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Effect of arbitrary bi-material
combination and bending loading
conditions on stress intensity

factors of an edge interface crack
Kazuhiro Oda, Xin Lan, Nao-Aki Noda and Kengo Michinaka
Department of Mechanical Engineering, Kyushu Institute of Technology,

Kitakyushu, Japan

Abstract

Purpose – The purpose of this paper is to compute the stress intensity factors (SIFs) of single edge
interface crack for arbitrary material combinations and various relative crack lengths, and compare
with those for the bonded plates subjected to tensile loading conditions. It aims to discuss the results of
the shallow edge interface crack on the basis of the singular stress near the free-edge corner without
the crack.

Design/methodology/approach – In this study, the SIFs of interface crack in dissimilar bonded
plates subjected to bending loading conditions are analyzed by the finite element method and a
post-processing technique. The use of post-processing technique of extrapolation reduces the
computational cost and improves the accuracy of the obtained result.

Findings – The empirical expressions are proposed for evaluating the SIFs of arbitrary material
combinations.

Originality/value – Empirical functions can be used to obtain the SIFs for arbitrary material
combinations for the bending loading conditions easily. It is very convenient for engineering
application.

Keywords Stress intensity factor, Single-edge interface crack, Bending loading condition,
Stress (materials), Physical properties of materials, Loading (physics)

Paper type Research paper

1. Introduction
Fatigue cracks are normally observed around the weld region in joints and areas of
discontinuities due to the bending and welding residual stresses. The presence of
cracks affects a structure’s performance, and crack propagation may eventually result
in the failure of a structure. The stress intensity factor (SIF) is used to predict the stress
state and the stability of a crack in linear elastic fracture mechanics. Therefore, quite a
lot research has been devoted to the analysis of the SIFs of crack problems.

The evaluation of the SIFs becomes complicated for the interfacial cracks due to the
multiple/oscillatory singularity. Till recently, many researchers have tried to develop
procedures to compute the generalized SIFs of a cracked composite structure by using
analytical or numerical methods. Just mention a few of those procedures, Yuuki and Cho
(1989) determined the SIFs of several interface crack problems by the boundary element
method employing an extrapolation method. Miyazaki et al. (1993) presented the
M1-integral method (an extended J-integral method) for SIF analyses of
two-dimensional bimaterial interface crack problems, using the results obtained from
the boundary element method. Wu (1994) presented for calculating the SIFs at the tip of
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an interface crack based on an evaluation of the J-integral by the virtual crack extension
method. Yang and Kuang (1996) established a path independent contour integral
method for the SIFs of the interface crack. Dong et al. (1997) proposed procedures for SIF
computation using traction singular quarter-point boundary elements. Matsumto et al.
(2000) evaluated the SIFs of bimaterial interface cracks based on the interaction energy
release rates. Xuan et al. (2007) presented a finite element approach for finding
complementary bounds of SIFs in bimaterials. The SIF is formulated as an explicit
computable linear function of displacements by means of the two-point extrapolation
method. Liu et al. (2008) developed a simple and effective numerical method to calculate
the SIFs for an interface crack with one or two singularities. Treifi et al. (2008, 2009)
computed the SIFs for different configurations of cracked/notched plates subjected to
in-plane shear and bending loading conditions by the fractal-like finite element method.
Noda et al. (2010) investigated the SIFs of the single-edge interface cracks in bonded
dissimilar half-planes and finite bonded strips subjected to remote tension, and
proposed a powerful empirical function for computing the SIFs of arbitrary material
combinations and crack lengths. Then, Lan et al. (2011a, b) discussed the effect of the
material combinations and the relative crack lengths to the SIFs of a single edge cracked
bonded strip subjected tensile loading conditions. Although the aforementioned studies
have considered the SIFs for the tensile loading conditions, Kakuno et al. (2010)
analyzed the SIFs of edge interface crack in a bonded specimen under bending.
However, the results shown by Kakuno et al. (2010) restrict the relative crack lengths
within a/W ¼ 0.1 , 0.5, and the SIFs of very shallow and deep interface crack have not
been examined.

In this research, the improved crack tip stress method proposed by Oda et al. (2009),
which is based on the concept of crack tip stress method introduced by Nisitani et al.
(1999), will be used to solve the SIFs of the dissimilar bonded plates subjected to
bending loading conditions and a post-processing technique of linear extrapolation will
be proposed to improve the computational accuracy. The new technique reduces the
computational cost significantly since very refined meshes around the crack tip are no
longer necessary. The SIFs of interface crack under bending condition will be
computed for arbitrary material combinations and relative crack lengths. Then, the
computed results will be compared with those for the tensile loading conditions which
were published previously (Noda et al., 2010). Furthermore, empirical functions will
also be proposed for the bending loading conditions in this paper.

2. Analysis method
2.1 Formulation for the Interface crack problems
The original crack tip stress method proposed by Nisitani et al. (1999) cannot be used
directly into solving the interface crack problems since oscillatory singularity is
observed along the interface. Then, Oda et al. (2009) extended this method to the
interface crack problems by creating the same singularities for the reference and target
unknown problems. A definition of the SIFs for an interface crack in bonded dissimilar
materials was proposed by Erdogan (1965). The stress distributions along the interface
are defined as shown in equation (1):

sy þ itxy ¼
KI þ iKIIffiffiffiffiffiffiffiffi

2pr
p

r

2a

� �i1

; r ! 0 ð1Þ
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Here, sy, txy denote the stress components near the crack tip. r is the radial distance
from the crack tip, and 1 is the bi-elastic constant given by:

1 ¼
1

2p
ln

ððk1=G1Þ þ ð1=G2ÞÞ

ððk2=G2Þ þ ð1=G1ÞÞ

� �
ð2Þ

km ¼
3 2 4nmð plane strainÞ

ð3 2 nmÞ=ð1 þ nmð plane stressÞÞ

(
; ðm ¼ 1; 2Þ ð3Þ

where Gm(m ¼ 1,2) and nm(m ¼ 1,2) are the shear moduli and poisson’s ratios of either
respective materials. The real and imaginary parts of the oscillatory SIFs KI þ iKII in
equation (5) may be separated as:

KI ¼
r!0
lim

ffiffiffiffiffiffiffiffi
2pr

p
sy cosQþ

txy

sy
sinQ

� �
ð4Þ

KII ¼
r!0
lim

ffiffiffiffiffiffiffiffi
2pr

p
txy cosQ2

sy

txy
sinQ

� �
ð5Þ

and

Q ¼ 1 ln
r

2a

� �
ð6Þ

Similarly, let us consider two different interface crack problems C and D with the same
crack lengths a ¼ a0 and the same combination of materials 1 ¼ 10, assuming the SIFs
of problem C are given in advance and those for problem D are yet to be solved.
Problem C is termed the reference problem whose values are marked with *, and
problem D is termed the given unknown problem. Examining the points with the same
radial distances r ¼ r0 for the two problems C and D, then gives:

½Q
*
�C ¼ ½Q�D ¼ 10ln

r0

2a0

� �
:

Recall equations (8) and (9), a proportional relationship given in equation (7) is
established if and only if equation (8) can be satisfied:

KI½ �D

K*
I

h i
C

¼
sy

� 	
D

s*y

h i
C

¼
sy;FEM

� 	
D

s*y;FEM

h i
C

;
KII½ �D

K*
II

h i
C

¼
txy
� 	

D

t*xy

h i
C

¼
txy;FEM
� 	

D

t*xy;FEM

h i
C

ð7Þ

t*xy

s*y

" #
C

¼
txy

sy

� �
D

ð8Þ

Then the SIFs of the given unknown problem (problem D) can be computed using
equation (9). The condition of equation (8) can be satisfied by choosing a suitable
external load for the reference problem. The detailed information about how to make
the condition equation (8) satisfied by using FEM will be discussed in Section 2.2:
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½KI �D ¼
½sy�D K*

1

h i
C

s*y

h i
C

¼
½sy;FEM �D K*

1

h i
C

s*y;FEM

h i
C

;

½KII �D ¼
½txy�D K*

2

h i
C

t*xy

h i
C

¼
½txy;FEM �D K*

2

h i
C

t*xy;FEM

h i
C

ð9Þ

2.2 Determination of the reference problem and its external load
In this research, a crack along the interface of two bonded dissimilar half-planes
subjected to tension and shear as shown in Figure 1(a) is treated as the reference
problem. The analytical solution of the SIFs at the crack tip for the reference problem
takes the following form:

K*
I þ iK*

II ¼ s1
y þ it1xy

� � ffiffiffiffiffiffi
pa

p
ð1 þ 2i1Þ ð10Þ

where, s1
y ; t

1
xy are the remote uniform tension and shear applied to the bonded

dissimilar half-planes.
Using the principle of superposition, the stress components of the reference
problem subjected to remote tension and shear s1

y ; t
1
xy can be expressed by using

the values of that subjected to pure unit tension s1
y ¼ 1; t1xy ¼ 0 and pure

Figure 1.
Demonstration of (a) the
reference problem
(problem C) and (b) a given
unknown problem
(problem D)
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unit shear s1
y ¼ 0; t1xy ¼ 1. Let s*

y0;FEM ; t*
xy0;FEM , s

s1
y ¼1;t1xy¼0

y0;FEM

*
; t

s1
y ¼1;t1xy¼0

xy0;FEM

*
and

s
s1
y ¼0;t1xy¼1

y0;FEM

*
; t

s1
y ¼0;t1xy¼1

xy0;FEM

*
denote the stress components at the crack tip of the

reference problem subjected to combined remote tension and shear s1
y ; t

1
xy, pure unit

tension s1
y ¼ 1; t1xy ¼ 0 and pure unit shear s1

y ¼ 0; t1xy ¼ 1, respectively. Then

s*
y0;FEM ; t*

xy0;FEM take the following form:

s*
y0;FEM ¼ s

s1
y ¼1;t1xy¼0

y0;FEM

*
£ s1

y þ s
s1
y ¼0;t1xy¼1

y0;FEM

*
£ t1xy ð11Þ

t*
xy0;FEM ¼ t

s1
y ¼1;t1xy¼0

xy0;FEM

*
£ s1

y þ t
s1
y ¼0;t1xy¼1

xy0;FEM

*
£ t1xy ð12Þ

Recall equation (8), the FE stress components at the crack tip for the problems C and D
behave:

t*
xy0;FEM

s*
y0;FEM

" #
C

¼
txy0;FEM

sy0;FEM

� �
D

ð13Þ

where, the superscript 0 stands for the values at the crack tip. Inserting equations (11)
and (12) into equation (13) gives the solution of t1xy=s

1
y needed for determining the

external loads applied to the reference problem:

t1xy

s1
y

¼
sy0;FEM £ t

s1
y ¼1;t1xy¼0

xy0;FEM

*
2 txy0;FEM £ s

s1
y ¼1;t1xy¼0

y0;FEM

*

txy0;FEM £ s
s1
y ¼0;t1xy¼1

y0;FEM

*
2 sy0;FEM £ t

s1
y ¼0;t1xy¼1

xy0;FEM

*
ð14Þ

Let s1
y ¼ 1 so that t1xy can be determined. Inserting s1

y ¼ 1; t1xy into equation (10) gives
the values of the oscillatory SIFs for the reference problem (problem C). Finally, the
SIFs for the given unknown problem (problem D) can be yielded using the proportional
relationship as given in equation (15):

½KI �D ¼
½sy0;FEM �D K*

I

h i
C

½s*
y0;FEM �C

; KII½ �D¼
½txy0;FEM �D K*

II

h i
C

t*
xy0;FEM

h i
C

ð15Þ

Specially, when both materials for a bonded structure are identical, all the imaginary
terms in the discussion vanish. Thus, the current method is also applicable to the
homogenous crack problems.

3. Numerical verification and the post-processing technique
The efficiency and accuracy of the improved crack tip stress method is demonstrated
by pursuing a convergence study. The effects of the minimum element size e and the
number of refined layers NL in FE analysis will be investigated and depicted through
several examples.
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3.1 Specifications and configurations of the FE models
The MSC.MARC 2007 r1 finite element analysis package is used to compute the stress
components in this research. Figure 2(a) shows the FE model geometric configurations
for the reference problem shown in Figure 1(a). The crack length for the dissimilar
bonded half-planes shown in Figure 2(a) (the reference problem) is set to 2a ¼ 20 mm.
A plate width of W ¼ 1,620 £ 2a ¼ 32,400 mm and a length of L ¼ 2W ¼ 64,800 mm
are used to model the reference problem (L ¼ 2W, W/a ¼ 1,620) since the stress
components computed by FEM converge as L . 1,500a (Oda et al., 2009). Figure 2(b)
shows the FE model geometric configurations for the single-edge cracked bonded strip
shown in Figure 1(b) (the target unknown problem). The crack length for the target
unknown problem is fixed to a ¼ 10 mm which is the half crack length of the reference
problem. The width of the bonded strip W varies from a/W ¼ 0.1 , 0.9, the length L is
assumed to be much greater than the width W(L ¼ 2W is assumed in the FE model).
Furthermore, the minimum element size e of the FE models are kept the same for the
reference and given unknown problems.

The singular regions around the crack tip of both the reference and the target
unknown problems are well refined in a self-similar manner. Figure 2(c) shows the FE
mesh type in the singular region. The element size for each inferior layer is one third of
the superior one. The meshes are made of the eight-node quadrilateral elements in
plane stress or plane strain conditions. Furthermore, the meshes for the reference and
target unknown problems are kept the same to make sure a high computational
accuracy of t*xy=s

*
y

h i
C
¼ ½txy=sy�D .

3.2 Convergence study for the single-edge-cracked bonded strips subjected to tensile and
bending loading conditions
A single edge-cracked bonded strip subjected to tension and bending loading conditions
as shown in Figure 3(a) is analyzed for various crack sizes (say, a/W ¼ 0.1 , 0.9).
Figure 3(b) and (c) shows the tension applied at the top and the bottom boundaries to
counter the tensile load and bending moment shown in Figure 3(a), respectively. Four
pairs of models (the reference and the given unknown problems) with different
minimum element sizes are tested to carry out the convergence study. The mesh

Figure 2.
FE model geometric
configurations for
(a) the reference problem;
(b) the target unknown
problem; and (c) the FE
mesh in the singular
region used for the
analysis
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Material 2

Material 1
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Crack Tip
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Material 1
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pattern, model density and minimum element size for each pair of models are fixed the
same. Namely, the minimum element sizes for each pair of models are a/35, a/36,a/37,a/38

which corresponding to the total number of mesh layersNL ¼ 9, 10, 11, 12, respectively.
The SIFs for the single-edge cracked dissimilar bonded strip a/W ¼ 0.8 subjected to

tensile loading conditions are plotted and compared with those of Yuuki and Cho (1989)
and Miyazaki et al. (1993) in Figure 4. The corresponding FE stress components and
other relative values in equation (15) are also tabulated in Table I for various minimum
element sizes. The elastic parameters in Figure 4 and Table I are restricted to

Figure 3.
(a) A single-edge-cracked
bonded strip subjected to

tension and bending
loading conditions,

tensions at the top and
bottom boundaries to

counter; (b) the tensile; and
(c) the bending loading

conditions
(a)

M

G1, n1 G1, n1

G2, n2

G1, n1

G2, n2

a

P

(b)

a

W

(c)

a

H
sT =

P

H
sT =

P

H2
sM =

6M

H2
sM =

6M

G2, n2

W

M

P

Figure 4.
Variations of

normalized SIFs
F1 ¼ K1=s

ffiffiffiffiffiffi
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p
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pa
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E1=E2 ¼ 4; n1 ¼ n2 ¼ 0:3. The data of Yuuki and Cho (1989) and Miyazaki et al.
(1993) are plotted in dashed lines. It can be seen that increasing the number of refined
layers (NL) can significantly improve the accuracy, however, this will lead to dramatic
increase in the number of elements, and consequently the computational cost.
Furthermore, Figure 4 also demonstrates that the normalized SIF KI=s

ffiffiffiffiffiffi
pa

p
behave

linear relationship with the minimum element size. Good results can be obtained by using
linear extrapolation without adding too more refined layers. Here, it should be noted that
the exact values for KII=s

ffiffiffiffiffiffi
pa

p
should also be computed through linear extrapolation

although a simple linear behavior is not observed for this case. Specifically, when
increasing the number of refined layers NL! 1, the minimum element size e ! 0.
Hence, the accurate SIFs for NL! 1 can be computed using the following equation:

Kaccu ¼ K e¼0 ¼
ðe2K

e1 2 e1K
e2Þ

ðe2 2 e1Þ
; e1 – e2 #

a

243
ð16Þ

where K e¼0 is the extrapolated SIF, and K e1 K e2 are the SIFs computed by two different
meshes with the minimum element sizes e1,e2, respectively. According to the authors’
investigation, models with the minimum element size e ¼ a/36, a/37 are recommended
since they have the best compromise between accuracy and computational cost. The
normalized SIFs for other material combinations are tabulated in Table II together with
those of Yuuki and Cho (1989), Miyazaki et al. (1993) and Matsumto et al. (2000). Table II
illustrates that the SIF values computed by the current method are in very good
agreement with those predicted by Yuuki and Cho (1989), Miyazaki et al. (1993) and
Matsumto et al. (2000). Therefore, the current method can get accurate SIFs without using
high model density (say, the total number of layers is NL ¼ 1,011 in this research), and it
has a faster convergence speed than other numerical methods.

The SIFs for a single-edge cracked bonded strip subjected to bending loading
conditions shown in Figure 3(c) are computed and tabulated in Table III. Linear
extrapolation is also employed for this case with an extremely small error. As shown in
Figure 4 and Table II, the current method produced accurate results for interface crack
problem under tensile loading condition. Therefore, it can be assumed that the results
in Table III are also reliable.

KI=s
ffiffiffiffiffiffi
pa

p
KII=s

ffiffiffiffiffiffi
pa

p

a/W Present

Yuuki
and Cho
(1989)

Miyazaki
et al. (1993)

Matsumto
et al. (2000) Present

Yuuki and
Cho (1989)

Miyazaki
et al. (1993)

Matsumto
et al. (2000)

0.1 1.209 1.201 1.209 1.199 20.239 20.238 20.239 20.237
0.2 1.368 1.387 1.368 1.368 20.251 20.254 20.250 20.251
0.3 1.653 1.653 1.654 1.655 20.288 20.288 20.288 20.288
0.4 2.100 2.100 2.101 2.102 20.359 20.359 20.359 20.358
0.5 2.805 2.807 2.807 2.806 20.484 20.483 20.483 20.483
0.6 3.998 4.000 4.006 4.001 20.716 20.701 20.716 20.714
0.7 6.284 6.298 6.304 6.298 21.208 21.209 21.208 21.204
0.8 11.768 11.785 11.820 11.780 22.532 22.534 22.538 22.515
0.9 33.735 2 2 2 28.797 2 2 –

Table II.
Normalized SIFs for the

single-edge cracked
bonded strips subjected

to uniform tension
(G2/G1 ¼ 4, v1 ¼ v2 ¼ 0.3,

plane stress)
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plane stress)
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4. SIFs for a shallow edge interface crack in a bonded finite strip subjected
to bending loading conditions
Consider the bi-material bonded strip shown in Figure 5. It is composed of two elastic,
isotropic and homogeneous strips that are perfectly bonded along the interface. The
material above the interface is termed material 1, and the material below is termed
material 2. The SIFs for the aforementioned problem in plane strain or plane stress are
only determined on the two elastic mismatch parameters a and b. Here, the Dundurs’
material composite parameters are defined as:

a ¼
G1ðk2 þ 1Þ2 G2ðk1 þ 1Þ

G1ðk2 þ 1Þ þ G2ðk1 þ 1Þ
; b ¼

G1ðk2 2 1Þ2 G2ðk1 2 1Þ

G1ðk2 þ 1Þ þ G2ðk1 þ 1Þ
ð17Þ

where the subscripts denote material 1 or 2, Gm ¼ Em=2ð1 þ nmÞ; ðm ¼ 1; 2Þ, Gm, Em

and nm denote shear modulus, Young’s modulus and Poisson’s ratio for material m,
respectively. Kolosov constant km ¼ (3 2 nm)/(1 þ nm) for plane stress and
km ¼ (3 2 4nm) for plane strain. In this research, only the SIFs for b $ 0 in a 2 b
space has been investigated since switching materials 1 and 2 (mat1 , mat2) will only
reverse the signs of a and (bða;bÞ , ð2a;2bÞ). In this paper, we restrict our
discussions to material combinations with b ¼ 0.3 because the same phenomenon can
be found from other material combinations. The SIFs are normalized using the following
equation:

FI ¼ KI

s
ffiffiffiffiffiffi
pa

p ;
FII ¼ KII

s
ffiffiffiffiffiffi
pa

p ð18Þ

Figure 5.
(a) Free edge singularity of

an un-cracked bonded
strip and (b) crack tip

singularity of a shallow
edge interface crack in a

dissimilar bonded strip
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4.1 Free-edge singularity of a perfectly bonded plate
When a shallow edge interface crack initiates at the free-edge corner, the SIFs will be
affected by the stress state within the zone of free-edge singularity as shown in
Figure 5. The singularity at the interface corner of a bonded plate without the crack can
be determined by the following relationships (Bogy, 1968, 1971):

aða2 2bÞ . 0 : l , 1; sy ¼ syyju¼0 !1 ðr! 0Þ Singularity exist

aða2 2bÞ ¼ 0 : l ¼ 1; sy ¼ syyju¼0 ! finite ðr! 0Þ Uniform constant stress field

aða2 2bÞ , 0 : l . 1; sy ¼ syyju¼0 ! 0 ðr ! 0Þ Singularity vanish

ð19Þ

Let us consider a perfectly bonded dissimilar plate without crack as shown in
Figure 5(a) with a cylindrical polar coordinate (r, u) centered at the interface corner.
The singular field around the interface corner can be expressed in the form Akisanya
and Fleck (1997) and Chen and Nishitani (1993):

su ¼ Kr l21f uuðr; uÞ; tru ¼ Kr l21f ruðr; uÞ ð20Þ

Here, K is the intensity of stress singularity near the corner, r is the radial distance
from the corner, and l is the index of stress singularity. And fuu(r, u), fru(r,u) are
angular functions of r,u.

Many studies have considered the order of the stress singularity for bonded corners
with varying geometries and material combinations (Bogy and Wang, 1971; Hein and
Erdogan, 1971; Dempsey and Sinclair, 1979; Van Vroonhoven, 1992). For the bonded
strip shown in Figure 5(a), the angles which the traction-free surfaces make with the
interface are p/2, then the values of l can be obtained by solving the following
equation (Chen and Nishitani, 1993):

Dða;b; lÞ ¼ cos2 p

2
l

� �
2 ð1 2 lÞ2

h i2

b 2 þ 2ð1 2 lÞ2 cos2 p

2
l

� �
2 ð1 2 lÞ2

h i
ab

þ ð1 2 lÞ2½ð1 2 lÞ2 2 1�a 2 þ cos2 lp

2

� �
sin2 lp

2

� �
¼ 0

ð21Þ

where, l is the zero of D(a,b,l) in 0 , Re(l) , 1 that has the smallest real part. In
general, D(a,b,l) is expected to have several zeros in 0 , Re(l) , 1. The values of l
for arbitrary material composite parameters (a,b) were computed in the authors’
previous research (Noda et al., 2010; Lan et al., 2011b).

Although the order of stress singularity has been discussed in many papers, the
intensity of singular stress fields has just recently been obtained (Chen and Nishitani,
1993; Reedy and Guess, 1993; Xu et al., 1999). In this research, Ks is introduced to
define the intensity of singular stress in order to examine the stress field around the
free-edge corner, and it is defined as:

Ks ¼
r!0
lim ½r 12l £ suju¼p=2� ð22Þ
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The intensity of stress singularity K for an un-cracked bonded dissimilar strip can be
obtained by using (Chen and Nishitani, 1993):

K ¼ Ks

4l cosðlp=2Þ½ðlþ 1 2 lbÞcosðlpÞ þ ðlþ 1Þð2lb2 1Þ2 lbþ 2l 2ðlþ 1Þða2 bÞ�

ð23Þ

Chen and Nishitani (1993) investigated the normalized values of Ks=½ð6M=W 2ÞW 12l�
for l . 1 for a bonded strip subjected to bending loading conditions. The values for
l # 1 are calculated in this research as a further work. And they are plotted in Figure 6
against material composite parameters a for b ¼ 20: ~20:4. It should be noted that Kt

for the shear stress component also exists but is not demonstrated here since it is
negligible in magnitude comparing with Ks. The zone of free-edge singularity domains
an extent of around 0.01 times the width of the bi-material strip (Figure 5(a)). Therefore,
when very shallow edge interface cracks initiate within the extent of the singular zone
of bi-material bonded strips (Figure 5(b)), the SIFs will be controlled by the free edge
singularity.

4.2 Variations of SIFs for the single-edge interface crack with relative crack length and
material combinations
The single edge interface crack problem under the bending loading condition is
calculated to examine the effect of the crack length and the material combinations on
the SIFs. The double logarithmic variations of the normalized SIFs FI ¼
KI=s

ffiffiffiffiffiffi
pa

p
; FII ¼ KII=s

ffiffiffiffiffiffi
pa

p
are plotted against various material combinations

and relative crack lengths in Figure 7. The solid lines denote the SIFs for the case of
bending loading conditions and the dashed lines are those for tensile loading
conditions which were computed in the previous research (Noda et al., 2010; Lan et al.,
2011b). As can be seen from these figures, the double logarithmic distributions behave
good linear relationships when a/W , 0.01. Furthermore, the sign of slope for each

Figure 6.
Normalized intensity of

stress singularity Ks for
various material

combinations
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curve varies depending on the sign of a(a 2 2b). Specifically, the slope is positive
when a(a 2 2b) , 0, is zero when a(a 2 2b) ¼ 0 and is negative when
a(a 2 2b) . 0. Thus, it can be deduced for the limiting case, the normalized SIF
values of FI ¼ KI=s

ffiffiffiffiffiffi
pa

p
; FII ¼ KII=s

ffiffiffiffiffiffi
pa

p
for the bonded semi-infinite plate

(a/W ! 0) take the form:

aða2 2bÞ . 0 : FI ;FII !1

aða2 2bÞ ¼ 0 : FI ;FII ! finite ð24Þ

aða2 2bÞ , 0 : FI ;FII ! 0

By comparing the values of the two loading conditions for the shallow edge cracks near
the interface corner, it can be found that they coincide very good when a(a 2 2b) ¼ 0.
Furthermore, the SIFs for the bending loading conditions are smaller than those for the
tensile case when a(a 2 2b) . 0. In contrary, they are larger than those for the tensile
case when a(a 2 2b) , 0.

4.3 Asymptotic expressions for the SIFs of a shallow edge interface crack in a bonded
strip under bending
In the above section, it has been proved that the normalized SIFs FI,FII have finite
non-zero values only when a(a 2 2b) ¼ 0. In Figure 8, FI, FII for an edge interface
crack in a bonded semi-infinite plates for a ¼ 2b are plotted. From the figure, it is clear
that FI and FII behave quadratic and linear relationship, respectively. The computed
results for a ¼ 2b are also tabulated in Table IV. Then, the approximate expression as
in equation (26) is given by fitting the computed results. In equation (26), the result
for the homogenous semi-infinite plate (materials are identical a ¼ b ¼ 0) is
KI=s

ffiffiffiffiffiffi
pa

p
¼ 1:121, and it has an error of 0.062 per cent comparing with the famous

theoretical one KI=s
ffiffiffiffiffiffi
pa

p
¼ 1:1215.

KI=s
ffiffiffiffiffiffi
pa

p
¼ 1:121 þ 0:0159b2 0:221b 2

KII=s
ffiffiffiffiffiffi
pa

p
¼ 20:684b

ð25Þ

Figure 7.
Double logarithmic
distributions of (a) FI and
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length a=W
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The limiting solutions a/W ! 0 are controlled by the singular behavior of perfectly
bonded strip (Noda et al., 2010; Lan et al., 2011b). As discussed in the section 4.1, the
intensity of singular stress is proportional to the W 12l. So, we plot the results of
FI · ðW=aÞ12l and FII · ðW=aÞ12l against logarithmic relative crack length a/W in
Figure 9(a) and (b), respectively. The material composite parameter b in Figure 9 is
restricted to b ¼ 0.3, but similar phenomenon can be found from other material
combinations. As can be seen from these figures, the values for a given material
combination approach to a constant with more than three-digits when a/W , 1022.

Figure 8.
Normalized SIFs
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Thus, we propose the following formula to calculate the SIFs at the crack tip for the
shallow edge interface cracks in a bonded strip subjected to bending loading
conditions.

KI

s
ffiffiffiffiffiffi
pa

p · ða=W Þ12l ¼ CI ;
KII

s
ffiffiffiffiffiffi
pa

p · ða=W Þ12l ¼ CII ð26Þ

In equation (27), CI, CII are constants depending upon the elastic properties of
materials. The results for the coefficients CI, CII are plotted and listed against material
composite parameters in Figure 10(a) and Table V as well as in Figure 10(b) and
Table VI, respectively. The dashed lines in Figure 10(a) and (b) are those for the tensile
loading conditions (Noda et al., 2010). It is easy to be found that the coefficient curves
CI ;CII in Figure 10 are the same for the two different loading conditions when
a(a 2 2b) ¼ 0.

In conclusion, the solution of SIFs at the interface crack tip for a bonded dissimilar
semi-infinite plate takes the following form:

Figure 10.
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0.3 0.77 0.861 1.011 1.257
0.4 0.664 0.742 0.875 1.115 1.718
0.5 0.566 0.636 0.743 0.934 1.443
0.6 0.542 0.627 0.766 1.106
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0.75 0.423 0.485 0.566 0.734 1.45
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KI

s
ffiffiffiffiffiffi
pa

p
¼ 1:121 þ 0:0159b2 0:221b 2

;
KII

s
ffiffiffiffiffiffi
pa

p
¼ 20:684bwhenaða2 2bÞ ¼ 0

;

KI

s
ffiffiffiffi
pa

p ða=W Þ12l ¼ CI ;
KII

s
ffiffiffiffi
pa

p ða=W Þ12l ¼ CII when aða2 2bÞ – 0:

8>><
>>:

ð27Þ

5. Conclusions
In this paper, a single-edge cracked bonded strips subjected to the bending loading
conditions were analyzed with varying the relative crack length and material
combinations systematically. The SIFs of interface crack were evaluated by using the
ratio of crack-tip stress values between the reference and target unknown problems. In
order to obtain the high accurate SIFs without using very fine mesh pattern in FE
model, the extrapolated technique was proposed and examined by using the results of
two different meshes. The limiting solutions for a dissimilar bonded semi-infinite plates
(a/W ! 0) under bending were also provided and compared with that of tensile loading
case. Specifically, since a linear relationship between FI · (W/a)12l, FII · (W/a)12l and the
relative crack length a/W was observed for the shallow edge crack case in Figure 9, the
SIFs for an edge interface crack in bonded semi-infinite plates can be expressed as:

KI

s
ffiffiffiffiffiffi
pa

p
¼ 1:121 þ 0:0159b2 0:221b2

;
KII

s
ffiffiffiffiffiffi
pa

p
¼ 20:684b when aða2 2bÞ ¼ 0

;

KI

s
ffiffiffiffi
pa

p ða=W Þ12l ¼ CI ;
KII

s
ffiffiffiffi
pa

p ða=W Þ12l ¼ CII when aða2 2bÞ – 0:

8>><
>>:
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0.85 20.097 20.121 20.143 20.175 20.245 20.420
0.9 20.089 20.115 20.136 20.165 20.222 20.307
0.95 20.077 20.109 20.128 20.155 20.202 20.256

Table VI.
Tabulated values of CII
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