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Abstract-The stress concentration of a cylindrical bar with a V-shaped circumferential groove 
is analyzed by the body force method. The stress field due to a ring force in an intinite body 
is used to solve this problem. The solution is obtained by superposing the stress fields of ring 
forces in order to satisfy the given boundary conditions. The present results for semi-circular 
notches are in close agreement with Hasegawa’s results. As a result of the systematic calculation 
of a 60” V-shaped notch, it is found that the stress concentration factors obtained by Neuber’s 
trigonometric rule used currently have non-conservative errors of about 10% for a wide range 
of notch depths. The stress concentration factors are illustrated in charts so they can be used 
easily in design or research. 

P 

NOTATION 

root radius of notch 
depth of notch 
flank angle of notch 
cylindrical diameter 
diameter of minimum section 
Poisson’s ratio 
cylindrical coordinates of a point in question 
cylindrical coordinates of a point where a point force acts 
magnitude of a point force 
magnitude of a ring force (force per unit length) 
density of body force (force per unit area) 
stresses due to a point force 

stresses due to a ring force 

number of the interval in question 
number of the interval where the body force is applied 
influence coefficients, which mean the stress induced at the midpoint of the ith 
interval by the unit body force acting at the jth interval 
division number for base of notch 
division number for flank of notch 
division number for cylindrical surface 
total division number (= n, + n2 + ~3) 
nominal stress for the cylindrical diameter D 
nominal stress for the minimum diameter d 
stress concentration factor based on the net section with diameter d 

1. INTRODUCTION 

THE STRESS concentration problem of a cylindrical bar with a circumferential groove (Fig. 1) 
is mainly used in practice for the design of shafts. This problem is also important for the test 
specimen used in order to investigate the fatigue strength of a metal. Therefore, many re- 
searchers have tried to obtain the stress concentration factors K, of this problem over a long 
period. However, most of the research on this problem has treated only a few notch sizes by 
experiment or calculation; thus there are few papers in which the accurate stress concentration 
factors are shown under various geometrical conditions necessary for design or research. 
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Neuber proposed the so-called ‘Neuber’s trigonometric formula’, which gives approximate 
values of K, (see Ref. [l] published in 1937 (1st edn.) and 1958 (2nd edn.)). Neuber’s method 
makes use of the exact values of the deep hyperbolic groove (Krh) and the shallow elliptical 
notch (Kre) in an infinitely large cylinder and gives the approximate values of K, for cylinders 
having finite diameter and finite notch depth by using the following ingenious relation 

(Kte - l)(K,t, - 1) 

Kf = q/((K,, - 1)’ + (Ktt, - 1)2) + ’ 

where K,, and Krh are expressed as follows. 

(1) In the torsion problem 

K,, = 1 + 
Jo 

4 

3 (1 + & + l])* 

K*h = 4 (1 + 2 J[$ + I]) * 

(2) In the tension problem 

(1) 

&, = ;{$ j/($ + 1) + (0.5 + Y); + (1 + v) (j/[$ + l] + 1)) } (3) 

N=d+2v 
2P JC ) 

d+1 +2. 
2P 

(3) In the bending problem 

- 

Since it is difficult to analyze the stress concentration for an actual notch shape, Neuber’s rule 
has been used for more than 40 years. The stress concentration charts by Peterson [2] and 
Nisida [3], which were made on the basis of Neuber’s values, have also been used. It is supposed 
that the error in Neuber’s values of Kt is not so large; however, the accuracy of Neuber’s 
formula has not been discussed so much. 

Rushton [4] has pointed out that Neuber’s value for the notch of small radius can be seriously 
low using the finite-difference method (FDM) in the torsion problem. Kikukawa and Sato [5, 61 
have found that one of the basic assumptions in Neuber’s eqn (l), which states that the value 
of K, becomes larger as the notch becomes deeper, is not correct as a result of the precise 
strain gauge measurement in tension and bending problems. By the recent analysis of the finite- 
element method (FEM) [7, 81, it has also been suggested that Neuber’s rule may have a non- 
conservative error. Accurate stress concentration factors and accurate stress distributions are 
required for the quantitative estimation of fatigue notch effects. 

In this paper, the stress concentration problems of a cylindrical bar with a V-shaped cir- 
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Fig. 1. A cylindrical bar with a V-shaped circumferential groove. 

cumferential groove under torsion, tension or bending are analyzed by the body force method 
[9, 101, The stress concentration factors Kt are systematically calculated and the accuracy of 
Neuber’s value is discussed. Moreover, exact tables and charts of K, necessary in design or 
research are shown. The present method of analysis shown below can also be used to analyze 
the other axisymmetric body under torsion, tension or bending. 

2. METHOD OF ANALYSIS 

The body force method was originally proposed by Nisitani 191 as a new method for solving 
the two-dimensional stress problems using a digital computer. This method was applied to 
various two-dimensional notch and crack problems [ 10, 1 l] in the early stages. Recently, var- 
ious important three-dimensional crack problems have also been solved by this method [12- 
141. The basic concept of the body force method is analogous to the boundary element method 
(Green’s function method). However, the body force method has unique ideas in order to obtain 
accurate solutions; e.g. the idea of ‘the basic density function of the body force’ 19, lo]. 

In solving the two-dimensional problems, the body force method uses the stress field (Green’s 
function) due to a point force in an infinite plate as a fundamental solution. The given boundary 
conditions are satisfied by applying the body force (continuously embedded point forces) along 
the imaginary boundaries in an infinite plate and adjusting its density so as to satisfy the specified 
conditions. The imaginary boundary stands for the prospective boundary for the notch or crack 
which should be free from stresses. In a simple problem, the density of the body force which 
satisfies the boundary conditions completely can be obtained in closed form. However, in a 
general problem, the density of the body force has to be determined by a numerical procedure. 
Namely, the imaginary boundaries are divided into n, intervals and the density values are 
determined from the boundary conditions at the midpoint of each interval. Consequently, the 
method of analysis in the two-dimensional problem is summarized as follows: 

(A) As the fundamental solution, the stress field due to a point force applied at a point in 
an infinite plate is used. 

(B) The prospective boundaries are divided into finite straight or curved intervals and the 
given boundary conditions are satisfied at the midpoints of the intervals. 

2.1 Fandamenta~ safatians for torsion or tension problems 
In the problems of an axisymmetric body under torsion or tension, not only the shape of 

the body but also the stress distribution is symmetry about the axis. Therefore, in these prob- 
lems, the stress field due to continuously distributed point forces along a ring around the axis 
(A)* can be used as a fundamental solution instead of (A). It is easily understood that the ring 
forces acting in the radial and axial directions (Figs. 2(a) and (b)) give the fundament~ solutions 
for tension problems and the ring force acting in the circumferential direction (Fig. 2(c)) gives 
the fundament~ solution for torsion problems. The procedure (B) in a two-dimensional case 
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Fig. 2. Fundamental solutions for tension and torsion problems. 

can be used for this case, because if the boundary conditions are satisfied at one point (the 
point marked 0 in Fig. 2(d)) of the circumference, the boundary conditions at all points of the 
circumference are satisfied naturally from axial symmetry. Therefore, the extension from two- 
dimensional problems to axisymmetric problems is established by changing (A), (B) into the 
following two terms (A)*, (B)*. 

(A)* As the fundamental solution, the stress field due to point forces distributed continuously 
along a ring around the axis is used. 

(B)* The given boundary conditions are satisfied at each representative point of the cir- 
cumferences. 

On the other hand, in the problem of an axisymmetric body under bending, it must be 
considered that the stress distribution induced by the bending moment is not axisymmetric; 
therefore, the analysis of bending problems is more difficult than torsion and tension problems. 
However, if the appropriate fundamental solutions are used, the calculation procedure becomes 
almost similar to that adopted previously. 

2.2 Fundamental solutions for bending problems 
Imagine an infinite body subjected to the bending moment at infinity. If we take the z-axis 

as the axis of symmetry and apply the bending moment around the radial axis of 0 = 1~12 as 
shown in Figs. 3 and 4, the stresses far from the origin are expressed as 

uz = uo L cos 8, u, = ue = Tn. = Trfj = Tez = 0 
a 

where u. is a constant corresponding to the magnitude of the bending stress and a is a rep- 

Fig. 3. A ring force with intensity cos 4 in the z-direction. 
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Fig. 4. A ring force with intensity cos I&I in the r-direction. 

resentative dimension. Since the stress a, at infinity is expressed in the form of multiples of 
cos 8, the stress u, induced by point forces distributed in the t-direction (the ring force; a 
fundamental solution) should also vary in the type of cos 0 on the circumference of radius I 
and height z. Therefore, we suppose the intensities of the two ring forces in the form of multiples 
of cos 8; one is in the z-direction (Fig, 3) and the other is in the r-direction (Fig. 4). In these 
figures, (p, 4, 5) is used as the cylindrical coordinates of a point where a point force acts. The 
ring force with the intensity of cos 9 in the radial direction is also necessary as the fundamental 
solution, because the stresses in the r-direction induced by the ring force acting in the z-direction 
must be canceled. Thus, as will be shown in Section 3, we can find that the ring forces in both 
directions induce the stresses at (r, 8, z) as 

rr = fdr, P, z 5) cos 0, fle = f2h P, Z, i) cos 8, @, = fdr, p1 z, 5) ax 8 6) 
7, = f&, P, I, 5) cos 0, ~~8 = of&, P, 2, 5) sin 0, 70~ = f&, p, z, 5) sin 0. 

Moreover, we can see that the normal stress on and the shearing stress 7nt at a point on an 
arbitrary curved surface imagined in the infinite body, also are expressed in the form of multiples 
of cos 8 along the circumference 

un = uTr cos* $t + CT, sin* *r + 27, sin $1 cos Jlt 

= (fi cos* Jlr + f3 sin* *, + 2.f4 sin *r cos Jlt) cos @ 

~ 

(7) 
?-,, = (--CT, + oz) sin *i cos $1 + 7,(cos* *1 - sin* Jt,) 

= {(-fi + f3) sin *i cos *I + f4(cos2 *I - sin* $,)) cos 8 

where $1 is the angle between the r-axis and the normal direction of the surface. Therefore, if 
the conditions Us = 7,r = 0 are satisfied at Y = r and 8 = 0, the same boundary conditions 
are automatically satisfied at all points of 6 f 0 on the same radius Y = r. Conveying the 
condition cr, and I,,$, it seems that the combinations of these two kinds of ring forces applied 
in the z- and r-direction are sufficient for the satisfaction of the boundary conditions. However, 
actually the combinations of ring forces shown in Figs. 3 and 4 are insufficient, because their 
application induces the shearing stress ‘Tag (i.e. 7re and QJ at the boundary which must become 
free from stresses. The shearing stress 7118 is expressed as 

lne = TUB cos *l -t 7ez sin *i (8) 
= (fj cos *i + f6 sin $1) sin 0. 

As seen from eqn (S), the shearing stress T,,~ is expressed in the form of multiples of sin 8 on 
the radius r = r. Therefore, it becomes necessary to apply the tangential ring force that changes 
in the form of multiples of sin 0 on the radius r = p as shown in Fig, 5. The application of the 
ring force shown in Fig. 5 induces the stresses u,, uZ, T,, that should have the form of eqn (6) 
again in order to satisfy the boundary conditions. As will be shown in Section 3 in detail, it is 
confirmed that the application of the ring forces shown in Fig. 5 fortunately induces the stress 
field expressed in the form of eqn (6). 
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Fig. 5. A ring force with intensity sin Q, in the &direction. 

The above discussion leads us to the conclusion that three types of ring forces are necessary 
and sufficient for the satisfaction of the boundary conditions of the bending problems of an 
axisymmet~c body 1211. In this way, the c~culation procedure similar to the torsion or tension 
problem can be used in the bending problem of a cylindrical bar. 

3. FUNDAMENTAL SOLUTIONS 

When a point force P,, Pe, P, acts at a point (p, 4, 5) in an intinite body, the stresses at (r, 
8, z are given by 

& = &[(I - 2v)R -3[ - r cos (cp - 0) + ~(2 cos2 (41 - e) - l)] 

- 3R-5(r cos (cp - 0) - p}{r - p cos (cp - e)}‘] 

& = &[(I - 2~)R-~[r cos (9 - 0) - ~(2 cos2 (cp - 8) - 111 

- 3 R-5(-r cos (cp - 0) + p}p* sin* (q - 011 

c$ = &[(I - ~u)R-~ - 3(2 - @VFl(r cos (ip - 0) - pf 

<; = B,(z - <>c-(1 - 2v)R-3 cos (cp - 0) 

- 3 R+{r cos (cp - 9) - p}(r - p COS (9 - W-t] 

~$6 = &[(I - 2v)Rm3 sin (cp - 0){2p cos (cp - 0) - r} 

+ 3R-‘p sin (cp - 0){r cos (cp - 8) - p}k - P COS (cp 

4 = &(z - c)[ -(I - 2v)RP3 sin (cp - 0) 

+ 3R-‘{r cos (cp - 0) - p}p sin (9 - B)] 

B&(1 - 2v)Re3 sin (q - @)(r - 2p cos (tp - 8>> 

+ 3R-‘r sin (cp - O){r - p cos (cp - O)}*l 

I&[(1 - 2u)RW3 sin (cp - 8>{ --Y + 2p CDS (9 - 0)) 

+ 3Rm5rp2 sin3 (q - i3)l 

&,{(I - 2v)Rm3 - 3(z - ()2R-5)(-r sin (up - O)} 

&(z - <)[(I - 2v)Re3 sin (cp - 0) 

+ 3R-‘r sin (cp - 0O{r - p cos (cp - 8))f 

&l-(1 - 2v)R-3[r cos (tp - 0) - ~(2 cos2 (CC - e) - 

- 3 R-‘rp sin’ (q - 6)(r - P cos (4, - @))I 

B& - <){ - (1 - 2v)R- 3 cos (cp - 0) 

- 3 R-“rp sin’ (cp - 0>} 
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o+? = B,fz - C)t(l - ZV)R-~ - 3R-‘{r - p cos (cp - I#*] 

ti = B,(z - c)[(l - 2u)R-’ - 3Rp5p2 sin2 (cp - 9)] 

o$ = B&z - <)[-(I - ~v)R-~ - 3R-5(z - <)‘I 

e = B,{-(1 - ~u)R-~ - 3(z - {)‘R-‘}(r - p cos (cp - 8)) 

4f = B,l3(z - OR-“p sin (cp - @>{r - p cos (cp - O)}] 

4: = B,{--(1 - 2v)Rw3 - 3(z - lJ2R-5){ -p sin (cp - 0)) 

where 

Pr pi-3 pz 
& = 8741 - v) ’ Be = 8n(l - V) ’ Bz = 87~(1 - V) 

R* = ? + p2 + (z - iJ2 - 2rp cos (cp - e). 
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cw 

In eqns (9a) and (YC), tne stresses u,, eB, uz, 7, due to P, and PYr are the even functions of 
$‘(= d, - 0), while the stresses TV@, 
(9b), the stresses ir,, a@, (T?, 

76z are the odd functions of cf>‘. On the contrary, in eqn 
7rz due to Pe are the odd functians of +‘, while the stresses 7r0t 

~~~ are the even functions of +‘- These properties of eqn (9) are important in discussing the 
properties of the stress fields due to ring forces shown in Figs. 2-5. 

The fundamental solutions of ring forces shown in Fig. 2 are expressed as follows using 

eqn (9) 

All of the int~grands in eqn (10) are periodic functions of +’ (period f 271). Therefore, the 
integrals in eqn (IO) are expressed as 

I 
2n-f3 

,,*” f(cp - 0) dv = j-e f(d G 

?r f(cp’) d$ =: (f(cp’): even function of 4’) 
(f(cp’): odd function of +‘). 

On the ather hand, the fundamental solutions of ring forces shown in Figs. 3-5 are expressed 
as 

The integrals in eqn (12) are expressed as in the form of eqn (13) 
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(9 / 
,:” f(cp - e) cos cp dq = _/-:m f(c~‘) cos (cp’ + 0) dq’ 

= I yV f(cp’)(cos cp’ cos 8 - sin cp’ sin 8) dq’ 

f2 m f(cp’) cos cp’ dq’ . cos 0 (f(cp’): even function of $‘) 

= 

i 

I 0 

- 2 

/ 
51 f(cp') sin cp’ dg’ * sin 0 (f(cp’): odd function of +‘) 

0 

(ii) 12n f(cp - 0) sin cp dq = f(cp’) sin (cp’ + 0) dq’ 

= I y_ f(cp’)(sin cp’ cos 0 + cos cp’ sin 0) dq’ 

2 
I 

n f(cp’) cos cp’ dq’ - sin 0 (f(cp’): even function of 4’) 
0 

= 

2 71 f(cp’) sin cp’ dq’ . cos 8 (f(cp’): odd function of 4’). 

(13) 

As shown in eqn. (13), it is confirmed that the stress fields of ring forces shown in Figs. 3-5 
are expressed as in the form of eqn (6). 

The integration with respect to +’ between +’ = 0 and IT (eqns (11) and (13) is expressed 
in terms of the complete elliptic integrals of the first and second kind. In the following equations, 
+’ (= 4 - 0) is replaced by a new variable 4. 

(1) Fundamental solutions in torsion problems: 

(d-H* = &iJ* = C$+ = fl>* = 0). : 

(2) Fundamental solutions in tension problems: 

Tfi>* i- = s (- pzo - rz, + 2pZ2) 
m 

Fe * Fop _ 
781 = - zz, 

29W-& 

o_?P = Frp r 
47r(l - V,& 

[(I - 2u)( -pZ0 - rZl + 2~12) 

+ -$ {r*p.Zo - r(r* + 2p2).Z1 + ~(23 + p2).Z2 
m 

($* = Frp 
41r(l - u)& 

[(I - ~v)(PZO + rll - 2~12) 

+ $ (PJO - rJ1 - pJ2 + rJ3)l 

g.3 = Frp 

47r(l - u)r1, 
[(l - 2u)( -pZo + rl,) + 7 (p.Zo 

m 

F,* _ FOP 
Trz - 41~(1 - u)& 

[(I - 2vE(-I,) 

+ s {rpJo - (r* + p*).Z, + rp.Z2}] 
m 

(T$g* = I$:* = 0) 

- rp2J3H 

- rJl)l 

(14) 

> (154 
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OF=* = 4n(lF;Py)r” 
[ 

(1 - 2u)z&) f 7 (- ?Jo + 2rpJ, - pQ*) 
111 m I 

&* = Fzp 
4T(f - u>& [ 

(I - Zv)z& + y (--Jo + &) 
ST? I 

($3 = FzP 
4lT(l - v)& [ 

(1 - 2vE(-IO) + $ (-Jo) 
I 

$P = F=p 
4n(l - v>& E 

(1 - 2v)(-r&) + plz) -I- F(-rJ, + pJ1) 
m 1 

(7ti&* = &* = 0) 

751 

(15b) 

(3) Fundamental solutions in bending problems: 

cf’COSQ* = ” ‘OS @ r 
4n(l - u>& 

(1 - 2u)(- ~1% - rI2 f 2~1~) 

+ $i~PJ* - rf? + ZpW2 + p(2? -t p*).h - rp*Jd} 
m 1 

&cow* = Frp cos 6 
4n(l - v>& [ 

(1 - 2u)(plj + rI2 - 2~1~) 

+ 38 
x WI - rJ2 - Pr3 -t rJ4) 

I 

~C"SQ* = F,p cos 8 
z 

47r(l - It>& [ 
(1 - 2v)(- ~1, + r&) + 5 (fd, - r&l 

m I 

@CO, Q* = Frp cos @ r?. 
4~r(I - u)r& [ 

(I - 2$+-I*) 

+ 7 (rpJ* - (? f p2)Jz 4 rpJ3) 
m I 

r”*yx qp* = FPp sin 0 
4lT(1 - v)r’, [ 

(I - 2v)frlo - 2pZj - rfi + 2~1~) 

+ $! kpJ0 - (3 + p2)J1 4 (9 f p2>J3 - vJ41 
m I 

,+COSQ* = F,p sin 8 
82 

4n(l - v>& I 
(1 - 2VE(lO - I*) 

+ 3ZP 
p WO - rJ1 - pJ2 f rJd 

m 1 
$%sin9* = Fep ‘OS * r 

4?r(l - u)r”, I 
(1 - 2v)(rZ0 - 2pll - r& + 2p&) 

+ $ {rzJcl - ZrpJl - (3 - p*Vz -+ 2rpJs - p2&j 
m I 

@sinew* = FOP cos 8 
47r(l - v)r”, 

(1 
- 2v)(- rZ0 + 2~1~ i- r& - 2~1~) 

(16a) 
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+ ?p (#-Jo - pJ1 - rJ2 f d3) 
m I 

&%Si"Qp* = FOp sin 0 

4n(l - v)r?n c 
(1 - 2v)(-- PZl - rzz f 2p&) 

f 3f.P 
rf (--rJs -t pJz + rJ3 - PJ~) 

I 

52) i 
1 i (16b) 

FOp sin ’ (1 - 2v)z(-&) + F (-Jj f I> 

I 
@dflQP* = 

4n(I - v)& m 
J i 

where 

r, = l&3-p), t = z - 5 

I*= * _I- 0 (e 

10 

12 
2e2 - I 

= - 
e* - f 

Kl 2e& 

I, = 
e(8e2 - 5) 
3(e2 - 1) KI 

8e2 -I- 1 
- y 3 K2 

.T* = 4e x- t K2 
3(e2 - 1J2 ’ 3(e2 - I) 

J, 
e2 + 3 

= 
3(e2 - 1)’ 

Kl 
e 

- x2 
3(eZ - 1) 
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- J 2 _ 2e(e* 3) K ’ 2e2 - 3 = 
3(e2 - l)* 

+ 
3(e2 1) 

K2 
- 

J3 = 
-8e4+15e2-3K +e(Se*-9) 

3(e* - l)* ’ 3(e* - 1) 
K2 

J 4 4e( -4e4 + 7e2 - = 

3(e2 - l)* 

2) K 1 16e4 - 16e2 - 1 + 

3(e* - 1) 
K2 

N2 
K, = (e - cos q)“* dq = k E(k) 

KZ = - “* dq = d2kK(k). 

The complete elliptic integrals 

E(k) = I’* d( 1 - k2 sin* A) dh 

have the argument 

) e = 1 + (1. - PI2 + k - O2 

2rp ’ 

153 

(17) 

4. DEFINITION OF THE BODY FORCE DENSITY 

By using the fundamental solutions shown in section 3, the present analysis method is reduced 
to determining the body force densities distributed along the prospective boundary of a notch 
or a cylindrical surface imagined in an infinite body. The densities p,., pe, pZ of the body force 
distributed in the r-, Cl-, z-directions are defined in eqns (18)-(20). 

(1) In the torsion problem: 
(i) along the circumferential groove 

d dP, -. 
PO = & p dp dq ’ 

(ii) along the cylindrical surface 

pa = p d< dq ’ 

(2) In the tension problem: 

(i) along the circumferential groove 

pr = -!!5-. dP -2. 

p dg d< ’ ” - p dp dq ’ 

(ii) along the cylindrical surface 

(184 

(18b) 

WW 

dPr -- 
‘r - p dq d< ’ 

- dPz 
” - p dp dc ’ 

(19b) 
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(3) In the bending problem: 
(i) along the circumferential groove 

(ii) along the cylindrical surface 

dP, . 
Pf cos 9 = p dq d5 , PH sin cp 

dP, 
PI cos (P = p dq di. 

(20a) 

(20bf 

In eqns (IQ-(20), dP,, dPe, dP, denote the Y-, 8-, z-components, respectively, of the body 
forces distributed along the infinitesimal area pd+ds (ds = t/((dp)* + (dQ2jj. 

The density pe in he torsion problem (eqn (18a)) is defined considering the torsional stress 
field 

(21) 

where 7. is a constant corresponding to the magnitude of the torsional stress. On the other 
hand, pt in the bending problem (eqn (20a)) is defined considering the bending stress field 

2r 
UZ = = cro - cos 0 

d 
(221 

where a5 is a constant corresponding to the magnitude of the bending stress. In the present 
analysis, the stepped distribution (constant in each interval) of the body force is substituted 
for the continuously varying distribution. In this procedure, the definition of the body force 
densities, which make the stepped distribution approximately constant at each interval, should 
be used. From this viewpoint, the definitions of eqns (18)~(20) are used in the present analysis. 

Recently, many researchers have frequently used numerical methods making use of the 
fundamental solutions similar to those of the body force method; e.g. boundary element method 
(BEM). However, in the body force method, the unique idea of the body force density enables 
us to obtain very accurate solutions. 

5. PROCEDURE FOR NUMERICAL ~LUTIONS 

Figure 6 shows imaginary boundaries where body forces are distributed. Body forces are 
applied along the part BA’B’ in addition to the part BAB’ which should become a circumferential 
groove, because it makes the shear stress at B small and consequently the boundary conditions 
can be satisfied easily. It is difficult to determine in closed form the body forte densities 
satisfying the boundary conditions completely; therefore, the imaginary boundaries aredJvided 
and the problem is solved numerically. The boundary of the base of the notch (arc AE), the 
boundary of the flank of the notch (line E), and the boundary of the cylindrical surface (line 
BC) are divided into nl , n2, n3 intervals, respectively. The boundary length in the z-direction 
O’C in Fig. 6 is determined from the condition that the calculated results virtually do not change 
by increasing its length. The minimum value of the length O’C is about two times the cylindrical 
diameter D. The densities of the body forces, which are assumed to be constant in each interval, 
are determined from the boundary condition at the midpoint of each interval. 
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Fig. 6. Imaginary boundaries where body forces are distributed. 

By using the fundamental solutions given in Section 4, the influence coeffkients @, 
c@j, afti, which mean the stresses induced at the midpoint of the ith interval by the unit body 
force acting at the jth interval can be written as eqns (23)-(25). 

(1) In the torsion problem 

(-Jpej = I .i +‘*IF~=I d5 

(2) In the tension problem 

(3) In the bending problem 

(j = 1 - n1 + n2) 

(j = n1 + n2 + 1 - r21 + n2 + n3). j 

(j = 1 - n1 + 02) 

(j = n1 + n2 + 1 

(j = 1 

(j = nl 

nl t n2 + n3). 

+ n2 + l- n1 + n2 + 123) 

(23) 

(24) 

. (25) 
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where Jj stands for the integration ofjth interval. The integration in eqns (23)-(25) is performed 
numerically using Gauss’s formula. In the case of i = j, eqns (23)-(25) become singular and 
therefore the influence of the body forces must be considered specially [IO]. The boundary 
conditions (B.C.) at the midpoint of the ith interval are expressed by using the influence coef- 
ficients as follows. 

(1) In the torsion problem: 

(i) B.C. of a circumferential groove (i = 1 - nl + n2) 

Tgz = 7. 2 : torsional stress field due to external torque 

(ii) B.C. of a cylindrical surface (i = n1 + n2 + 1 - nl + n2 + nJ) 

n,+n2+n3 
(26) 

j=l 

(2) In the tension problem: 
(i) B.C. of a circumferential groove (i = I - nl + n2) 

(p,jUz + pzjU:y) + UT COs2 *i = O 

+ p,jT~~) -I- u,” Sin $i COS $i = 0 

(UT: tensile stress field due to external load); > 

(ii) B.C. of a cylindrical surface (i = nl + n2 + 1 - ni + n2 + n3) 

n, tnztns 
C (Prjd? + PzjWLi) = 0 
j=l 

(27) 

(3) In the bending problem: 
(i) B.C. of a circumferential groove (i = 1 - n, + n2) 

n, +Iz2+n3 
jTi (PrjUl + fh3jU2 + p,jU$p) + U09COS2*i = 0 

n1+n2+n3 
2 (UrjT% + PejTyd f pejT?di) = 0 
.j= 1 

nl+nz+ng 
x 
j=l 

(prjT% i- PejT% + f&T%) i- (70 2 SiIl $; COS $i = 0 

uz r = u. % : bending stress field due to external moment 
> 

; 
> 

(ii) B.C. of a cylindrical surface (i = nl + n2 + 1 - nl + n2 + n3) 

n, +nz+m 
dz, (prjd: + pejU2' + pzjU;Pii) = 0 

nl +,*z +,I3 
x (Pr,j'C% + fhjT%h + pz,j'C&) = 0 
,j= I 

n, +NZ+lll 

2 (p,-,jTFGj f p~iTp:;U; + p-,jTlli:) = 0 
/ 

(28) 
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where ri is the r-coordinate at the midpoint of the ith interval and Jli is the angle between the 
r-axis and the normal direction of the surface at the same point. 

The body force densities are determined by solving n,, 2n,, 3n, linear simultaneous equations 
in the torsion, tension and bending problem, respectively (n, = rzl -i- n2 + ns). Once the body 
force densities are dete~i~ed, the stresses at an arbitrary point can be easily c~cuIated by 
using the body force densities and the infhrence coefficients. 

Since the error due to the finiteness of the division number n, is nearly propo~~ona~ to Iliz, 
[9, 101, the value of the stress concentration factor corresponding to PZ~ -+ = is obtained by 
ext~poiation of the two values of kr, co~esponding to the two values of n,. Poisson’s ratio is 
assumed to be 0.3. 

6. RESULTS AND ~I§~U~SI~N 

In the following discussion, we use the stress concentration factors (SCFs) based on the net 
cross-sectional area. They are expressed as follows. 

(1) In the torsion problem: 

where T is the magnitude of external torque, 
(2) In the tension problem: 

where P is the magnitude of external load, 
(3) In the bending problem: 

(30) 

(31) 

where M is the ma~itude of external moment, Here crmaX (or rmax) is the m~imum stress at 
the root of a notch and cnet (or I& is the nominal stress for the minimum diameter d, 

6.1 SCF of a semicircular notch 
There are many reports concerning the problem of a semicircular notch. In particular, Has- 

egawa has recently obtained accurate solutions in the torsion and tension problems [15, 161. 
Therefore, by compa~ng them with the present results, the accuracy of the present analysis 
can be estimated. 

In Table 1, SCFs of a semicircular notch under torsion, tension and binding are shown. The 
results obtained by Hasegawa [lS, 161 are in close agreement with the present results. The 
results in Table I are plotted in Figs. 7-9. 

In Figs. 7-9, the ordinate represents the vatue of SCFs, and the abscissa represents the 

2a/CI Tnr+ion 1 Tension I Bendina 
I 

_ _ _ 
/ 1 

1 I 1.9087 / 2.976 12.877 
1.8682 
1.7945(1.7946) 
1.6438(1.6439) 
1.4353(1.4354) 
1.3011~~.3~12~ 

2.790 
2.632 
2.307 
1.558 
1.575 
1.390 
1.269 

f 1 : Hasegawa[l5,16] 

T&k 1. SCFs of a semicircuiaf notch 
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- Present analysis 

---- Neuber 

0.4 
Zp/D 

o.6 0.8 1.0 

Fig. 7. SCF of a semicircular notch under torsion. 

- Present analysis 

- --- Neuber 

Fig. 8. SCF of a semicircular notch under tension. 

Fig. 9. SCF of a semicircular notch under bending. 
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-- 
0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

- 

2t/0 

0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

,435 1.435 1.40 1.213 1.221 1.20 1.118 1.125 1.11 
,415 1.408 1.37 1.197 1.200 1.18 1.106 1.110 1.10 
,375 1.365 1.34 1.174 1.175 1.16 1.093 1.095 1.09 
,326 1.316 1.30 1.148 1.148 1.14 1.078 1.079 1.08 
.272 1.264 1.25 1.121 1.121 1.12 1.063 1.064 1.06 
.212 1.207 1.20 1.093 1.092 1.09 1.048 1.048 1.05 
,148 1.146 1.14 1.063 i.063 1.06 1.033 1.033 1.03 
,078 1.078 1.08 1.032 1.032 1.03 1.017 1.017 1.02 

Table 2. SCFs of a 60” V-shaped notch under torsion 

Kv: SCF of a 60” V-shaped notch 
K,E: SCF of a semielliptical notch 
K,N: SCF of Neuber’s rule I 

2p/D=0.05 Zp/D=O.l 

KtV KtE KtN KtV KtE KtN 

2.193 2.221 2.19 1.816 1.847 1.83 
2.824 2.832 2.74 2.232 2.257 2.20 

4.181 4.122 3.87 3.387 3.359 3.18 2.596 2.601 2.48 
0.2 4.790 4.678 4.32 3.827 3.755 3.49 2.865 2.836 
0.3 4.883 4.741 4.38 3.877 3.781 3.51 2.871 2.824 
0.4 4.732 4.571 4.26 3.742 3.633 3.39 2.754 2.697 
0.5 4.423 4.265 4.02 3.495 3.384 3.20 2.566 2.506 
0.6 4.013 3.865 3.70 3.171 3.065 2.94 2.330 2.274 
0.7 3.516 3.381 3.28 2.777 2.689 2.61 2.055 2.010 

2.64 
2.63 
2.53 
2.38 
2.19 
1.97 

2.910 2.802 2.75 2.314 2 247 2 21 1 742 1 718 1.70 
00:; I2.139j2.07712.06 (1.73911:71211:71 I,:387 11:38611.39 

2t/D 

0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

T 
!tN- 
1.35 
1.46 
1.53 
1.53 
1.50 
1.45 
1.38 
1.32 
1.24 
1.17 
1.09 

Zp/D=l.( I 

1.35611.382 
1.356 1.374 
1.313 1.322 
1.260 1.263 
1.209 1.208 
1.16411.162 
1.123 1.122 -L 1.084 1.083 
1.043 1.044 

LL?l-- 
1.23 
1.29 
1.31 
1.30 
1.27 
1.24 
1.21 
1.17 
1.13 
1.09 
1.04 

Table 3. SCFs of a 60” V-shaped notch under tension 

KN: SCF of a 60” V-shaped notch 
KE: SCF of a semielliptical notch 
K ,N: SCF of Neuber’s rule 1 

relative notch radius 2plD. Neuber’s corresponding values are designated by the dashed line. 
In the tension and bending problem, results of two-dimensional strip problems obtained by 
Ling 117, 181 and Isida 119, 201 are also designated by the dash-dotted line. As 2clD + 0, the 
results of the present analysis approach the corresponding two-dimensional values (Kt = 3.065 
or 2), and as 2clD + 1, they approach the value K, = 1. 

6.2 SCF of a 60” V-shaped notch 
Tables 2-4 show SCFs of a 60” V-shaped notch (K,v) under torsion, tension and bending. 

In the case of a shallow notch (t 5 p/2), K,v means SCF of a circular-arc notch. The values 



760 H. NISITANI and N. NODA 

2t/0 

0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

zt/D 
0.02 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.502 1.532 
1.699 1.728 
1.827 1.845 
1.057 1.858 
1.794 1.786 
1.703 1.695 
1.603 1.596 
1.498 1.494 
1.388 1.388 
1.270 1.272 
1.143 1.14 

.3.fL 
1.53 
1.69 
1.77 
1.77 
1.12 
1.65 
1.57 
1.48 

1.26 
1.14 

Ltri 
2.13 
2.56 
2.83 
2.95 
2.88 
2.75 
2.58 
2.37 
2.12 
1.84 
1.48 

!tL 
1.31 
1.37 
1.40 
1.38 
1.35 
1.31 
1.26 
1.21 
1.16 
1.11 
1.06 

2o/D=l.C 

1.223 1.232 
1.193 1.198 
1.165 1.167 
1.139 1.139 
1.112 1.112 
1.085 1.085 
1.058 1.058 
1.028 1.028 

Jm- 
1.78 
2.05 
2.21 
2.25 
2.19 
2.09 
1.97 
1.83 
1.67 
1.48 
1.26 

KtN 
1.19 
1.22 
1.22 
1.21 
1.19 
1.16 
1.14 
1.11 
1.09 
1.06 
1.03 

Table 4. SCFs of a 60” V-shaped notch under bending 

K,": SCF of a 60” V-shaped notch 
KrE: SCF of a semielliptical notch 
KrN: SCF of Neuber’s rule 1 

Fig. 10. SCF of a 60” V-shaped notch under torsion 
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Fig. 1 t(a) and (b). SCF of a 60” V-shaped notch under torsior 
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Fig. 12. SCF of a 60” V-shaped notch under tension. 

of a semielliptical notch (K,&, which are similarly calculated by the present method, and the 
Neuber’s values (KIN, eqn (1)) are also shown to be compared with the values of a 60” V- 
shaped notch, The results in Tables 2-4 are plotted in Figs. lo-15 so as to be useful for further 
design or research. 

In Figs. 10, 12 and 14, the ordinate represents the values of SCFs, and the abscissa represents 
the relative notch depth 2rlD. Comparisons between the values of a 60” V-shaped notch and 
the semielliptical notch indicate that the difference between them (K,v > KG) becomes larger 
as the notch radius becomes smaller. The reason is that the difference between the 60” V-shape 
and the semiellipse becomes larger as the notch radius becomes smaller. 

By systematic calculation shown in Tables 2-4, we conclude that Neuber’s rule feqn (1)) 
underestimates SCFs of the 60’ V-shaped notch by about 10% for a wide range of notch depths 
in torsion, tension and bending problems. 

The charts of SCF are also shown in different ways from Figs. 10, 12 and 14. In Figs. II, 
13 and 15, the abscissa represents the relative notch radius 2plD. Using these charts (Figs. lo- 
15), SW &V not calculated in this paper will be estimated. 

7. CONCLUSION 

Since there were no exact solutions for the problem of a cylindrical bar with a circumferential 
groove under torsion, tension and bending, the approximate stress concentration factors by 
Neuber’s rule have been used for a long time. It has been supposed that the error of Neuber’s 
values is not so large; however, there have been few discussions about the accuracy. In the 
present study, the problem is analyzed by the body force method. The conclusions are sum- 
marized as follows: 

(I) Stress concentration factors of a cylindrical bar with a 60” V-shaped circumferential 
groove under torsion, tension and bending are SystematicalIy calculated for various geometrical 
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f 

5 

2 
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Fig. 13(a) and (b). SCF of a 60” V-shaped notch under tension. 
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Fig. 14. SCF of a 60” V-shaped notch under bending. 

Fig. 15(a). SCF of a 60” V-shaped notch under bending. 
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1 

Fig. 15. (b). SCF of a 60” V-shaped notch under bending, cont. 

conditions. It is found that Neuber’s rule has a non-conservative error of about 10% for a wide 
range of notch depths in the torsion, tension and bending problems. 

(2) The stress concentration factors are illustrated in charts (Figs. 10-15) so as to be used 
easily in design or research. 

(3) The present results of a semicircular notch in torsion and tension problems are in close 
agreement with Hasegawa’s solutions (Table 1). 

(4) The fundamental solutions and the procedure for numerical solutions given in the present 
paper are utilized for the analysis of the other probIems of an axisymmetric body under torsion, 
tension or bending. 
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