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TENSION OF A CYLINDRICAL BAR HAVING AN 
INFINITE ROW OF CIRCUMFERENTIAL CRACKS 

H. NISITANI and N. NODAt 

Faculty of Engineering, Kyushu University, Fukuoka, 812 Japan 

Abstract-In this paper, the crack problems in the case of a cylindrical bar having a circumferential 
crack and a cylindrical bar having an infinite row of circumferential cracks under tension are 
analyzed by the body force method. The stress field for a periodic array of ring forces in an infinite 
body is used to solve the problems. The solution is obtained by superposing the stress fields of ring 
forces in order to satisfy a given boundary condition. The stress intensity factors are calculated 
for various geometrical conditions. The obtained values of stress intensity factor of a single 
circumferential crack are considered to be more reliable than the results of other paper’s. As the 
crack becomes very shallow, the stress intensity factor of a row of circumferential cracks 
approaches the value corresponding to that of a row of edge cracks in a semi-infinite plate under 
tension. As the crack becomes very deep, it approaches the values corresponding to that of a single 
deep circumferential crack. 

NOTATION 

crack depth 
cylindrical diameter 
diameter of a minimum section 
pitch of cracks 
Poisson’s ratio 
cylindrical coordinates of a point in question 
cylindrical coordinates of a point where a point force acts 
strength of a point force 
strength of a pair of point forces 
strength of a ring force (force per unit length) 
strength of a pair of ring forces 
density of body force (force per unit area) 
density of a pair of body forces 
stresses due to a point forces 
stresses due to a pair of point forces 
stresses due to a ring force 
stresses due to a pair of ring forces 
stresses due to a periodic array of ring forces 
stresses due to a periodic array of pairs of ring forces 
nominal stress for the cylindrical diameter D 
nominal stress for the minimum diameter d 
number of the interval in question 
number of the interval where body force is applied 
influence coefficients, which mean the stresses induced at the midpoint of ith interval by the unit body 
force acting at thejth interval 
division number of a crack surface 
division number of a cylindrical surface 
total division number (= n, + n3 
stress intensity factor 
dimensionless stress intensity factor; K, = FpF& 
dimensionless stress intensity factor; K, = Fjfa,,tm2 

1. INTRODUCTION 

A CYLINDRICAL bar having a circumferential crack shown in Fig. 1 has been used as a specimen 
which determines the fracture toughness of materials. Therefore, many researchers have tried to 
obtain the stress intensity factor of this problem [l-4]. Benthem-Koiter [2] have proposed an ap- 
proximate formula which gives the exact values in the limiting two cases, a very deep crack and a 
very shallow crack. In 1977, Keer-Freedmann-Watts [31 have obtained the accurate stress intensity 
factors for a wide range of crack depth by using integral transform technique and solving singular 
integral equations numerically. Atsumi-Shindo [41 extended the method of analysis by Keer et al. 
and studied the problem of a transversely isotropic cylindrical bar having a circumferential crack. 
An approximate formula by Benthem-Koiter is convenient for practical use, but the error of this 
formula should be estimated by comparing_&,value with the exact solution. 

t Current address: Department of Mechanical Engin&ing, Faculty of Engineering, Kyushu Institute of Technology, Tobata, 
Kitakyushu, 804 Japan. 
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Fig. 1. Tension of a cylindrical bar having a circumferential crack. 

The problem of a cylindrical bar having an infinite row of circumferential cracks shown in Fig. 2 
is useful in investigating the interference effect among cracks. Although there are many reports 
concerning the problem of a single circumferential crack, the research of the interference effect 
among circumferential cracks in the tension of a cylindrical bar is not found. 

In this paper, the crack problem in the case of a cylindrical bar having a circumferential crack 
(Fig. 1) or an infinite row of circumferential cracks (Fig. 2) under tension are analyzed by the body 
force method [5, 61. 

2. METHOD OF ANALYSIS 

The body force method for solving three-dimensional axisymmetric problems is based on using 
the stress field of ring forces in an infinite body. The ring forces acting in the r-direction (F,) or in the 
z-direction (F,) shown in Fig. 3 are used for the analysis of tension problems. 

In the present analysis, the boundary condition of a cylindrical surface are satisfied by applying 
body forces (continuously embedded ring forces) along the prospective boundary imagined in an 
infinite body. On the other hand, the boundary conditions of a circumferential crack are satisfied 
by applying a pair of body forces (continuously embedded pairs of ring forces) [5]. The method 
of analysis in this problem is reduced to determining the densities of body force and a pair of body 
forces. The fundamental stress fields in this case are the stress field due to a ring force and the 
derivative of it. 

As the definition of the density of a pair of body forces pas, the following expression is used [ 51. 

1 - 2v 1 dG, 
PDB = (1 - v)* 

4+’ - (p - D/2)* pdpd4 (1) 

in which dG, is “the strength of a pair of body forces” acting at the element pdpd4, and (p, 4, 
[) are the cylindrical coordinates of a point where the pair of body forces acts. “A pair of point 

t 

Fig. 2. Tension of a cylindrical bar having an infinite row of circumferential cracks. 
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(P&,5) 

01 
(b) 

Fig. 3. A ring force acting r- or z-direction in an infinite body. 

forces having unit strength” means the combination of three kinds of pairs of point forces, each 
acting in r-, B- and z-directions shown in Fig. 4 [7, 81. In the axisymmetric problem, the ring of 
pairs of point forces acting in the &direction does not affect the stress field because the effects of 
the pairs are cancelled with each other by integration. According to the definition of eqn (l), the 
value of pDB for the problem of a two-dimensional through crack in an infinite body is constant 
along the prospective site of the crack which must be free from stresses. If the definition of eqn 
(1) is used for a general problem, the variation of pDB along the prospective site of crack is small 
and the obtained solution is very accurate [6]. 

3. FUNDAMENTAL SOLUTIONS 

The interference effect of an infinite row of circumferential cracks is studied in this paper. 
Therefore, it is necessary to obtain the two kinds of fundamental solutions; one is the stress field for a 
periodic array of pairs of ring forces aFos** (for cracks), and the other is the stress field for a periodic 
array of ring forces a’~‘*, aF,** (for cylindrical surfaces). 

When a pair of point forces or a point force acts at a point (p, 4, c + mh) in an infinite body, 
the stresses at (r, 0, z) are given by eqn (2). In eqn (2), PDB means the strength of a pair of point 
forces and P,, P, mean the strength of a point force. 

PC = 1 

E : distances between two forces 

P 

0 

Fig. 4. A pair of point forces having unit strength. 
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0-P = B&2( 1 - V)R -3 + 3( 1 - 2v)R -$2( - 1 + cos2 4) 

+ 15Z2R -7( - r2 + 2rp cos C#I - p2 cos2 +)] 

CT:“” = B&2(1 - v)R -3 + 3(1 - 2v)R -5( - r2 + 2rp cos Cp - p2 cos2 4) 

+ 15i2R -7p2( - 1 + cos2 $J)] 

uTDB = B&R -3 + 6i2R -’ + 1E3R -‘( - r + p cos $>I 

~2~ = B&3% -‘(r - p cos 4) + 15Z3R -7(-r + p cos c$)] 

d’ = B,[(l - 2v)Rw3(-p - r cos 4 + 2p cos2 4) 

+ 3R -‘{?p - r(? + 2p2) cos 4 + ~(29 + p2) cos2 t#~ - rp2 cos3 c#J}] 

a2 = B,[(l - 2v)Rw3(p + r cos 4 - 2p cos’ 4) 

+ 3Re5(p3 - rp2 cos C#I - p3 cos2 $J + rp2 cos3 c#J)] 

a? = B,[(l - 2v)R -3(-p + r cos 4) + 3z2R -‘(p - r cos $I)] 

~2 = B,[(l - 2u)iR -3( - cos 4) + 3% -‘{rp - (r2 + p2) cos C#I + rp cos* t$}] 

CT? = B,[(l - 2v)zR -3 + 3% -‘( - r2 + 2rp cos C$ - p2 cos2 4)] 

($ = B,[(l - 2~)zR-~ + 3iR-‘( -p2 + p2 cos t#~)] 

(T? = B,[(l - 2~)?,R-~(-l) + 3Z3R-‘(-l)] 

r$ = B,[(l - 2u)Re3(-r + p cos 4) + 3Z2R-‘(-r + p cos c#J)] 

where 

BDB = 
P 

DB 
8?r(l -v)’ 

B, = P, 
8a(l - v) ’ 

B, = PZ 
8~(1 - v) 

Z = z - < - mh, R* = 3 + p2 - 2rp cos C#I + (z - [ - mh)‘. 

Using eqn (2), the fundamental stress fields aFDB**, aF,**, aFz** can be expressed as follows. 

(2) 

(3) 

where aFDd’ means the stresses due to a single pair of ring forces and crF,*, aFz’ mean the stresses due to a 
single ring force. 

In calculating the infinite series in eqn (3), it is necessary to obtain the sums of the series of the 
type Z;___ ZNRM (N = 0, 1, 2, 3, M = -3, -5, -7). Since they cannot be obtained easily, the 
following method of calculation is used. First, the range of the summation is divided into three parts 
as shown in eqn (4). 

(4) 
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If we take m, sufficiently large, Re3, R-’ and R-’ are expanded into binominal series as follows. 
m m 

c R-3 = 1 {? + pz - 2rp cos 4 + (z - r - &z)‘}-~” 
m-rno 

=c l 

I 

3r2 1 5r4 

m-mo (I + mh - z)’ ’ ’ 2(1+ mh - z)~ ’ 8({ + mh - z)” ---- 1 

= +3 z$ (f +lm,, - 5 ml (F +lm)5 + t$ Lo (s_ +lm)’ --- 
m me 

= i {(3, f + mo) - g {(5, f + m,) + 5 ((7, S + mo) ---- 

2 R-5 = 3 {(5 f 
5T2 4 

, 

m-rno 
+ mo) - 3 ((7, S + mo) + $${(9, ? + mo) ---- 

2 R-’ = L ((7, r + mo) - E ((9 r + mo) + s ((11 ? + mo) ---- 
2h9 ’ 

, 
m-ma h’ 

(5) 

where 

r2 = r2 + p2 - 2rp cos 4, l = (5 - z)lh 

I(], x) is a Hurwitz zeta function defined in eqn (6). 

[(A x) = go (X : m), = $ dy s dt. 

The value of {(I, X) can be obtained numerically from eqn (6). 

(6) 

If we take m. sufficiently large, the total sum of eqn (5) can be obtained accurately by summing 
up the first few terms of the series. Other series in eqn (3) (Z;__, TNRM, N = 1, 2, 3, A4 = -3, -5, 
-7) can be calculated in a similar manner. When the binominal expansions as shown in eqn (5) are 
substituted in eqn (3), the integral can be easily obtained in a closed form. 

The partial sum of the range (-m. -c m -c m,) in eqn (3) can be calculated by summing up the 
stress fields of a single ring force as shown in eqn (7). In the case of a single ring force, by using elliptic 
integrals [6] the integral in eqn (3) can be expressed. 

J ” *r 2’ aPDd p,,_, x Fmp d4 = mF’ J" (rp~n 1 mo-I 

m--mo+l 0 PDB- 1 
x Fos~dcf~ = x a 

m=--mo+l m--%+1 

X FOP d@ = m $,, 6” up, Ip._l x F,p d+ = me a”* 

= 0 = (I 

x Frp d4 = m;c+, 6’” up’ Ipz_, x Frp dc$ =;2;, b~z* 

(7) 

The fundamental stress fields aFDB*‘, aFr**, uFZ** can be obtained by the method mentioned above. 
Finally, they are expressed as follows. 

/r* = 2 aFr= + y’ aF,* + 2 aF,* 

m-fn~ m--m.+1 m=-m~ 
(8) 
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The stress fields due to a single ring force aFoB*, crF,*, crF** are given as follows [6]. 

Fns* = FD,P(l - 24 3(1 - 2v) 
c, 

47~(1 - v)‘rl 
2(1 - v) Zfl + rz p2(-JO + J*) + $ (-r2L, + 2rpL, - p2L,) 

m m I 

FOB* = FDBp( 1 - 2v) 
07 

[ 

Z + 6”’ J + 15F4 
- (-Lo) 

4?r(l - v)‘ri O ri O r”, 1 
FDB* = Fmp(l - 2V) 

[ 

32 
7, 

47r(l - v)*r% 
7 @JO - PJl) + 
rm 

F(-rLo + pL1) 1 
Fr* = F,P 

u, 
47r(l - v)rl 

(1 - 2v)(- pZo - rl, + 2pZd 

Fr* = FOP 
uz 

47r(l - v)rb 
t 

+ 3 {r2pJo - r(r2 + 2p2) J, + p(2r2 + p’) J2 - rp2J3} 1 
1 - 2v)(- pZo + rl,) + 5 (pJo - rJ,) 

m 1 
1 - h)Z(-I,) + T {rpJo - (r2 + p2) JI + rpJ2} 

m I 
11 - 2v)ZI, + 7 (-r2Jo + 2rpJ, - p2J2) 

m I 
F,’ f'rp 

Trr = 
47r(l - v)rR 1 

( 

Fz* = F,P 
0, 

47r(l - v)ri 
( 

Fz’ = F,P 
gz 

47r(l - v)rl 
(1 -2 )-(-Z)+z(-J) vz 0 

ri 
0 I 

F,’ F,P 
Trz = 

47r(l - v)ri 

where 

rm= j/T& Z=z- 

(1 - 2v)(- rZo + pl,) + 5 (-rJo + PJ,) 
m I 

1 
z, = -K,, 

e2 - 1 

I, = LK, - K2, 
e2 - 1 

2e2 - 1 
z 

2 
= ~ K, - 2eK,, 

e2 - 1 

Jo = 4e K- 1 K 
3(e2 - 1)2 ’ 3(e2 - 1) 2r 

J, = 
e2+3 K_ e K 

3(e2 - 1)2 ’ 3(e2 - 1) 2’ 

- 2e2 3 - 

J 2 = _ 2e(e2 3) K ’ + K 2’ 3(e2 1)2 3(e2 i) - - 

J 

-8e4 + 15e2 - 3 e(8e2 - 9) 

3 = K ’ + 3(e2 1)’ 3(e2 1) K 2’ - - 

Lo = 
23e2 + 9 K _ 

15(e2 - 1)3 ’ 

8e K 

15(e2 - 1)2 2’ 

CM 

I 

(9b) 
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L = e(3e2 + 29) K _ 

* 15(e2 - 1)3 ’ 
3e2 + 5 K 

15(e* - 1)2 ” 

L2 - -‘I;*‘~;; I5 K* f 
2e(e* - 5) 

IS@ - 1+ 

K, = l’ (e - cm #)“‘d# = 9 E(k) 

R2 = J” (e - em #)-“’ &#J = 8 kK(k). 

The complete elliptic integrals 

(9b) 

have the argument 

e = 1 + (r - 6)” + (2 - 53’ 
2rp ’ 

In calculating the second terms in eqn (8) (Z?:!,,, aFD8*, X2:!,+, aFr*, ZZ~:-lmo+l &*), eqn (9) is 
used directly. The first terms in eqn (8) can be expressed as follaws. 

i- 3 (1 - 2V)P2 2 W)L(21 + 5)f-C,(Z) + C*(I)] 
i-0 

f 15 E &U)L,(2~ + ~)I-r2Cd) + 2rpC1(1) - p2C,(l)} 
I 

-t 6 $ S2(0&,,(2~ + 3)C& + 15 z %(0t,,,(2, + 3)(-c&)1 1 I 

+ 15 2 W)LW i- 4)f-KOU) + PC,(I)1 

2 of;‘l = 4,;“, [(1 - 2v) 2 s,(r){&?r + 3) 

I 

m-mo f-0 

x (-pCo(I) - rC#) + 2pC2(f)l -I- 3 5 ~2(~)~~(2~ + 5) 
i-0 

x (r2&.dl) - r(r* + 2f.?)C,(I) + ~429 + p’)C,(l) - rp’C,(f)} 1 tW 
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where 

{(:(E, x) is defined in eqn (6). 
The third terms in eqn (8) (2;,-,“_, oFo8*, XGLm, a’*, YZ;:+, oFz*) can be obtained by replacing eqn 

(1Od) with eqn (IOe). 

4. PR~EDURE FOR NUMERICAL SOLUTIONS 

Figure 5 shows imaginary boundaries where body force or a pair of body forces are distributed. 
A pair of body forces is applied along the part A’B in addition to the part AB which should become 
a ~~r~umferenti~ crack, because it makes the shear stress ‘F;, at B small and consequently the 
boundary conditions can be satisfied easily. From the symmetry of the problem, the boundary 
conditions have only to be satisfied along the part ABC by using the fundamen~l solutions given 
in eqns (S>-jlO). 

it is difficult to dete~ine in closed forms the body force densities which satisfy the bounda~ 
conditions completely. Therefore, the imaginary boundaries are divided and the problem is solved 
numerically. The imaginary boundary of the circumferential crack is divided into n, equal intervals 
and the imaginary cylindrical surface into n, intervals. The densities of body forces for a pair of 
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Fig. 5. Imaginary crack surface and imaginary cylindrical surface in an infinite body. 

body forces), which are assumed to be constant in each interval, are determined from the boundary 
condition at the midpoint of each interval. 

The influence coefficients offs, oip’, a?, which mean the stresses induced at the midpoint of ith 
interval by the unit body force acting at the jth interval can be written as eqn (11). 

(1 - v)’ 
F~~_,~4JC2-(p-0/2)2dp(j=l-nl) 

1 

& = 
I F,-I 

( j = n, + 1 - nl + n2) 
CPA = 

I 
F,-I 

(11) 

where J stands for integration of the jth interval. The integrations in eqn (11) are performed 
numerically using Gauss’s formula. The boundary conditions at the midpoint of the ith interval are 
expressed by using the influence coefficients as follows. 

E PDEj&?' + I: (&U~’ + p&") + CT: = 0 (j = 1 - nl) 

j=l j=nl+l 

j=l j=nl+l 
(i = nl + 1 - nl + n2) 

2 pDBj7fpw + jTg:, @rjTfij + p~Tf$) = 0 
j=l 

J 

where u; is the nominal stress for the cylindrical diameter D. The first, second and third equations in 
eqn (12) correspond to oz = 0 at the crack surface. (T, = 0 at the cylindrical surface, and T, = 0 at the 
cylindrical surface, respectively. 

The body force densities are determined by solving the (n, + 2n,) linear simultaneous equations 
( 12). The dimensionless stress intensity factor FI is obtained from eqn (13). 

KI 
FI = PDBI = - 

UT vz 
(13) 

where K, is the stress intensity factor, and pDB, is the density of a pair of body forces at the first ( j= 1) 
interval. 
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Table 1. Dimensionless stress intensity factors Fr for a single circumferential crack (Fig. 1); 
KI = Fra; G Y = 0.3 

Present Keer Atsumi Benthem Beuckner Deep 
Zc/D analysis et al. Shindo Koiter notch 

0.02 1.133 - - 1.125 - 3.644 
0.03 1.139 _ 1.127 - 3.022 
0.05 1.150 1.1513 1.152 1.133 - 2.415 
0.1 1.180 1.1807 1.181 1.153 - 1.852 
0.2 1.261 1.2608 1.261 1.225 1.240 1.563 
0.3 1.393 1.3904 1.390 1.353 1.365 1.559 
l/3 1.452 _ - 1.412 - 1.591 
0.4 1.602 
0.5 1.940 
0.6 2.516 

213 3.158 
0.7 3.618 

00:: 
6.243 
16.67 

1.597 
1.932 
2.502 

3.598 
6.201 
16.46 

1.596 
1.928 
2.494 

3.571 
6.115 

1.561 
1.901 
2.481 
3.128 
3.590 
6.223 
16.66 

1.584 
1.921 

1.701 
2.000 
2.552 
3.182 
3.637 
6.250 
16.67 

Since the error due to the finiteness of division number n, (=n, + n2) is nearly proportional to 1 /n, 
[5,6], the values of stress intensity factor corresponding to n, - to is obtained by extrapolation of the 
two values of F, corresponding to two values of n,. Poisson’s ratio is assumed to be 0.3. 

5. RESULTS AND DISCUSSION 

5.1 Stress intensity factor of a single circumferential crack 
In Table 1, the stress intensity factors of a single circumferential crack are compared with the 

results of Keer-Freedmann-Watts [3], the results of Atsumi-Shindo [4], an approximate formula 
by Benthem-Koiter [2], the results of Beuckner [l], and the solution of a deep circumferential crack. 

Formula by Benthem-Koiter [2] is: 

K~+-r&&p { 1+’ 2 +3 d 2(*) g(J - ,.,63(g + o.,3l(q}. 

Solution of a deep circumferential crack is: 

where t~,~ is the nominal stress for the minimum diameter d[~,~ = ar(D/d)‘]. 

Fig. 6. Stress intensity factors of a single circumferential crack; K, = Fp;) fi, KI = 
Fibm v’?Z~. 

(14) 



Tension of a cylindrical bar having an infinite row of circumferential cracks 

Deep circumferential crack 

o~g50.0 
I I I I I I I I 1 

0.2 0 4 
2c/D 

0.6 0.8 1.0 

Fig. 7. Relation between F,/FIB and 1 = 2c/D (FIB: F, values of an approximate formula by Benthem 
and Koiter). 

Figure 6 shows two kinds of dimensionless stress intensity factors F,, F;. 

(16) 

The results of the present analysis agree with the exact values in the two limiting cases, 2c/D+O 
and 2clD+l. 

As shown in Table 1, the results of other researchers are in good agreement with the present 
results except the case of deep crack. In order to examine the accuracy of them more strictly, the 
results in Table 1 are plotted in Fig. 7. In Fig. 7, the ordinate represents the ratio FI/FIB, where 
FIB denotes F, values of an approximate formula by Benthem-Koiter, and the abscissa represents 
the relative crack depth 2clD. As 2c/D+O or 2c/D+l, the ratio F,/FIB must approach unity 
because the formula by Benthem-Koiter gives the exact values in the two limiting cases. The results 
of the present analysis seems to be more reliable than the results of other papers in the case of deep 
crack. In the case of shallow crack, the results of Keer et al. and the results of Atsumi-Shindo are in 
good agreement with the present results. The approximate formula by Benthem-Koiter has a 
non-conservative error about 3%. 

5.2 Stress intensity factor of an infinite row of circumferential crack 
In Table 2, the stress intensity factors of a row of circumferential cracks are shown. In order to 

investigate the interference effect of a row of circumferential cracks, the results in Table 2 are plotted 
in Fig. 8. 

In Fig. 8, the ordinate represents F,/F,,, where F,, denotes F, values for a single circumferential 
crack, and the abscissa represents the relative crack depth 2c/D. As 2clD-40, the stress intensity 
factor for a row of circumferential cracks approaches smoothly the value corresponding to that 
for a row of edge cracks in a semi-infinite plate under tension [9]. As the cracks become deep, the 
stress intensity factor approaches the corresponding value for a single deep circumferential crack. 
That is, the interference effect among cracks disappears as the relative crack depth 2c/D tends to 
unity. 

Table 2. Dimensionless stress intensity factors F, for an infinite row of circumferential cracks (Fig. 2); 

KI = Flu; 6 Y = 0.3 

FI F”F1 c/h-O 

0.0 0.2 l/3 0.5 213 0.0 0.2 l/3 0.5 213 

0.0 1.122 1.261 1.452 1.940 3.158 1.000 1.000 1.000 1.000 1.000 
i.23 0.872 0.726 1.176 1.027 1.439 1.335 1.917 1.942 - - 0.778 0.647 0.933 0.814 0.991 0.919 0.988 1.001 - - 

0:s 0.625 0.906 1.212 1.839 - 0.558 0.719 0.835 0.948 - 
0.5 0.558 0.821 l.il3 1.746 3.092 0.498 0.651 0.767 0.900 0.979 
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/ 
c/h=O.O 

Fig. 8. Interference effect of an infinite row of circumferential crack; Kr = F& G. Y = 0.3 

6. CONCLUSION 

In this paper, the crack problems of a cylindrical bar having a circumferential crack and a 
cylindrical bar having an infinite row of circumferential cracks under tension are analyzed by the 
body force method. On the basis of the numerical results which have been presented, the following 
conclusions can be made. 

(1) The stress intensity factors of a single circumferential crack obtained by the present analysis 
are in good agreement with the results of Keer et al [3] and the results of Atsumi-Shindo [4], 
especially for the cases of shallow crack. As the crack becomes very deep, the present results 
approach the exact value of a deep circumferential crack. An approximate formula by 
Benthem-Koiter [2] has a non-conservative error about 3%. 

(2) As the crack becomes very shallow, the stress intensity factor of an infinite row of 
circumferential cracks approaches the value corresponding to that of a row of edge cracks in a 
semi-infinite plate under tension. As the crack becomes very deep, it approaches the values 
corresponding to that of a single deep circumferential crack. 
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