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SEVERAL CENTRAL INTERFACE CRACK SOLUTION UNDER
ARBITRARY MATERIAL COMBINATION
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This paper deals with a central interface crack in a bonded finite plate and periodic interface cracks. Then,
the effects of material combination and relative crack length on the stress intensity factors are discussed.
A useful method to calculate the stress intensity factor of interface crack is presented with focusing on the
stress at the crack tip calculated by the finite element method. For periodic interface cracks, it is found
that the stress intensity factors are only depending on bimaterial parameter ¢ and increase with increasing
¢ and the relative crack length a/W. For a central interface crack, it is found that the stress intensity
factors are depending on the Dunders’ parameters a and f. The variation of dimensionless stress intensity
factors F}, Fy are discussed under arbitrary material combinations with varying relative crack length a/W.
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1 Introduction

For the discussion of an interface crack in a bonded
finite plate, although a lot of related studies were
published previously, few solutions are available under
arbitrary material combinations. In this paper,
therefore, periodic interface cracks as shown in Fig.1
(a) will be treated in comparison with a central
interface crack in bonded finite plates as shown in
Fig.1 (b). Then, the effects of relative crack length on
the stress intensity factors will be analyzed explicitly
under arbitrary material combination. In Fig.1 (a),
along x=(1+2m)W ( nis the integer ) the boundary

conditions are u, = 0 » = 0 but g, #0. On the

other hand, in Fig.1 (b) along x=+W , the boundary
conditions areo, =0, 7,, =0.

2 Analysis Method

The analysis method used in this research is based on
the stresses at the crack tip calculated by FEM. For
homogenous material, stress intensity factors can be
obtained with a good accuracy by using the proportional
stress fields for the reference and given problems [2, 3].
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Figure 1: (a) Periodic interface cracks in an infinite
bonded plate and (b) a central interface crack in a
bonded plate.

In this paper, a useful method to calculate the stress
intensity factor of interface crack is presented [1].

An effective method was recently proposed by Oda
et al. successfully to analyze interface crack problems
[1]. It is well known that there exists oscillation
singularity at the interface crack tip. From the stresses
0,, 7, along the interface crack tip, stress intensity

factors are defined as

o, +it, =M”—(L)w, r—0, (1)
N2zr \2a

From Eq.(1), it is known that because stress intensity
factors for interface crack and the crack in homogenous
material are different, it is difficult to separate modes




absolutely. So it is necessary to obtain the following
equation from Eq.(1)

T
K, = lirr(}\/2ﬂ'r0'y (cosQ+—”’sin Q], 2)
r= o

y

o
K, = lirr‘}\IZ}trfw(cosQﬁ-——y-sin Q], 3)
r— - Txy

,
Q=¢ln(—). @

If the distance r is given as a constant, the following
equation can be obtained.

T % T,
0*=0, o= 5)
o,* o,

Here, values without (*) are for unknown problem and
values with (*) are for reference problem.

Therefore if Eq. (5) is satisfied, Eq.(6) may be
derived from Eq.(2) and Eq.(3). In such case, oscillatory
items of the reference and unknown problems become
the same:

K,* K, K,* K
M L O
o, o, T,* 7T,
Here, 0, m» Toomm are stresses of the reference

problem calculated by FEM, and o,y Zyomwm are

stresses of the given unknown problem. Stress intensity
factors of the given unknown problem can be obtained
by:
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— Y yO0,FEM
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Stress intensity factors of the reference problem are
defined by

K, +iK,"=(T+iSWma(1+2ig)  (9)

Figure 2: Reference problem (¢, =¢,, at y=0)

Regarding the reference problem in Fig.2,
denote 0, yun *  Thormy * are values of stresses for
(T,8)=(1,0) , and o} 300 * Tooma * are ones for
(T',8)=(0,1) . In order to satisfy Eq. (5), stresses at the

crack tip of the reference problem are expressed as
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% _ 1=1,5=0 % 7=0,5=1 %
o—yO,FEM - O-yO,FEM XT+0y0,FIZM XS’

(10)
_ . T=1,5=0 7=0,5=I
T oo, ram ¥= Tovo, FEM *XT + Coo,ram )
By substituting Eq.(5) into Eq.(10) with T=1, the value
of S is obtained as :
T=1,5=0 x T=1,5=0 %
X0, 7 —Tayo,rene X O o Fim
7=0,8=1 % 7=0,8=1 % *
Toyo,remt X O yo rave  —O yo, rint X Tayo riam

(1)

The problem that is subjected to T=1 and S

expressed by Eq.(11) is considered as the reference

problem. Because the exact solution is known, the error

of the unknown problem can be evaluated by using the

same mesh. In the following, results are shown using
dimensionless stress intensity factors F}, F,, defined by

K, +iK, =(F, +iF, X1 +2ie)ovma,  (12)

£=Lln[(£+—l—J/(ﬂ+L)] (13)
2z \G G /|G g

(3-v,)/(1+v,) (Plane stress)
Kn =134y (Plane strain)

S = O o rim

m

v, : (Poisson's ratio) (m=1,2) (14)

G . (Shear modulus) (=1, 9

The Dundurs’ bi-material parameters «, S are defined
as

o= G (5, +1)-G,(x +1) . B= G(x,-1)=-G,(x,-1)

G (x5, +)+G,(x +1) G (x5, +D)+G,(x +1)

(15)

3 Stress Intensity Factors for Periodic Interface
Cracks

Periodic interface cracks are one of the most
fundamental problems. However, so far as the authors
know, the solution is not available under arbitrary
material combinations. Similarly to the problem of
bonded infinite plate subjected to the internal pressure,
the stress intensity factors only depend on the
parameter € .

Figure 3 (a) shows the relation between F,* and
€ with different /W . From the figure, it is known that
F/“ slightly increases with increasing & when
a/W is fixed; the increment is larger when o/W is
larger. Figure 3 (b) shows the relation between F,
and £ with different /W . Similarly to £,* , the
values of F,“ also increases with increasing ¢ when

a/W is fixed, and the increment becomes larger when
a/W is larger.
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Figure 3: The relationship between (a) F” vs. € (b)

F? vs. £ with different &/ in Fig.1 (a)
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Figure 4: The map of o and f

+ 4 Stress Intensity Factors for the Interface Crack in
a Bonded Finite Plate

Regarding another fundamental problem in Fig.1
(b), the effects of relative crack length @/W on stress
intensity factors will be discussed under arbitrary
combinations. When material 1 and material 2 are
exchanged, Dundur’s parameters (o, ) become

(-, — B), and then the stress intensity factors (F;, F;)

become ( F,, —F, ). Therefore all material combinations

are considered in the range a >0 as shown in Fig.4.
For special material combinations indicated by the
dashed lines in Fig.4, calculations cannot be executed
by the current finite element method code, and the
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results for the region are obtained by extrapolation
using the results that can be calculated.
To save space, Fig.5 only shows the variations

F®/F,,.” and F, for B =0 as an example.
Here, F,,,,.*’ means results for homogenous material,

and it has been obtained by Isida [4] and the
approximate solutions expressed in formula (16) [5].

2 4
Fiions = {1—0.025[1] +0.06[1] } sec[ﬂ] (16)
W w W

It should be found that the ratio 7” / £, ”
largely depends on a and distributes in a wide region
as1.000 ~ 0.751. The ratio /,*/ F,
when o is small, and becomes smaller when a is
When a=1, E”/E, " takes the
minimum value for all regions of a/W . On the other

hand, F,* increases with increasing a , and the

® is close to 1

homo

large.

increment becomes larger when the crack length is
larger. For almost all regions of crack length, F, "

takes the maximum when a = [ except the case when
the crack length is extremely large.
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Figure 5: vs. a/W and (b) F;,b’ Vs.

a/W when f=0.




Considering £'” / F, ” when a/W < 0.9, it
is known that 0.751 < £” / F, " < 1.036, and
mostly it distributes in the region which is a little
smaller than 1.

5 Conclusions

In this paper, the stress values at the crack tip
calculated by FEM are used and the stress intensity
factors of interface cracks are evaluated from the ratio
of stress values between a reference problem and a
given problem. Then the stress intensity factors are
discussed with the following conclusions.

(1) For periodic interface cracks in a bonded plate
shown in Fig.1 (a), the effects of relative crack length
and material combinations on the stress intensity
factors have been discussed. Stress intensity factors
F/”, F, increase with increasing ¢ (Fig. 3).

(2) For a central interface crack in a bonded finite
plate shown in Fig.1 (b), the effects of relative crack
length and material combinations on the stress
intensity factors have been discussed. The ratio to the
results to the homogeneous material /,*/ F;, . @ is
in the region 0.751<F®/F,,.*» <1.036 when
aW < 0.9, and mostly it distributes in the region
which is a little smaller than 1.

Generally, F, always takes the maximum value
when a@=02=03 and minimum value when
a=1.0,4=0. On the other hand, F, always takes the
maximum value when @=1.0,=0 and minimum
value when a=0.2,3=03 except the case when the
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crack length is extremely large.

(3) From the comparison between the results for
periodic interface cracks and a central interface crack in
a finite bonded plate, it is seen that the results of
periodic interface cracks are close to the results of a
central interface crack in a bonded finite plate when «
is small and the crack length is small. The results of
periodic interface cracks are close to the results of a
central interface crack in a bonded finite plate when a
is large and the crack length is large.
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