一般に用いられる圧延ロールへの外力であ

る. 図1に示す線荷重 p_S^{ave} は前節で述べたように $p_S^{ave} = P/W = const.$ として扱う.

図 5 (a) に、面取りの長さ $l_c = 30$, 60, 90, 120 mm と変化させたときの面取り形状を示す。図5(b)に、 ロール端の転がり接触疲労により生じるき裂の発 生に大きく影響する表面せん断応力 τπ の分布を示 す. 前述のように、本稿では、内部のHSS/DCI 境界からの疲労破壊に焦点を当てており,表面 近くのき裂発生を引き起こすせん断応力は考慮 していない. ここでは、最適なバックアップロー ルに設ける面取り形状を検討するために、特別に せん断応力を説明する、また、面取りはロールの 取り扱い中の衝突による損傷を避けるためにも必 要である. 図 5(b) より、表面せん断応力 τ_{rz} は、 $l_c = 30 \text{ mm}$ のときに最小になる. ここでは、ロー ルの中央部の接触による圧延ロールの曲がりを減 らすため、より大きな面取り長が必要であること を考慮して、面取りの長さは $l_c = 60 \text{ mm}$ を選択し、 以下の考察で用いる.

圧延ロールの摩耗プロフィールと バックアップロールのクラウンプ ロフィールの設定

ロール全域で、疲労危険度評価を行うため、バックアップロール直径 $D_B(z)$ に設ける適切なクラウン高さ h_c と、圧延ロールの直径 $D_W(z)$ に生じる適切な摩耗量プロフィールを設定する。同時に、ロールの熱膨張によるロールの形状変化 (サーマルクラウン) もバックアップロールによる線荷重分布に影響を与えるが、摩耗プロフィールに対比して滑らかに変化するので、ここでは無視する。ここで、バックアップロール直径 $D_B(z)$ に設けるクラウン高さ h_c と、圧延ロールに生じる摩耗量 h_w における直径 $D_W(z)$ を式 (5)、(6) で表現し図 6 に示す。基本条件では摩耗量 $h_w=0$ である。 l_a は、圧延ロールの曲線部の長さであり、 l_b は、バックアップロールの曲線部の長さである。

$$D_{\rm B}(z) = 1400 + 2h_{\rm c}\sqrt{1 - z/l_{\rm b}}$$
 (5)

$$D_{\rm W}(z) = 600 + 2h_{\rm w}\sqrt{1 - z/l_{\rm a}} \tag{6}$$

式 (6) の摩耗プロフィールは,摩耗端部での変化が大きく,ロール中央に向かって摩耗量 h_w が緩やかに変化する.円弧形状で与えられる場合に比べて,バックアップロールのクラウンプロフィールの式 (5) の最大相対誤差は, h_c = 0.5 mm に対して 0.06/0.5 = 12%以内で一致させている.式 (5),(6) を用いて解析に用いる適切なバックアップロールのクラウン高さ h_c を考察する.バックアップロールのカラウン高さ h_c を考察する.バックアップロールの曲がりによるたわみ $\Delta \delta_z$ は中心軸における軸方向胴部端部のたわみ δ_z = 900 と軸方向中央のたわみ δ_z = 0 = 0.2 mm の差から求まり, $\Delta \delta_z$ =

 $\delta_z = 900 - \delta_z = 0 = 0.2 \, \mathrm{mm}$ となる。また,接触相手の圧延ロールの最大摩耗量は, $h_\mathrm{w}^\mathrm{max} = 0.3 \, \mathrm{mm}$ と見積もることができる.クラウン高さ h_c は,これらの和,すなわち $h_\mathrm{c} = \Delta \delta_z + h_\mathrm{w}^\mathrm{max}$ とすればよい.よって,バックアップロールのクラウン高さ $h_\mathrm{c} = \Delta \delta_z + h_\mathrm{w}^\mathrm{max} = 0.2 \, \mathrm{mm} + 0.3 \, \mathrm{mm} = 0.5 \, \mathrm{mm}$ とする.

式 (6) において,摩耗プロフィールは,摩耗中心 $z\approx0$ でわずかに変化し,摩耗端 $z\approx l_a$ 付近で大きく変化する.比較により,式 (5) は,式 (7) で表される円弧状のバックアップロール径と 0.12 mm 以内で一致する.

$$D_{\rm R}(z) = 1400 + 2h_{\rm c}$$

$$-2\left[\frac{(h_{c})^{2}+(l_{b})^{2}}{2h_{c}}-\sqrt{\left(\frac{(h_{c})^{2}+(l_{b})^{2}}{2h_{c}}\right)^{2}-z^{2}}\right]$$
(7)

式 (5) における適切なクラウン高さ h_c は、次のように決定することができる。バックアップロールの曲げ変形は、本体端部のたわみ $\delta_{z=900}$ と本体中心部のたわみ $\delta_{z=0}$ から $\Delta\delta=\delta_{z=900}$ - $\delta_{z=0}=0.2$ mm. 圧延ロールの最大摩耗プロフィールは、 $h_{\rm W}=0.3$ mm と見積もることができる。したがって、バックアップロールのクラウン高さ h_c は、 $h_c=\Delta\delta+h_{\rm W}=0.2$ mm + 0.3 mm = 0.5 mm となる。ここで、 $\Delta\delta=\delta_{z=900}-\delta_{z=0}=0.2$ mm はバックアップロールの曲げ変形であり、 $h_{\rm W}=0.3$ mm は圧延ロールに現れる最大摩耗量である。

圧延ロールに作用する外力を表すため、式(8) \sim (11) で定義される線荷重が一般的に用いられる。本節では、ロールモデリングの線荷重に対する摩耗プロフィールの影響を明らかにする。図 6 に示すように、 h_w を変化させることによって、線荷重 $p_B(z)$ に対する摩耗プロフィールの影響を、3 次元接触弾塑性 FEM 解析を適用して調べた結果

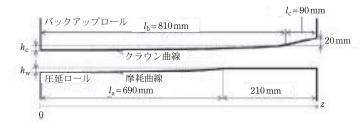


図 6 バックアップロールに設けるクラウン高さ h_c の場合の直径 $D_B(z)$ のプロフィールと摩耗量 h_w の場合の圧延ロール直径 $D_W(z)$ のプロフイール(式(5),(6)で表現したもの).

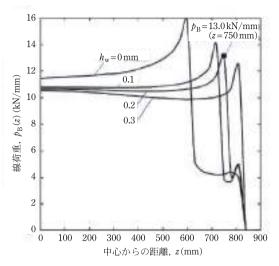


図 7 バックアップロールに設けるクラウン高さ h_c = 0.5 mm を固定して、圧延ロールの摩耗量 h_w = 0, 0.1, 0.2, 0.3 mm が変わるときの線荷重 $p_B(z)$. p_B = 13.0 kN/mm は実荷重条件.

を説明する.

$$p_{\rm B}(z) = \int_{\frac{\pi}{2} - \theta_1}^{\frac{\pi}{2} + \theta_1} \sigma_r(r, \theta, z) \bigg|_{r = 330} \cos^2 \theta r d\theta \qquad (8)$$

ここで、 θ_1 は図 1 に示す接触面の角度であり、 $\sigma_r|_{r=330}$ はロール表面 $(r=330~\mathrm{mm})$ の接触応力である。接触角 $\theta_1\cong 1^\circ$ が小さいので、せん断応力の影響が小さいため、式 (8) では、 $\tau_{r\theta}(r,\theta,z)|_{r=330}$ は含まれない。総圧延力P は、式 (9) で定義できる 19 .

$$P = \int_{0}^{z_1} p_{\mathbf{B}}(z) dz \tag{9}$$

ここで、 z_1 は接触長さ $z_1 = L/2 - l_c$ である. 平均線荷重 p_B^{ave} と p_S^{ave} は、式 (10) と式 (11) で定義される.

$$p_{\rm B}^{\rm ave} = P/L \tag{10}$$

$$p_{S}^{\text{ave}} = P/W \tag{11}$$

図 7 に、異なる摩耗量 h_w に対する接触領域に沿った線荷重 $p_B(z)$ を示す. バックアップロールのクラウン高さは $h_c = 0.5$ mm に固定し,圧延ロールの摩耗深さは $h_w = 0$, 0.1, 0.2, 0.3 mm と変えている. 摩耗プロフィール $h_w = 0$ のとき,線力分布 $p_B(z)$ が最大になる. h_w が増加すると,線力 $p_B(z)$ が減少し,最大位置がロール端部に移動する. 図

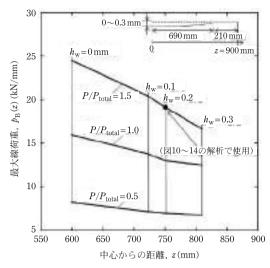


図8 バックアップロールから生じる線荷重 $p_B(z)$ の最大値とその存在位置 (クラウン高さ $h_c=0.5\,\mathrm{mm}$ を固定して、圧延ロールの摩耗量 $h_w=0$, 0.1, 0.2, 0.3 mm が変わるとき).

8 に、圧延力比 $P/P_{total}=0.5, 1.0, 1.5$ のときの線力 $p_B(z)$ の最大値と位置を示す。ここで、圧延力は、 $P/P_{total}=0.5\sim1.5$ に設定される。これは、圧延材温度、圧延荷重、圧延異常時の衝撃荷重の設定誤差により、基準荷重 $P/P_{total}=1$ が変動する場合があるためである。図8 に示すように、例えば、 $h_w=0$ の場合、線荷重のピーク位置は幅z=630 mm であり、摩耗量 h_w が増加すると、ピーク位置がロール端部側に移動する。これは、クラウンの最高値はロール中央で最も大きく、ロール端部に向かって徐々に減少するためである。上記の議論から、比較的大きな最大線荷重 $p_B(z)$ を提供するために、比較的大きな摩耗量 $h_w=0.2$ mm を解析対象にする。

圧延ロールの摩耗プロフィールが 線荷重へ及ぼす影響

実圧延モデルで用いる圧延ロールの適切な摩耗 プロフィールを検討するために、図 6 で、クラウン高さ $h_c = 0.5 \text{ mm}$ を固定して、圧延ロールの摩耗 量 $h_w = 0, 0.1, 0.2, 0.3 \text{ mm}$ と変化させて、線荷重 $p_{B}(z)$ への影響を議論する。図 7 に異なる摩耗量における接触領域に沿った線荷重 $p_{B}(z)$ を示す。摩耗量 $h_{w}=0$ のとき線荷重 $p_{B}(z)$ が最も大きくなり,その発生位置は摩耗量 h_{w} が増加するにつれてロール端面側に移動する。

図8に圧延荷重P/Ptotal = 0.5, 1.0, 1.5 に対する 最大線荷重 $p_B(z)$ とその位置を示す. ここでは、圧 延材温度や圧延荷重の設定誤差等のばらつきや, 嚙みこみ時の衝撃等を考慮して圧延荷重を標準荷 重に対して $P/P_{total} = 0.5 \sim 1.5$ にとした. 図8に示 すように、最大線荷重 $p_B(z)$ は圧延荷重 P/P_{total} に よらず、摩耗量 h_w が増加とともに小さくなる。最 大線荷重の発生位置は hw=0 のとき圧延材幅端部 (z = 600 mm)付近で発生し、 h_w が増加すると、こ の位置はロールの端面へ移動する. これは、ロー ル中心のクラウンが高く、端面に向かっていく につれてクラウンが徐々に小さくなっていること が関係している. 以降の解析では、最大摩耗量 $h_{\rm w}^{\rm max}=0.3\,{\rm mm}$ では、 $p_{\rm B}(z)$ が小さいので、最大線 荷重 pB(z) が比較的高く、摩耗量も比較的大きい $h_{\rm w} = 0.2 \, {\rm mm} \, \, {\rm e}$ 用いる.

実圧延を想定したロールの疲労危 険度評価

前節までの議論より、バックアップロール面取り長さ $l_c = 90 \text{ mm}$ 、クラウン高さ $h_c = 0.5 \text{ mm}$ 、圧

延ロール摩耗量 $h_{\rm w}=0.2\,{\rm mm}$ と設定し、実圧延を想定した解析を行う。表 3 に解析に用いるロールプロフィールと圧延負荷および解析対象を示す。ここで、圧延荷重は $P/P_{\rm total}=1.0$ が標準であるが、実圧延で想定される噛みこみ時の衝撃や、圧延材温度低下などの危険要因を考慮して、本節ではより厳しい条件 $P/P_{\rm total}=1.5$ を設定する。

ロール内部応力の解析結果

HSS/DCI 境界付近での剥離やロール中心付近 からの破損事例を考慮して, 想定される危険領 域の疲労強度を考察する. ロール回転ごとに表れ る応力 σ_r の最大・最小値のサイクルがロール内部 疲労き裂の駆動力である200. そこで,注目するロー ル内部の位置を図 9 に $B_{0-900}^{270}|_{\theta=-90^{\circ}}$, $B_{0-900}^{270}|_{\theta=90^{\circ}}$, $\mathbf{B}_{0-900}^{270}\big|_{\theta=0^\circ}$, $\mathbf{C}_{0-900}^0\big|_{\theta=90^\circ}$, $\mathbf{C}_{0-900}^0\big|_{\theta=0^\circ}$ として示す. ここ で、 $B_{0-900}^{270}|_{\theta=-90}$ を例とすると、上付き添字 270 は、 座標r = 270 mm を表し、下付き添え字0-900 は、 座標 $z=0\sim900$ mm を表す. これらの位置で圧延 材から受ける荷重 $p_S^{ave}(\theta = -90^\circ)$ と、バックアップ ロールから受ける荷重 $p_{\rm B}^{\rm ave}$ ($\theta = 90^{\circ}$) のそれぞれに 注目する. 図 10 には HSS/DCI 境界上の圧延材側 $(\theta = -90^{\circ})$ とバックアップロール側 $(\theta = 90^{\circ})$ それ ぞれの応力 σ_r の軸方向変化を示す。これらの圧縮 応力はロール胴長中央z=0から胴端z=900 mm の間でほぼ一定である. その引張りの最大値は

表3 解析に用いるロールプロフィールと圧延負荷および解析対象.

		ールプロファイル (mm) ップロール		圧延荷重 P/P _{total}	解析対象 (MPa)
基準値	90	0.5	0.2	1.5	応力 σ _r

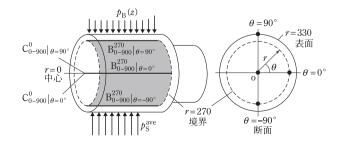
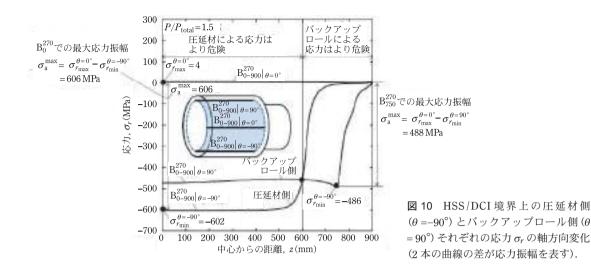



図9 複合ロールの HSS/DCI 境界に設定する 3 本のラインで示す危険箇所 $B_{0-900}^{270}|_{\theta=-90^\circ}$, $B_{0-900}^{270}|_{\theta=90^\circ}$, $B_{0-900}^{270}|_{\theta=0^\circ}$ とロール中心 $C_{0-900}^0|_{\theta=90^\circ}$, $C_{0-900}^0|_{\theta=0^\circ}$ に設定する 2 本のラインで示す危険箇所 (ロール中心には 2 本のラインがある),記号 $B_{0-900}^{270}|_{\theta=-90^\circ}$ を例とすると,上付き添字 270 は,座標 r=270 mm を表す.

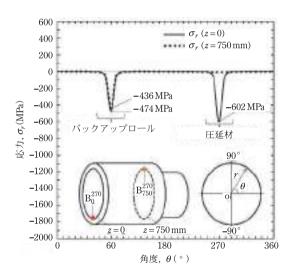


図 11 圧延ロール 1 周にわたる HSS/DCI 境界上 (r=270 mm) の応力分布 σ_r .

z=0 で $\sigma_{max}^{\theta=0^\circ}=4$ MPa と無視できる程度である.次に、図 10 により疲労破壊に支配的な応力である応力振幅 σ_a の値とその位置を求める.応力振幅 σ_a は圧延材側 $(\theta-90^\circ)$ で最小値を示す範囲 $(0 \le z \le 600 \text{ mm})$ とバックアップロール側 $(\theta=90^\circ)$ で最小値を示す範囲 $(600 \text{ mm} \le z \le 900 \text{ mm})$ に分けて考える.ここで z=600 mm は 2 つの応力分布が交差する軸方向の位置である.ロール胴中央を含む圧延材側 $(\theta=-90^\circ)$ の範囲における最小応力は $\sigma_{min}^{\theta=-90^\circ}=-602$ MPa であり、同様に最大応力振幅は z=0

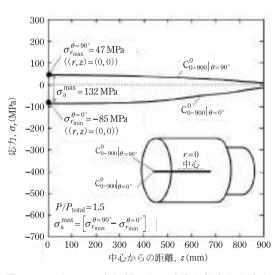


図 12 圧延ロール中心部からの破壊を想定した中心 (r,z)=(0,0) での応力振幅 (最大引張応力 $\sigma_{max}^{\theta=90^{\circ}}=47$ MPa $(\theta=90^{\circ})$ と最大圧縮応力 $\sigma_{min}^{\theta=0^{\circ}}=85$ MPa $(\theta=0^{\circ})$ の差が最大応力振幅).

において $\sigma_a^{\max} = \sigma_{r_{\max}}^{\theta=0^{\circ}} - \sigma_{r_{\min}}^{\theta=-90^{\circ}} = 606$ MPa である. 以下この位置 (r,z) = (270 mm, 0) を B_0^{270} で表す. 方,ロール胴端部を含むバックアップロール側 $(\theta=90^{\circ})$ 側の範囲における最小応力は $\sigma_{r_{\min}}^{\theta=90^{\circ}} = -486$ MPa であり,この領域での最大応力振幅はz=750 mm において $\sigma_a^{\max} = \sigma_{r_{\max}}^{\theta=0^{\circ}} - \sigma_{r_{\min}}^{\theta=90^{\circ}} = 488$ MPa が求まる.以下この位置 (r,z) = (270 mm, 750 mm)を B_{270}^{270} で表す.図 11 に圧延ロール 1 周にわたる

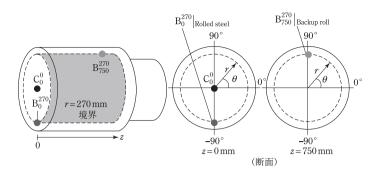


図 13 複合圧延ロールにおける 3 つの危 険領域B₀²⁷⁰|_{Rolled steel}とB₇₅₀|_{Backun roll}, C₀⁰.

表4 危険領域 $B_0^{270}|_{\text{Rolled steel}}$, $B_{70}^{270}|_{\text{Backup roll}}$, C_0^0 の応力振幅および平均応力.

3つの危険領域	$\sigma_{r_{\max}}$ (MPa)	$\sigma_{r_{\min}}$ (MPa)	σ _m (MPa)	σ _a (MPa)
${ m B}_0^{270}$	4	-602	-299	303
B_{750}^{270}	2	-486	-242	244
C_0^0	47	-85	-19	66

HSS/DCI 境界上 (r = 270 mm) の応力 σ_r 分布を示す。実線の中央の応力 σ_r (z = 0) に注目すると,圧延材側で最大圧縮応力 σ_r が生じ,次いでバックアップロール側の圧縮応力 σ_r が発生する。また,破線で示す端面側の応力 σ_r (z = 750 mm) においては,バックアップロール側のみで圧縮応力 σ_r が発生する。

続いて、中心部からの破壊を想定して図 12 で圧延ロール中心 (r,z) = (0,0) での応力振幅を考察する。中心 (r,z) = (0,0) は最大引張応力 $\sigma_{max}^{\theta=90^{\circ}}$ = 47 MPa $(\theta=90^{\circ})$,最大圧縮応力 $\sigma_{\pi}^{\theta=00^{\circ}}$ = -85 MPa $(\theta=0^{\circ})$ が生じ,最大応力振幅 σ_{a}^{max} = 132 MPa となる。以下,中心 (r,z) = (0,0) を C_{0}^{0} とする。

以上述べた 3 つの危険領域に $B_0^{270}|_{Rolled steel}$ と $B_{70}^{270}|_{Backup roll}$, C_0^0 をまとめて図 13 に示す。表 4 に これらの 3 点の応力振幅および平均応力を示す。なお、 C_0^0 は比較的安全であるが、ロール中心でよく観察される材料の欠陥が考慮されていない。ロール中心の欠陥を考慮した実圧延条件における考察は、先の解説で詳しく説明している。

耐久線図による疲労危険度評価

表4より、ロール内部の注目点はいずれも圧縮 応力場にある。このような圧縮応力場での疲労破 壊は軸受や圧延用バックアップロールでは転がり 疲労として多くの研究例がある^{21)~24)}. しかし、い ずれの材料強度も主として転がり疲労強度で評価 されており、 通常の疲労試験による評価は適用さ れていない、すなわち、通常の疲労試験による強 度のデータは大きな圧縮場ではほとんど見当たら ない8). これまでの圧縮応力場での疲労の研究に よれば、疲労き裂発生段階では、平均応力の影響 はほとんど認められず、き裂発生寿命は応力振幅 によって支配されることが示されている^{14)~16)}. -方、き裂進展段階では、完全な圧縮状態(例えば、 図 14 (c)) でき裂は停留し、疲労破壊には至らない ことが知られている $^{14)\sim16)}$. そこで,これまで議 論がなされていない、大きな圧縮応力場における 疲労強度を、耐久線図を用いて以下のように考え る. 図14は大きな圧縮場における疲労強度と耐久 線図であり、以下のような考え方で筆者らが創案 したものである。はじめに、修正グッドマン線の 延長線上のaと圧縮片振り45°の線との交点をE とする. 点 E は圧縮片振り (図 14(c)) であるため, 疲労に伴うすべり線は発生するが、最終破断には 至らない^{14)~16)}. そこで、点 E に最終破断を生じ させるために必要な引張応力振幅を点 D の両振り 疲労限である σ_{w0} をもとに考察する. 図 14 (b) の 点 D の σ_{w0} の引張側の応力振幅 $\sigma_a = \sigma_{w0} = 166$ MPa

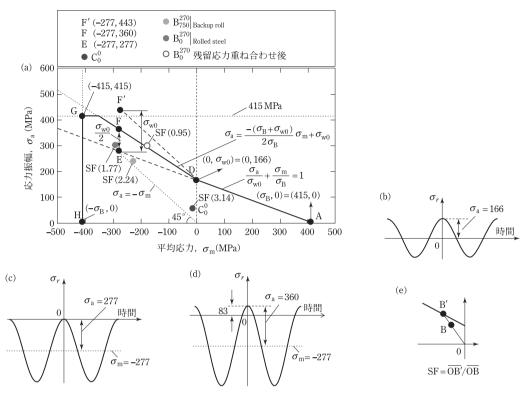


図 14 (a) 3 つの危険領域 B_{70}^{270} , B_0^{270} , C_0^0 での疲労破壊のリスクを評価するための疲労耐久線図, (b) 点 D での応力, (c) 点 E での応力, (d) 点 F での応力, (e) 相対的安全率 SF の定義.

に対して、図 14(c)の点 E の圧縮側の応力振幅は σ_a = 554 MPa (= 277MPa × 2) と 3 倍以上である. 点Eでの疲労損傷は、疲労き裂発生段階のもので あり、応力振幅により支配されるので、点 D の損 傷に比べて格段に大きい. したがって, 点Eでき 裂を進展させるための引張応力として点 F'の σ_{w0} を考えるとそれは過大となる. 一方, 点 E ではこ れまでの研究からすべり線は発生するが6)8),き裂 の進展と最終破断は生じない. よって、点 E と点 F'の中間である点Fを通る直線を圧縮側平均応力 における耐久線図とする。加えて圧縮強度 -σR お よび, 圧縮側の片側疲労振幅限界 oB を強度限界域 として A-D-F-G-H を耐久線図とする. 図 14 には 危険領域における3点B270, B0270, C0を示す. 安 全率 SF はいずれも1以上あり、安全側にあるが、 圧延材側に存在する B₀²⁷⁰ が相対的に最も危険側に あることがわかった. 一方, ロール中心部 \mathbb{C}^0 では.

危険度は小さく、実体ロールでの経験とかけ離れているのは、残留応力や材料欠陥を考慮していないことによる。応力の大きさに対する、疲労耐久限界強さの比を安全率 SF と定義して(図 14 中)、疲労危険度を評価する指標とする。図 14 (a) のオープンマーク〇は、ロール表面の引張残留応力を、単純に重ね合わせた場合の B_0^{270} の結果 $^{9)25)26)$ である。この場合には、SF = 0.95 < 1 となり、先の調査結果 $^{12)27)}$ にあるように、実際のロール破壊がこの付近で生じることと一致する。なお、残留応力をより正確に考慮した実圧延条件における考察は、先の解説で詳しく述べている。

結論

本研究では、4段圧延機用ハイス製複合ロール(内層 DCI) を対象に、ロール内部に生じる圧

延応力に着目して、疲労危険度評価の面から考察した。負荷要因として、圧延応力の影響を第一義とし、残留応力はゼロとした。そして、圧延応力の観点から、これまでのロール破損事故例 $^{12)27)}$ も参考にして、疲労破壊危険部位を考察した。用いた圧延条件は、具体的には、実在製鉄所の平均的な圧延材における条件を参考にして $^{17)}$ 一定とし、圧延ロールの直径 $D_{\rm W}=660~{\rm mm}$ 、長さ $L=1800~{\rm mm}$ 、バックアップロール(高クロム鋼)の直径 $D_{\rm B}=1400~{\rm mm}$ 、長さ $L=1800~{\rm mm}$ とした。圧延材の幅 $W=1200~{\rm mm}$ とし、圧延荷重は全体で $P_{\rm total}=16400~{\rm kN}$ を標準とした $^{17)18)$ 。なお、圧延負荷要因に含まれ、圧延初期に現れる熱応力は、疲労への影響が小さく無視した。以下に得られた結論を示す。

- (1) 実圧延での疲労破壊の経験に基づく危険領域 (HSS/DCI 境界近傍と中心) に注目して、疲労破壊危険度を考察した。その結果、圧延材側の線荷重に対応する HSS/DCI 境界部 B₀²⁷⁰ と、バックアップロール側の線荷重のピークに対応する HSS/DCI 境界部 B₂₀ とで、それぞれ大きい応力振幅が生じ、疲労破壊危険度の高いことを示した。
- (2) 疲労破壊危険部の考察において、ロール回転ごとに生じる最大・最小のロール半径方向応力 σ_r を基に、耐久線図を用い、相対安全率 SF を定義して疲労レベルを評価した。疲労破壊危険領域の解析結果は、外内層 HSS/DCI 境界と内層中央部それぞれを起点とする実ロールの破壊事例を裏付けるものである。
- (3) ロール内部疲労を支配する半径方向応力 σ_r に関して、圧縮応力域での公知の破壊条件がないため、圧縮応力下での耐久限度線図を提案した. 具体的には完全片振荷重下では最終破断に至らないことから、必要な引張応力を推定した. 本稿では圧延応力を明確にするため、残留応力 0 を中心に解説したが、残留応力を含めた実圧延条件における考察は、先の解説で詳しく述べている.

参考文献

1) K. Goto, Y. Matsuda, K. Sakamoto and Y. Sugimoto:

- Basic Characteristics and Microstructure of High-carbon High Speed Steel Rolls for Hot Rolling Mill, ISIJ Int., **32** (11) (1992), 1184.
- Y. J. Kang, J. C. Oh, H. C. Lee and S. Lee: Effects of Carbon and Chromium Additions on the Wear Resistance and Surface Roughness of Cast High-Speed Steel Rolls, Metall. Mater. Trans. A, 32 (2001), 2515.
- J. W. Park, H. C. Lee and S. Lee: Composition, Microstructure, Hardness, and Wear Properties of High-Speed Steel Rolls, Metall. Mater. Trans. A, 30 (1999), 399.
- 4) 大段剛, 辻本豊, 木村広之:優れた耐摩耗性を有する高合金グレンロールの開発, 鋳造工学, **85** (6) (2013), 361
- M. Sedlaček, B. Podgornik and S. Milanovič: A Modified Heat Treatment to Improve the Properties of Double-Layer Cast Rolls, Mater. Technol., 48 (6) (2014), 983.
- A. Molinari, M. Pellizzari, A. Tremea, A. Biggi and G. Corbo: Effect of Matrix Microhardness on Thermal Fatigue Behavior of Spincast High Speed Steels for Hot Rolls, Mater. Sci. Technol., 21 (3) (2005), 352.
- 7) 上宮田和則,石川晋也,宮原広郁,紺野裕司:熱間 圧延ロール用に開発した高耐摩耗型鋳鉄ロールの耐摩 耗特性に及ぼすMC型炭化物の影響,鉄と鋼,106(12) (2020),883.
- 8) Y. Sano, T. Hattori and M. Haga: Characteristics of Highcarbon High Speed Steel Rolls for Hot Strip Mill, ISIJ Int., 32 (11) (1992), 1194.
- N.A. Noda, Y. Sano, N.R. Aridi, K. Tsuboi and N. Oda: Residual Stress Differences between Uniform and Non-Uniform Heating Treatment of Bimetallic Roll, Effect of Creep Behavior on Residual Stress, Metals, 8 (11) (2018), 952.
- 10) 野田尚昭, Mohd Radzi ARIDI, 佐野義一, 高田翔, 孫子豊, 高瀬康:4段式圧延機用複合ワークロールに おける圧延中の内部応力と疲労損傷評価, 設計工学, **57**(5)(2022), 219-236.
- 11) M.R. Aridi, N.A. Noda, Y. Sano, K. Takata, Z. Sun and Y. Takase: Fatigue failure risk evaluation of bimetallic rolls in four high hot rolling mills, Fatigue & Fracture of Engineering Materials & Sturacture, (2022), 1.
- 12) 佐野義一, 木村和夫:ホットストリップミル仕上後 段作業ロールに生じるスポーリングの統計的解析, 鉄 と鋼, **73**(9)(1987),1154.設計工学(17)早期公開版.
- K. H. Schröder: A Basic Understanding of the Mechanics of Rolling Mill Rolls, Eisenwerk SulzauWerfen ESW-Handbook, (2003).

- 14) 西谷弘信,山下尚義:70/30 黄銅疲れき裂の発生および伝ばに対する平均応力の影響,日本機械学会論文集 A 編, 32 242 (1966), 1456.
- 15) 西谷弘信,後藤真宏: S45C 焼なまし材の引張圧縮 疲労におけるき裂発生および初期き裂伝ばに及ぼす平 均応力の影響,日本機械学会論文集 A 編, **50** 460 (1984), 1926
- 16) 秋庭義明,田中啓介,谷口尚正:片振圧縮繰返し下における低炭素鋼切欠材での微小疲労き裂の伝ばと停留,日本機械学会論文集 A 編,53 493 (1987),1768.
- 17) 佐野義一:鉄鋼/非鉄金属圧延加工用ロールの最近 の技術, 第93回塑性加工学講座 棒線形管の圧延を中 心とした「圧延加工の基礎と応用」,199-213.
- 18) 酒井悠正,野田尚昭,佐野義一,張国偉,高瀬康: スリーブ組立式圧延ロールの界面クリープに及ぼす駆動トルクの影響,鉄と鋼,105 (12) (2019),1126.
- 19) K. L. Johnson: Contact Mechanics, Cambridge University Press, (2003), 92.
- G. Luo and Y. Liu: Two Simplified Methods for Fatigue Crack Growth Prediction under Compression-Compression Cyclic Loading, Mar. Struct., 58 (2018), 367.
- 21) 寺田岳,清水茂夫:軸受鋼における回転曲げ疲労試験に関する研究,2010年度精密工学会春季大会学術講演会,2010S(0),(2010),695-696.設計工学(18)早期公開版
- 22) 長瀬光夫, 清水茂成, 清水英明, 田部博輔, 工藤浩一, 後藤宏: 厚板仕上圧延機用補強ロールの疲労層と改削 基準について, 鉄と鋼, **56** (9) (1970), 1201.
- 23) T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima and T. Nakamura: Statistical Duplex S-N Characteristics of High Carbon Chromium Bearing Steel in Rotating Bending in Very High Cycle Regime, Int. Journal of Fatigue, 32 (2010), 497.
- 24) E. Zalnezhad A. A. D. Sarhan and P. Jahanshahi: A New Fretting Fatigue Testing Machine Design, Utilizing

- Rotating-Bending Principle Approach, Int. J. Adv. Manuf. Technol., **70** (2014), 2211.
- 25) 野田尚昭, M. R. Aridi, 鳥越亮太, 坪井健二, 佐野義一: 焼戻し処理による複合圧延ロールの残留応力低減効果 と考察, 塑性と加工, 61 716 (2020), 183.
- 26) 野田尚昭, M. R. Aridi, R. Abdul Rafar, 孫子豊, 佐野義一, 高田翔, 高瀬康:複合スリーブロールにおける残留応力への製造プロセスによる影響,設計工学, 56 (11) (2021), 581.
- 27) 佐野義一: 熱間圧延用ロールにおける内部疲労破壊と課題―実機におけるき裂発生問題と評価, 第148・149回西山記念技術講座, (1999), 1-10.

のだ・なおあき NODA Nao-Aki

1984 九州大学大学院工学研究科機械工学専攻博士課程修了. 九州工業大学工学部講師・助教授を経て, 教授. 焼嵌め式ローラや特殊ボルト等の産学連携に関する研究に従事. 日本設計工学会論文賞受賞. 日本機会学会材料力学部門賞業績賞, 日本機械学会フェロー. 自動車技術会フェロー. 2019-2021 日本材料学会九州支部長. 2022.04 九州工業大学名誉教授.

さの・よしかず SANO Yoshikazu

1967 九州大学大学院機械修了. 日立金属㈱入社. 1992 技師長. 1996 九州大学より博士(工学)授与. 学術研究員, 九州工業大学支援研究員を経て㈱ホーシン技術顧問. 焼嵌め式ロールの構造設計に関する研究に従事. (公社)日本設計工学会 2019 年度論文賞受賞.

たかせ・やすし TAKASE Yasushi

1985 九州工業大学技術職員. 1993 同工学部設計生産工学科夜間主コース卒業. 2002 技術専門職員. 2007 「任意寸法の試験片に対して正確な応力集中係数を与える計算式に関する研究」で博士(工学). 2020 年度日本塑性加工学会教育賞受賞.

ほった・げんじ HOTTA Genji

1979 九州工業大学卒業. 株日鉄エレックスを経て 2008 有明工業高等専門学校機械工学科教授. 2012 熊本大学より博士(工学)授与. 2019 より九州工業大学客員教授, 2021 西日本工業大学客員教授. 日本技術士会ものづくり部会長. 2021 年度技術士功労章受章.