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The aim of current research is to develop an ad hoc hybrid-stress finite element method to solve singular
antiplane electroelastic fields in piezoelectric inclusion corner configurations. At first, a super corner tip
element is developed based on the variational principles for the corner tip domain together with the
numerical eigensolutions of the singular antiplane electroelastic fields. Then, an ad hoc finite element
model for the whole piezoelectric domain is established by incorporating the super corner tip element into
conventional elements. As application, a rectangular piezoelectric inclusion embedded in another
piezoelectric matrix is considered, and the effects of material properties, inclusion sizes and interface
delamination on generalized stress and electric displacement intensity factors (GSIFs) are investigated.
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1. Introduction

Piezoelectric materials are widely used in various
fields such as transducers, wave filters, sensors,
resonators and actuators. Fully bonded structures are
unavoidable. Because of the mismatches of material
properties and geometries, the stresses and electric
displacements at inclusion corner tips may be
discontinuous, and delamination and cracking failures
usually initiate at these locations. Because inplane
electric fields and antiplane stress fields of piezoelectric
materials are often coupled, thus antiplane problems of
piezoelectric materials are more complicated than those
of common composites. Some traditional analytical
methods that have been successfully used for inplane
problems of piezoelectric materials, such as complex
potential method, distributed dislocation method and
integral equation methods are also suitable for antiplane
problems [1-4]. On the other hand, numerical method
such as the conventional finite element method and the
Treffiz finite element method [5] are also be used to
deal with antiplane problems. It should be pointed out
that the aforementioned methods are only limited to
crack or interface crack problems. Recently, a finite
element eigen-analysis method [6] and a Mellin
transform method [7] are used respectively to solve the
eigensolutions of antiplane singular electroelastic fields
near the vertex of bonded piezoelectric wedges and
junctions. Obviously, the singular stress fields near the
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vertex of multi-material wedges and junctions depend
on not only the eigensolutions but also the GSIFs. In an
effort to determine the GSIFs of inplane singular elastic
fields, Chen and Ping [8] deal with the inplane problems
of inclusion corners in elastic media by a novel hybrid-
stress finite element method. In this paper, a hybrid-
stress finite element method for the analysis of antiplane
singular electroelastic fields of inclusion corners in
piezoelectric materials will be deduced.

2 Solution Method

As illustrated in Figure 1, an inclusion corner tip
domain composed of bi-piezoelectric material sectors
can be partitioned into inner and outer regions. In the
inner region of either a closed or open junction, the
presence of a singular electroelastic field near the
junction arising from the material and geometric
discontinuities requires an exact solution of the
governing equations. The solution to the outer region in
which a singular electroelastic field does exist can be
constructed by employing the finite element method
with conventional elements. Therefore, an accurate
solution to the entire domain requires coupling of the
exact solution in the inner region with that of the
approximate solution through the finite element method
in the outer region. The coupling can be achieved by
developing a super corner tip element whose
interpolation functions satisfy the governing equations




exactly near the junction while enforcing the inter-
element displacement and electric potential continuities
along the common boundary and the nodes between the
comer tip elements and the conventional elements.

Conventional elements

Corner tip elements ) Common nodes

Figure 1: Conventional elements coupled with a global
element for a closed junction.

3 Stiffness matrix of the global inclusion corner tip
element

To formulate finite element calculations for the
antiplane singular electroelastic fields around an
inclusion corner-tip in piezoelectric materials, a super n-
sided polygonal inclusion corer-tip element which
contains a part of an inclusion corner, as shown in
Figure 2, will be developed based on the computed
numerical eigensolutions in Chen and Ping [6].

)
o @

(b)

Figure 2: Element decomposition: (a) original element;
(b) inclusion domain with mixed boundary values; (¢)
matrix domain with mixed boundary values

Our goal is to establish the relationship between the
element’s generalized nodal force and displacement, or
simply, to formulate the element stiffness matrix. The
key idea in formulating this corner tip element is to
decompose the original problem into two boundary
value problems as shown in Figures 2(b) and (c): MNa
specified mixed boundary value problem in the matrix
domain Q' with boundaries C', I, and I, ; (2) a

specified mixed boundary value problem in the non-
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ellipsoidal inclusion domain Q with boundaries c?,
I, and I, . C' and C* are the element’s outer
boundary with neighboring elements, and 7 and /5

are inner interfaces between the matrix and the inclusion.
Following the Hellinger-Reissner principle, we define
the following hybrid functional for problem (1):
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where w, ¢, T, D, t and S are, respectively, the

M

displacement, ~electric potential, stress, electric
displacement, generalized boundary traction vectors and
the electroelastic compliance matrix; V is the matrix
differential operator relating strains and electric fields to
displacements and electric potential; the symbol “~”
represents a specified quantity. Based on the hybrid-
stress finite element method; the subscript “m” denotes
components in domain Q' ; the boundary displacement
" and electric potential ¢ are assumed separately
from w and ¢ and are expressed in terms of the
displacements and electric potentials of the element; and
the generalized boundary tractions t" is assumed to be
specified and are actually unknown.

The stationary values of the functional defined by
Egq. (1) yields the following a set of equations:
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in which n® is a 3x5 matrix of the unit normal to
boundary C® and I',.

It is seen from the above equations that the true
solution of the problem (1) minimizes the hybrid
functional. We may simplify the functional by
constructing the electroelastic field in such a manner
that Eqs. (3) and (4) are automatically satisfied. By

doing this and using the divergence theorem over Q,
the functional 7, is reduced to
=)
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In the same way as problem (1), the functional 7

in domain Q* for problem (2) can also be obtained, in
which the subscript “I” denotes a functional in domain
Q.

In order to recover the solution for the original
problem from those of two decomposed problems, the
traction reciprocity t conditions and the displacement
and electric potential compatibility conditions are
necessary to be imposed:

W, w,
4 = p on /| and I, M
t"=~t®, ¢ =—t on I and I}, ®

The functional z° for the original problem is
rewritten as z° =z, +7; . Therefore, adding Egs. (5)
and (6), and noting conditions (7) and (8), we have
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m —cht {¢}dS—_[Ct {&}ds )
where C=C" +C®

w, ¢, Tand D near the inclusion corner tip can be
expressed in terms of asymptotic expressions, i.e.,

w‘-’ e Tc . 1
{¢e}~UcB,{De}—Zcﬁ (10, 1)

in which the quantity with subscript C is a new interim
one in the Cartesian coordinate system, U{. and I are
matrices derived from the eigensolutions of singular
electroelastic fields'®, and B are coefficients to be
determined.

The boundary value W of the corner-tip element in
Eq. (10) can be expressed with the nodal displacement
W¢ and electric potential @ as

{’1}=L{Wé,-,<5z,~,Wé,-+l,<bz,-+.]T=L{V.Vf} (12)
¢ . D

where L is a one-dimensional Lagrangian interpolation
function matrix defined on the element boundaries
excluding the interfaces between the matrix and the
inclusion.  Along the boundary segment, the
displacement is assumed to be linear, so the
interpolation function matrix L between two adjacent
nodes can be expressed as

s N
L_[(1-7)12 712] (13)

By substituting Eqs.(10), (11) and (12) into Eq.(9)
yields an equation of the form
e 1 Tyye Tge WCE
t=—p HB-B'G*< . 14
2I3 B-B { o (14)
herein
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According to the stationary condition of the
functional 7° with respect to B, the functional 7° is
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expressed in terms of the nodal displacement W and

electric potential ('I‘)eC only, i.e.,

c LW W
=3 T (o} “

where the stiffness matrix of the super inclusion corner-
tip element is
[Kin | =(G)T(H)'G* (16)

inc

4 Numerical examples

As shown in Figure 3, an infinite piezoelectric plate
including a rectangular piezoelectric inclusion whose
length and width are measured as 2L and 2B,
respectively, are considered. Poling directions of both
materials are oriented in the z-axis. Antiplane shear

stress 77 and inplane electric displacement Dy are

applied to the upper and lower edges of the plate. Due
to symmetry of the geometry and loading, only the
upper right quarter of the geometry is needed for finite
element mesh division. In order to determine the
antiplane singular electroelastic fields near the point o,
an 8-node super inclusion corner tip element is used
around this point.

When singular stresses at every polar angle @ are
calculated, the GSIFs can also be obtained, i.e.,

K, = limv2r o, (r,0),K, = limV2r4D,(r,0)  (23)
Here, only GSIFs for 8=0 are investigated.
At first, the effects of mechanical loading 77 on

the GSIFs are investigated. The GSIFs, K,B* /7 and

K,B* /77, versus L/B are plotted in Figure 4. It is

observed that GSIFs are independent of L/B as L/B>10;
The GSIFs for PZT4 inclusion comer tip in PZTSH
matrix decrease with increasing of L/B, on the contrary,
those for PZTSH inclusion corner tip in PZT4 matrix
increase with increasing of L/B.

On the other hand, the GSIFs, K,B* and K,B"*,
versus L/B under electric displacement loading Dy are

plotted in Figure 5. Obviously, the present results of
GSIFs are analogous to those under mechanical loading.

5 Conclusions

A new ad hoc hybrid-stress finite element is
presented for the antiplane singular electroelastic field
analysis of heterogeneous materials with piezoelectric
matrix and piezoelectric inclusions. A super n-sided
polygonal element embedded with a part of an inclusion
corner is developed. Versatility and applicability of the
developed method are demonstrated by examining the
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Figure 3: A rectangular inclusion in an infinite matrix
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Figure 4: GSIFs versus L/B under 7,
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Figure 5: GSIFs versus L/B under D”
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effect of material types and inclusion geometries on the
GSIFs of the inclusion corner. In the micromechanics
field, the present method seems to have an extensive
future.
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