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Abatraet-The gencrrd theory is established for the application of the hody force method to the 
stress concentration analysis of an axi-symmetrical body under bending. Determination of fun- 
damental solutions in hending are not self-evident as in tension or torsion problems. However, 
comparing the boundary conditions to he satisfied along circumferential position of imaginary 
boundary and stress fields due to the hody force distributed trigonometrically along a ring around 
the axis, it is found that three kinds of fundamental solutions am necessary and sufftcient. Thus, 
the axi-symmetrical problem could he treated in the similar manner as two-dimensional 
problems: 

For example, problems of aipberoidal cavity and a troidal cavity in an infinite hody under 
hending are soIved numericaliy. The error in the former pro&m is less tban 0.07%. Tbe results 
of the latter probkm agree with tbe exact sdution in the two limiting cases; a deep hyperbolic 
notch and two Dimensions efiiptic hde. 

I. INTKODUCTION 

The stress analysis of an axi-symmetric body under bending is in general more di#.icult 
than tension and torsion. The recent development of the finite element method (FEM) 
has enabled us to obtain the approximate solution for almost all etasticity problems. 
However, actually FEM is not suitabie for systematic calculation of the accurate stress 
concentration factors for various combinations of shapes and dimensions. A typical 
problem of an axi-symmetric body under bending, is the stress concent~tion problem 
of the cylinder bar with a circ~erenti~ notch which is often used in the rotating 
bending fatigue test. Neuber[ l-31 determined approximately the stress concentration 
factors (SW) of this problem. However, the exact solutions have been expected for 
more advanced researches on fatigue and fracture strength of notched specimens[rl]. 

In the present paper, the basic theory of the body force method[5,6] is developed 
for the stress concentration analysis of an axi-symmetrical body and a couple of ex- 
amples, a spheroidal cavity and a troidal cavity, are solved. The accuracies in the case 
of spheroidal cavity and in the limiting case of a troidal cavity are discussed in com- 
parison with Neuber’s exact solutions. First of all, the theories of tension[7, 83 and 
torsion[9) analyses of an axi-symmetrical body are reviewed, and then the method of 
finding the three fundamental solutions that are necessary for the satisfaction of bound- 
ary conditions will be explained. Since such fundament~ solutions cannot be found 
self-evidently in bending problems unlike tension and torsion problems, the stress fields 
due to various fundamental solutions must be investigated carefully. However, once 
the computer program is completed using the fundamental solutions, the accurate stress 
concentration factors for the systematic change of shapes and dimensions can be easily 
obtained and the tables and charts for design can also be made. 
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2. THEORY 

The principle of the body force method is simply based on the superposition of 
the stress field (Green’s function) due to a point force applied in the infinite or semi- 
infinite body. The densities of the point forces distributed along imaginary boundaries 
are determined considering the boundary conditions. However, the method of super- 
position or the way of point force distribution must be carefully chosen considering 
the physical meaning of the stress and displacement field. The basic principle of the 
body force method is explained in Ref. [5, 61. In the present paper, the application of 
the method is explained with emphasis on the three dimensional bending analysis of 
an axially symmetric body. 

2. I. Fandamenta~ so~atio~ for the analysis of tension and torsion ~rob~em 
The body force method was o~gina~y proposed as the numerical method solving 

two-dimensional stress problem[S]. Although in principle it can be applied to arbitrary 
problems, the special improvement and extension in individual problems are necessary 
in order to obtain accurate results. In the early stage of the development, the body 
force method has been applied to various two-dimensional problems in which (i) the 
fundamental solution is a stress field due to a point force applied at a point of an infinite 
plate and (ii) the prospective boundaries are divided into finite straight or curved di- 
visions, the midpoints of which are used for the representative points where the stress 
boundary conditions are satisfied. The same method was appiied to several three- 
dimensional axi-symmetrical problems[7-91, in which (i)* the stress fie‘ld due to the 
continuously distributed point forces along a ring around the axis of symmet~ was 
used as the ~nd~ent~ solutions instead of (i). 

It is easily understood that the point force continuously distributed in radial and 
axial direction (Fig. 1 (a), (b)) along a ring around the axis of symmetry gives the 
fundamental solutions for tension problems[7, 81 and those distributed in circumfer- 
ential direction (Fig. 1 (c)) give the fundamental solutions for torsion problems[9]. The 
procedure (ii) in two-dimensional case can also be used, because if the boundary con- 
ditions is satisfied at one point (the marked point 0 in Fig. l(d)) of the circumference, 
it is naturally satisfied at all points of the circumference from axial symmetry. Then, 
the extension from plane problem to axially symm;ttric problem is established com- 
pleting two procedure, (i)* distributing point forces continuously along a ring around 
the axis of symmetry, and (ii)* satisfying the boundary conditions at all points of one 
circu~erence* 

Thus, if the satisfaction of the boundary conditions at all points of one circum- 
ference is possible in bending problems of an axially symmetric body, the calculation 
procedure becomes almost similar to those previously adopted. It depends on whether 
we can find the fundamental solutions, instead of (i) and (i)*, that satisfy the axially 
asymmetric boundary conditions at all points of one circumference. However, unlike 
plane and axially symmetric problems, such fundamental solution can not be found 
self-evidently. The properties of the fundamental solutions required in the bending 
analysis of an axially symmetric body are discussed in the next section. 

2.2. The fundamental soi~tions required in the analysis of an axi-symmetrical body 
under bending 

Imagine an infinite body subjected to bending moment at infinity. If we take z axis 
as the axis of symmetry and apply the bending moment around the radial axis of 8 = 
n/2 in Figs. 2 and 3, the stresses far from the origin are expressed in the following 
equation. 

a, = u() r cos e 
a 

0,. = u(j = Tn- = r(.tj = T()z = 0, 
(1) 

where a0 is the constant which corresponds to the magnitude of bending stress and a 
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or 
(a) 

Ol 
(b) 

r 

ik 
Fig. I. Fundamental solution for the analysis of tension ((a) and (b)) and torsion Cc) problems 
and the prospective boundaries divided into finite divisions (d). 

is the representative dimension. Since the stress uZ at infinity varies in the type of cos 
8, the stress u, induced by point forces distributed in z-direction (the ring force; a 
fundamental solution) should also vary in the type of cos 8 on the circumference of 
radius I’ and height t. Then, we suppose the intensities of two ring forces in the form 
of cos 41: one is in the z-direction (Fig. 2) and the other is in the r-direction (Fig. 3) 
that are applied on the circumference of radius t and z-coordinate 5. (1, $, 5) is used 
as the cylindrical coordinates of the points where the forces are applied. In addition 
to the ring force with intensity of cos 4 in radial direction is also necessary as the 
fundamental solution. because the stresses in the r-direction induced by the ring force 
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Fig. 2. A ring force with intensity cos d, in the z-direction. 

Fig. 3. A ring force with intensity cos 4, in the r-direction. 

in the z-direction must be cancelled. Thus, we can find that the ring force in either 
direction induces the stresses as the type of eqn (2) at (r, 0, z). (r, 9, z) is the coordinate 
where the stresses are’expected to be calculated. 

ur = ‘fdt, t, z, 5) cos 8, ue = f2@, t, z, 5) cos 8, (T, = fdr, t, z, 5) cos 0 (2) 
Trz = f&l c, z,5) cos 8, TPfl = fh, t, z, 5) sin 8, 7er = fdr, t, 2, 5) sin 8. 

Equation (2) indicates that the stresses at (r, 8, z) in the infinite body can be determined 
by multiplying those at (r, 0, z) by cos 8. And we can see that the normal stresses u,, 
and the shearing stress TV, at a point of an arbitrary curved surface imagined in the 
infinite body, also vary in the type of cos 0 along the circumference as shown in eqn 
(3). 

ma = ur cos2 *l + a, sin2 & + 27,; sin *) cos Jr3 

= (fl cos2 $1 + fj sin2 +, + 2f4 sin JII cos 31,) cost) 

Tnr = t-u, + CTJ sin Jr1 cos $1 + 7,,(cosZ Jt, - sin’ Jr,) 

= I(-ft + f3) sin 3tt cos *I + f&os2 *I - sin2 *,j> cos 8 

(3) 

where, $Q is the angle between the r-axis and the normal direction of the surface. 
Therefore, if the condition u,, = T,,, = 0 are satisfied at P = r, 8 = 0, the same boundary 
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Fig. 4. A ring force with intensity sin $ in the &direction. 

conditions are automatically satisfied at all points of 8 # 0 on the same radius r = r. 
Concerning the condition u,, and T,,,, it looks like that the combinations of these two 
kinds of ring forces applied in t and r direction are sufficient for the satisfaction of the 
boundary conditions. However, actually the combinations of ring forces of the types 
of Figs. 2 and 3 are insufficient, because the application of them induces the shearing 
stress T,~ (i.e. T,+, and Q~) at the boundary which must become the free surface. The 
shearing stress T,,~ is expressed by the following equation. 

TnfJ = ?a cos *I + 7ez sin JI, (4) 
= (f5 Cos *I + f6 sin JI,) sin 8. 

As seen from eqn (4), 711e varies in the type of sin 0 on the radius r = r. Then, it becomes 
necessary to apply the tangential ring force that changes in type of sin 4 on the radius 
r = r as shown in Fig. 4. The application of the ring force of the type of Fig. 4 newly 
induces the stresses Us, u, and 7, that should have the type of eqn (2) again in order 
to satisfy the boundary conditions. It is confirmed that the application of the ring forces 
of the type of Fig. 4 induces the stress field in the type of eqn (2). 

The above discussion leads us to the conclusion that the three types of ring forces 
in Figs. 2-4 are necessary and sufficient for the satisfaction of the boundary conditions 
of the bending problems of axially symmetric body. In this way, we can use the cal- 
culation procedure similar to tension or torsion problems. Therefore, we have only to 
notice the stresses (Us, a~, uz, 7,) at the section 8 = 0 and the stresses (TV, Tez) at the 
section 8 = n/2 in order to satisfy the boundary conditions, that is, we have only to 
treat the functions fl-f6 in eqn (2) that correspond to the amplitudes of the stresses 
along circumferences. Thus, the numerical procedure has been established as similar 
one to twoidimensional cases and the numbers of unknowns are three in one division 
of Fig. l(d). 

3. THE FUNDAMENTAL SOLUTIONS 

When a point force acts at a point (t, 4, 5) in an infinite body, the stresses at 
(r, 8, I) are given by eqn (5)[101, where (F,, Fe, F,) mean the forces and 
(&-<:, u?-$:, ti;-<:) do stresses in r, 8 and z direction. 

+= 

&= 

B,~(I - 2v)~-3p-r COS(~ - e) + f{2 CO&~ - e) - 1H 

- 3R-"{r COS(cp - e) - #r - f COS(cP - e>)'] 

B&l - ~u)Z?-~[~ COS(cF - e) - f(2 COS*(cP - e) - 1 )I 

- 3 R-5{-- COS(~~ - e) + t}? sin*(cp - e)n 
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B&l - 2 v)R-3 - 3(2 - <)R-q{r cos(q - 8) - t} 

Bdz - CA--(1 - ~v)R-~ cos(q - 0) - 3R-5{r cos(q - 8) 

x {r - t cos(cp - NH 

BI[(~ - 2 v)Rp3 sin(cp - e){zt COS(C~ - 8) - I') 

+ 3Ry5 t sin(cp - e){r COS(Q - e) - t){i+ - t COS(Q - e)}i 

B,(z - {)[-(I - ~u)R-~ sin(cp - 0) + 3R-‘{r cos(cp - 8) 

t sin(cp - 813 

B2Hl - 2 v)R-~ sin(cp - O){r - 2t cos(cp - 8)) 

+ 3 RmSr sin(cp - e){r - t cos(cp - fl))21 

- 

- 

Bz[U - 2v)Rm3 sin(cp - O){ -r + 2 t cos(cp - 0)) + 3Rd5rt’ sid(cp 

B2Kl - 2v)Re3 - 3(z - t;)‘Rm5]{ -r sin(cp - 0)) 

B2(z - W - 2v)Rm3 sin(cp - e) + 3R-%sin(cg - e){r 

B28-(1 - 2v)Rw3[r COS(C~ - e) - t(2 cos2(cp - e)- 111 

- 3 R-‘rt sin2(cp - O){r - t cos(cp - @)I 

Bz(z - 5){-(1 - ~v)R-~ cos(cp - 0) - 3Rp5rt sin2((9 - 

B3(z - &)[( 1 - 2v)R -3 - 3R-5{r - t CdS(Q - e)}2i 

B3(z - {)[( 1 - 2v)R-’ - 3R -‘t2 sin2(cp - O)] 

B3(z - c)[-(1 - ~v)R-~ - 3R-‘(2 - (,I21 

B3{-(1 - 2v)R -3 - 3(2 - &)2R -‘}{r - t cos(qY - e)) 

B3[3(z - <)R-9 sin(cp - O){r - t cos(cp - @)I 

B3{-(1 - ~v)R-~ - 3(z - <)‘R -‘}{ - t sin(cp - f3)) 

F: 
B, = 

F, Fe 
&T(l - v)’ 

B2 = 
8dl - v)’ 

B3 = 
8n( 1 - v) 

w 

(5d) 

R2 = 2 $ t2 f (I - {)2 - 2rt COS(Q - e). (52) 

- t COS(Q 

e)) 

(54 

e)i 

e)li 

(5b) 

In eqn (5), it should be noticed that the forces F,., Fe and F; are applied on the 
infmitestimal curved area td+ds (line element C in Fig. 5) in the following equation 

dF, * t cos cp dq d(, dFH r t sin Q dQ dS, dF, 3~ t cos Q dQ dt (5f) 

In eqn f5a) and eqn (5~) the stresses (a,, ae, crz, T,) due to F, and FZ are the even 
functions of Q' ( = Q - e), while the stresses (r,+,, Q;) are the odd functions of Q'. On 
the contrary, in eqn (5b) the stresses (ur, CG, u,, 7,; ) due to FH are the odd functions 
of Q’. while the stress (r,.+,, T@~) are the even functions of Q'. Taking eqn (5f) into 
consideration, the fundamental solutions (fl, I$~*, . . . , 6;‘) can be obtained inte- 
grating eqn (5a)-eqn (SC) in which F,., Fe and F, are replaced by t cos Q or t sin Q 
according to eqn (SD. If we notice the following equation, 

COS Q = COS(Q’ f e) = COS Q' COS 8 - Sin Q' Sin 8 

sin Q = Sin(Q' + 0) = Sin Q' COS 8 + COS Q' Sin 8 

(6) 

we can see the integration (Q' = 0-21~) associated with the odd function of Q' vanishes 
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and we can obtain the stress fields of the type of eqn (2). Finally, the fundamental 
solutions C--p:;* are expressed as follows. 

I 
2n 

&== of? t cos Qt dg’ cos 8, afy = 
fi I 

:* up t cos cp’ dcp’ cos e 

f.$L 
I 

?I, 
cp t cosGpp’ dq# cos 8, <;* = 

f 
2n Tg t cos i$ dq’ cos e o o 

I 

?w 
g=- 

a 
&f t sin Q’ d$ sin 8, qy = - _:” Tg f sin Q’ dtp’ sin 0 

I (7) 
(JyS 

I 
:= op t sin Q? dQ’ cos 8, up’ = &” crp t sin Q’ dq’ cos 0 

ap* = 6 t Sin Q’ dip’ COS 6, $‘+* = I:” $2 t Sin Q’ dQ’ COS 8 

A~tbough the equations for @*- $:* are not shown in eqn (7), they are expressed with 
similar formula as e-6:‘. The integration associated with Q’ between Q’ = 0 and 
Q’ = 2n are expressed with the combination of .!,-I9 which are defned in the following 
equations. The integrant 1,-Z, consist of the complete elliptic integrals of the first and 
second kind[ll, 121. In the following equations, pl'f = Q - 8) is replaced by a new 
variable cp. 

dQ = c, 
(I 4 k’2)E - 2k’*K 

k2k’* 

I, = I *= COS2 Q 

0 RjdQ = CI 
(1 + 6k’* -I- k’4)E - 4k’*(l + k’*)K 

k4k12 

(3 + 29kr2 +- 29kt4 + 3kp6)E - 2k’*(9 - 14k’* .+ 9kr4)K 
3k6kf2 

2(1 f k’%Z - k’2K 
3k14 

I6 = IO2”ydq = cz 
2(1 - klZ + k’4)E- k’2(1 + ki2)K 

3k2k’” 

‘nCdQ &=J TdQ=C2 
2(1 - 3k’* - 3kf4 + k’% - k’*( 1 - Iok’* + k’4)K 

3k4kt4 

= c:! 
31 - Sk” _ 24k’4 - 5k16 + k’8)E - k’*(l - 33k’* - 33/C4 + k’$)K 

3k6kr4 

f w 

=C:! 
2( 1 - 7k” - 58k’4 _ 5#‘6 -7k’“+k”“)E-k’2(I -@k’*- 122kt4-@k’6+k’*)K 

3k8k’4 
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dt 

0 --,t 

Fig. S. The infinitestimal curved line element C where body forces are applied. 

where, 

R= = 

c, = 

k= I 

K= 

? + t= + (z - {)2 - 2rt cos cp (8b) 

4 4 
{(r + t)= + (2 - @)3’2 ’ c2 = ((r + t)= + (z - g)=}5’= 

(8~) 

4rt 
(p + t)= + (z _ 5-2 ’ k’2 = 1 - k2 

rrl2 

I d 

dX WI2 

- k2 sin2 h ’ 
E= 

I q 
1 - k2 sin’ h dX. (84 

0 1 0 

4. PROCEDURE’FOR NUMERICAL SOLUTIONS 

Bending problems of various axi-symmetrical bodies can be numerically solved 
using the fundamental solutions described in Section 3. In the present paper, the so- 
lutions for an infinite body containing a spheroidal cavity (Fig. 6) or a troidal cavity 
(Fig. 7) are shown. 

Fig. 6. A spheroidal cavity in an infinite body under bending. 
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Fig. 7. A troidal cavity in an infinite body under bending. 

4.1. Definition of body force densities 
The body force densities pr, pe and pz distributed in r, 13 and z direction are defined 

in eqn (9). 

dF, . tie a Nz 
pr cos Q = - t dc dQ 9 Pe srn Q = - , Pr COS Q = - - 

t ds dQ t t dt dQ * (9) 

The definition pr in eqn (9) is defined considering the bending stress field u, = u&a 
cos 4. Defining body force densities such as eqn (9) is not forced but suitable to getting 
accurate numerical result. 

4.2. Solution for a spheroidal cavity 
Since the solution for this problem was given by Neuber, the accuracy of the 

present solution can be checked by this problem. The procedure for the analysis of a 
troidal cavity is almost the same as the problem of a spheroidal cavity. 

4.2.1, Dividing boundaries. The boundary of the spheroidal cavity is divided 
equally after the physical plane (?/a2 + z2/b2 = 1) is mapped into a circle in a mapping 
plane, that is, when we express the coordinate (r, z) on the ellipse by eqn (IO), the 
angle + is used for the parameter indicating the division. 

The starting and the 
given by eqn (II). 

r = a cos (.I, z = b sin $J. (10) 

end points of @I, U)I~Z of the j-th division along AI? in Fig. 6 are 

JIi, = “‘i, l) , 
1 

492 = 2 . (11) 

The boundary AB’ in Fig. 6 is also divided in the same way considering the symmetry. 
The midpoints of each division are used for matching the boundary conditions. If we 
call the division where the boundary conditions are to be satisfied the i-th division, the 
coordinate of the midpoint of i-th division is given by eqn (12). 

4-b = 

it? 

- 0.5). (12) 

Taking the symmetry with respect to the z = 0 into consideration, the same densities 
of the body forces should be distributed at z = 2 5 of the j-th division. 
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4.2.2. Calculation of influence coefficient. In this paper. the stresses induced at 
the midpoint of the i-th division by the body force with unit density at thej-th division 
are called influence coefficients. We need the influence coefficients up,;J, ~p;r’ etc. These 
stresses can be, calculated by integrating (with respect to angle 4) fl. 6;‘. . . . T:;* 
that are given with the fundamental solution defined in Section 3 and by eqns (3) and 
(4). If o%;‘, a? and a$Y are taken as examples, they are written like eqn (13). where 
the relation d< = (bla)t d$ and dt = (alb)E d+ are used for rewriting. 

where (t, 5) is the coordinate of the application of body forces in the plane 8 = 0. The 
minus sign of the second term in the third equation of eqn (13) means that the body 
force is applied in negative z-direction. The integration with respect to + is performed 
numerically using Simpson’s rule. 

4.2.3. Determination of body force densities. The body force densities are de- 
termined solving the following 3nl linear equations which express the boundary con- 
ditions at the spheroidal surface. 

2 (p&$ + pe&y + p~U$) f 00 f sir? *i = 0 
j- I 

j$, (prj% + Pej%t# + p&-$) + u(J ‘i . a sin $i COS Jlj = 0 

g (prjC% + P8j7pn’$i + P.&&i) = 0 

j- I 

(14) 

where ri is the r coordinate at the midpoint of the i-th division and Jli is the angle 
between the axis and the outerward normal at the same point. Once the body force 
densities are determined, the stresses at an arbitrary point can easily be calculated by 
using the body force densities and the stresses at the point due to unit body force 
density which can be determined from eqn (13) similarly as the influence coefficients. 

4.2.4. Special consideration on singular terms. When the body forces are applied 
at the same points where the maximum stresses must be found, (5a)-(5c) become 
singular. In this case, the influence of the body forces must be considered specially. 
This analysis can be performed successfully, if we notice first the stresses at a separate 
point and then take the limiting expression after the closed form integration along a 
small boundary region on the assumption of plane strain. The result is written as eqn 
(15). In the equation, the notation z means the small integrated region including the 
point of the maximum stress (JI = - e - E). 

u 
A@= -- 

1 - p 

As easily understood, in case of i = j similar special integration must also be performed. 

4.3. Solution for a troidal cavity 
The method of analysis for a troidal cavity (Fig. 7) is similar to that for a spheroidal 

cavity (Fig. 6). Then, the explanations of the details of numerical procedure are saved. 
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Since this problems have symmetry with respect to the plane z 
must be applied considering the boundaries ABA ’ and AB’A ’ as 

5. NUMERICAL RESULT AND DlSCUSSlON 

33 

= 0, the body force 
a pair. 

Computer programs for the analysis of a spheroidal cavity and a tridal cavity were 
coded on the basis of the fundamental solutions and the procedure of numerical analysis 
described in Sections 2-4. The integral with respect to JI in Section 4.2.2 was numer- 
ically performed by Sympson’s rule with 10 dividing numbers. When the body forces 
are distributed along the division under consideration of boundary condition (i.e. i = 
j), or the maximum stresses at the end of major axis must be calculated, the dividing 
number for numerical integral was increased by 10 times as that of other case. 

5.1. Stress concentration of a spheroidal cavity 
Results of numerical analysis on a spheroidal cavities are shown in Table 1. The 

stress concentration factor (SCF) in the present analysis were obtained by the extrap- 
olations of the results for two dividing number nl = 6 and 8; the results in [ ] of Table 
1. The present results are in good agreement with the exact values by Neuber[ 131. The 
error is at most about 0.07% even for the values extrapolated from nl = 6 and 8. 

5.2. Stress concentration of a troidal cavity 
No solution has been obtained for the problem of a troidal cavity with elliptical 

section. However, in two limiting cases (the case of very small radius of a troid and 
that of very large radius of a troid), the stress concentration factors can be compared 
with the exact solution of a three-dimensional deep hyperbolic notch and that of a two- 
dimensional elliptical hole. First of all, in order to check the accuracy, a few cases for 

Table I. Stress concentration factors of a spheroidal cavity in an 
infmite E qq)bendmg 

v=o v = 0.3 

Present analysis Neuber Present analysis Neuber 

a = OSb 1.250 I . 294 [ 1.2915 
1.2921 

1 1.293 

a=b 1.709 

a = 26 2.459 2 . 564 [ 2*5604 
2.5613 I 2.564 

a-46 4 . 149 [ 4*1085 I 4.1186 4.147 4 . 270 [ 4*2960 1 4.2895 4.273 

Table 2. Stress concentration factors Kz of a troidal cavity 
having a very small radius of a troid in an infinite body 

Present analysis Neuber 

c/p = 1.0 
(da = 0.25) 

I.285 1’2628 
[ I 1.2672 

1.292 

c/p = 0.5 
(C/0 = 0.125) 

1.153 1.1045 
[ I 1.1142 1.155 

SAS 22:1-c 
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Fii. 8. A troidal cavity having a very small radius of a troid in an infinite body under bending 

(v = 0, c 4: a). 

very small radius of a troid as shown in Fig. 8 were calculated. The results are shown 
in Table 2. The values by Neuber[ 141 in Table 2 are the exact SCF for three-dimensional 
deep hyperbolic notches. SCFs in the present analysis were determined from the max- 
imum stress amax i at the inner end of major axis of troidal cavity. The bending moment 
M was obtained by the numerical integration of the stress o,i(r) at the minimum section 
OA’ in Fig. 8. Denoting SCF at the inner end of the cavity by Kz, we have, 

o,i(r)$ COS* 8 d0 dr 

I 
c 

=lT u,i(r)? dr (16) 
0 

4M 
K: = y, * =c U& = 3 (17) 

where uzi is the nominal bending stress at the minimum section OA’ . The extrapolations 
were performed using the results for the dividing numbers n, = 16 and 20 (these num- 
bers correspond to the upper and lower values in [ I). The present results are in good 
agreement with Neuber’s exact solution[l4] for a deep hyperbolic notch with the same 
values of root radius p. 

Table 3 shows the results for other various cases. K,, is SCF at the outer end of 
the troidal cavity. The values in square brackets are the results for nl = 12 and 16 
respectively and the final values were extrapolated from these results. SCF and the 
nominal stresses in these cases were defined as follows. 

K,i = %?i , Uni = (To 
uni 

tw 

~lnax 0 
Ko = - , 

h+a 
(Jno = 00 

uno c * 

The stress concentrations in Table 3 are plotted in Fig. 9. As h/a + =, the calculated 
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Table 3. Stress concentration factors K,i, K,,, of a troidal cavity having a very large radius of a 
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C7=b u = 26 

h/a = 5 [ 4.2835 1 4.2834 

h/a = 10 3*151 [ 3.1469 1 3.1479 2 . 773 [ 2.7736 1 2.7734 5 *- ,98 [ 5.2916 1 5.2931 4 * 623 [ 4.6242 1 4.6240 

h/a = 20 3.083 [ 3M09 1 3.0814 2 * 887 [ 2.8877 1 2.8876 5 ’ 157 [ 5.1539 1 5.1548 4 * 814 [ 4.8126 1 4.8130 

h/a = 50 3.037 [ 3*0354 1 3.0358 2 * 955 [ 2*g56E 1 - 
2.9564 

SCF of troidal cavities approaches the limiting value K, = 1 + 2ulb which is SCF of 
an elliptical hole in an infmite plate under tension. Thus, the present numerical results 
are in good agreement with exact solutions in the two extreme limits; c/u + 0 and hl 
a ---, 00. Therefore, the high accuracy of the present analysis between these two limit& 
cases may be expected. Table 4 shows the numerical results for several cases between 

0 

6.0 r U Kti 

r 

a=b Kti 0 

Kto 
-4 

l/50 l/20 l/10 a/h l/5 
Fig. 9. Stress concentration factors K,i, K,, for a very small radius of a troid in an infinite body 
under bending (v = 0, h * u). 
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Table 4. Stress concentration factors K,i. K,,, and Kz of a troidal cavity 
in an infinite body under bending tu = 0.3) 

h/a = 1.5 

a = O.Sb 

K,, = 3.621 
K,, = 1.533 
K: = 1.034 

o=b n = ‘b 

K,i = 5.418 K,, = 9.100 
K,, = 2.207 
Kf, = 1.142 

K,; = 3.582 
K,i = I.508 

hla = 2 

h/a = 3 

h/a = 5 

K,j = 2.944 K,, = 4.303 K,i = 7.330 
K,, = 1.597 K,, = 2.327 K,,, = 3.803 
K:i = 1.074 K:: = 1.271 K:: = 1.893 

K,j = 2.456 K,i = 3.671 K,, = 6.281 
K,,, = 1.691 K,,, = 2.488 K,,, = 4.093 
K:: = 1.148 K:: = 1.524 K:: = 2.443 

Kli = 2.205 K,j = 3.349 Kri = 5.688 
K,, = 1.792 K,, = 2.658 K,,, = 4.395 
K:: = 1.291 K:: = 1.867 K:, = 3.092 

two limiting cases. Poisson’s ratio is assumed Y = 0.3 and the figures of four digits in 
the table were extrapolated using the results for nl = 12 and 16. 

Although SCF of troidal cavities is not so useful itself, it has the importance from 
the viewpoint that the method of the analysis becomes the basis for the analysis of 
cylindrical bar with a circumferential notch by relieving the stresses a,, T, and T,+ at 
the cylindrical surface r = h. 

6. CONCLUSION 

Stress concentration problems of an axially symmetrical body under bending were 
solved by the body force method which has been used mainly for the analysis of plane 
and axi-symmetric problems. First of all, the fundamental solutions were seeked. The 
forms of the fundamental solutions in benidng are not so self-evident as tension and 
torsion problems. In order to find the necessary and sufficient forms of the fundamental 
solutions, the properties of the boundary conditions and those of stress fields due to 
ring forces were compared. It was proved that three types of the fundamental solutions 
are necessary and sufficient. They are two ring forces in r and z direction with the 
intensity of cos + (+ is angle measured from the position of urnoX) and one ring force 
in tangential direction with the intensity of sin 4. The solution can be solved numerically 
by superposing these three fundamental solutions. The accuracy of the numerical 
method was checked by solving the bending problem of a spheroidal cavity. The max- 
imum error of the results was ‘0.07%. The numerical results for the bending problem 
of a troidal cavity approached to the exact solution in the two limiting cases of the 
shape of the troidal cavity. The accurate method developed for the stress concentration 
analysis of a troidal cavity will be extended to the stress concentration analysis of a 
notched cylindrical bar under bending in the second paper. 

1. 
2. 
3. 
4. 
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