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Abstract-This paper deals with the stress concentration analysis of a semicircular and a 60” 
V-shaped single edge notch in an infinite strip under three different types of loading conditions: 
(a) uniform tension, (b) in-plane bending and (c) pure tension. The stress field induced by a point 
force in the semi-infinite plate, Green’s function in a closed form, is used to solve those 
problems. The results show that Neuber’s formula gives an underestimated stress concentration 
factor when the notch is sharp and shallow. The stress concentration factors of 60” V-shaped 
notches are represented by diagrams for wide use. 

1. INTRODUCTION 

THE STRIP with the V-shaped notch shown in Fig. 1 is widely used as a test specimen of 
materials. However, there are few papers dealing with the single edge notch problem. Therefore, 
so-called Neuber’s trigonometric formula, which gives approximate values of K,[l], has been 

used for more than 40 years. 

(KS - l)(Kd - 1) 
KtN = d((K,, - 1)2 + (z& - 1)2) + l 

where K,, and Ktd are stress concentration factors of shallow and deep notches respectively. 
In this paper, the stress concentration problems of the 60” V-shaped single edge notch in the 

infinitely long strip under remote tension or in-plane bending are analysed by the body force 
method [2-4]. 

Fig. 1. A single edge notched strip under tension or in-plane bending. 

223 



224 NAO-AK1 NODA and HIRONOBU NISITANI 

(a) 

Fig. 2. Illustration of the present method of analysis. 

2. METHOD OF ANALYSIS 

2.1. Fundamental solutions 
In the previous paper [5], we proposed the analysis method using Green’s function of the 

semi-infinite plate to solve the problem of the strip having double edge notches. Since Green’s 
function of the semi-infinite plate can be obtained in a closed form, it is convenient to use it in 
numerical analyses. In this paper, we are to apply the previous method to the problem of the 
single edge notch. 

Figure 2 shows the present analysis method. Consider two kinds of semi-infinite plates: one 
is defined in the range --03 < x s W (Fig. 2a), the other in the range 0 s x < ~0 (Fig. 2b). The 
edges x = 0 and x = W correspond to the stress free edges of the strip shown in Fig. 1. 
Considering the effect of remaining stress at the edge upon the stress concentration factor in this 
analysis, we use Green’s function of the semi-infinite plate shown in Fig. 2(a) for the analysis for 
shallow notches. On the other hand, for the analysis for deep notches, we use Green’s function of 
the semi-infinite plate shown in Fig. 2(b). As a result, the method of analysis is reduced to 
determining the densities of body force (continuously embedded point forces) distributed in the 
semi-infinite plates shown in Fig. 2(a) or (b). The detailed procedure for numerical solutions and 
the equations of fundamental solutions will be omitted because they have been shown in the 
previous papers[4,5]. In this paper we will focus on describing how to get the accurate solution 
for the problem of the single edge notch in the strip. 

2.2 Special remarks on the single edge notched strip 
Consider a strip having a single edge notch, which is subjected to tensile load P at infinity. 

From the equilibrium condition, the resultant P and the bending moment MP = Pt/2 should act 
at the mid-point of the minimum section of the strip as shown in Fig. 3(a). Therefore, when we 
define the nominal stress for this problem, we should consider effects both of the resultant P and 
of the bending moment Mr. Finally, the stress concentration factor may be defined as follows. 

P+6MP 
f-J”, = ; 

a2 

-I 
,P I+?!. 

a ( ) a 

(1) 

On the other hand, when the bending moment M is applied at infinity of the strip with the 
single edge notch, only the bending moment M should act at the minimum section and the 
resultant should be zero. Thus, the stress concentration factor may be defined as follows. 



Stress concentration analysis of a single edge notch 225 

a t 
c 

v Mp=Pt/2 

P 

(a) 

-/ L 

‘t/” 
(b) 

-/ 

& P 

(cl 

Fig. 3. Resultant and bending moment at the minimum section. 
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a2 
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However, in the actual numerical analysis the body force densities that satisfy the boundary 
conditions completely for the notch and the strip edges cannot be obtained in the closed form. 
Thus, the values of the resultant and the bending moment at the minimum section would be 
different from the values mentioned above because the stress that should be zero at the 
boundaries would remain slightly. In the analysis for the single edge notch we have to exactly 
estimate both the resultant and the bending moment at the minimum section in order to get an 
accurate solution because this problem has no geometrical symmetry such as the double edge 
notched strip in the previous paper. Therefore, the following analysis method is used in this 
paper. 

2.3 Solution for the single edge notched strip 
First, a uniform tensile stress is applied as a boundary condition at infinity. Under this 

condition, the resultant Pi at the minimum section, the bending moment MI and the maximum 
stress o,,~ are calculated numerically by the method described in the previous papers[4,5]. 

Next, a bending stress is applied as a boundary condition at infinity. Under this condition, the 
resultant P2, the bending moment M2 and the maximum stress ~7,~~~ are also calculated. Using 
both of those results, we can obtain the stress concentration factor K,, for the case in which only 
resultant is produced at the minimum section and the bending moment equal to zero (Fig. 3~). 

(3) 

where (Y~ = MI/M*. Moreover, we can estimate the stress concentration factor Ktb for the case in 
which only the bending moment is produced at the minimum section and the resultant equals to 
zero (Fig. 3b). 

(4) 

where (~2 = P2/Pi. Using eqs (3) and (4), we can finally obtain the stress concentration factor K,, 

Em 28:2-H 
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for the case of uniform tension (Fig. 3a) by superposing the two loading conditions: (i) only the 
resultant P is produced at the minimum section (Fig. 3~); and (ii) only the bending moment 

A& = Pt/2 is produced at the minimum section (Fig. 3b). 

K 
ta 

= Kfc+%K,b 

1+ a3 

where a3 = 3 t/a. 

3. RESULTS AND DISCUSSION 

3.1 Stress concentration factors by Neuber’s formula 
Neuber proposed an approximate formula (6) to estimate the 

of the single edge notch in the strip under three different types of 

(Ks- l)(&- 1) 
KtN = d((K,, - l)* + (Ktd - l)*) + ’ 

(1) Pure tension (Fig. 3c) 

(2) In-plane bending (Fig. 3b) 

Ktd = PI-2c 

‘-J(a/i+l) 

hi = 
2(a/p + 1) - PIJ(a/p + 1) 

In eqs (8) and (9), PI, p2 and c are given as follows. 

P1= 
2(a/p + l)J(a/p) 

(a/p + 1) tan-’ J(a/p) +J(a/p) 

4(a/p)3’2 

P2=3{d(a/p)+(a/p-I)tan-1J(a/p)} 

c= PI-J(a/p+l) 
4 

-4 ) 
a+1 -1 

3P2 P 

(3) Uniform tension at infinity (Fig. 3a) 

K 

td 
= Kid+ %K:ld 

1+ a!3 

(5) 

stress concentration factors 
loading conditions[ 11. 

(6) 

(7) 

(8) 

(9) 

(10) 

where a3 = 3 t/a. In eq. (lo), Kid and Kyd mean stress concentration factors given by eqs (8) and 
(9), respectively. 

In the following section, we will compare the values given by Neuber’s eq. (6) with the 
values obtained by the present analysis. 
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Table 1. SCFs of semicircular notches under uniform tension 
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P/W 

0.02 
0.03 
0.05 
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Present Neuber 
analysis 

2.840 2.76 

2.742 2.62 a 
2.566 2.39 P 

2.223 2.02 
1.786 1.68 1.524 1.51 w 

1.356 1.39 Ez 
1.244 1.30 JP 
1.167 
1.109 
1.065 
1.029 

3.2 Stress concentration factors of the semicircular notch 
In Tables 1-3, SCFs of the semicircular notch in the strip under uniform tension, in-plane 

bending, and pure tension are shown. The results in Tables 1, 2, and 3 are plotted in Figs 4, 5, 
and 6, respectively. In Figs 4-6, Neuber’s corresponding values (eq. 6, K,, = 3.065) are 

designated by the dashed line. Figures 7 and 8 show the stress distribution at the minimum 
section under three types of loading conditions. 

Table 2. SCFs of semicircular notches under in-plane bending 
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Table 3. SCFs of semicircular notches under pure tension 
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Fig. 5. SCF of semicircular notches under in-plane bending. 
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Fig. 6. SCF of semicircular notches under pure tension. 
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Table 4. SCFs of 60” V-shaped notches under uniform tension 
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p/w-1.0 

- r r p/w=o.5 p/w=o.2 p/w=o.o2 plW=O.O3 p/w=o.o5 pfW=O.l 

t/W Kt KtN Kt KtN Kt KtN Kt KtN Kt KtN Kt KtN 

1.281 1.23 1.179 1.14 
1.364 1.27 1.219 1.15 
1.399 1.30 1.228 1.17 
1.381 1.33 1.206 1.19 
1.338 1.34 1.178 1.19 
1.293 1.32 1.152 1.18 
1.245 1.30 1.127 1.16 
1.198 1.26 1.103 1.14 
1.151 1.21 1.078 1.11 
1.102 1.15 1.052 1.08 
1.052 1.08 1.027 1.04 

Kt 

1.492 
1.671 
1.774 
1.786 
1.725 
1.643 
1.551 
1.454 
1.351 
1.242 
1.126 

KtN 

1.45 
1.55 
1.62 
1.68 
1.69 
1.66 
1.62 
1.54 
1.45 
1.33 
1.19 

2.72 
3.32 
3.73 
4.04 

2.467 
3.106 
3.546 
3.745 
3.661 
3.474 
3.230 
2.940 

2.38 2.098 
2.84 2.566 
3.16 2.880 
3.39 3.008 
3.44 2.930 
3.38 2.778 
3.24 2.586 
3.03 2.363 
2.75 2.107 
2.38 1.809 
1.87 1.452 

0.02 2.840 
0.05 3.653 

;.: 
013 

4.218 4.486 
4.397 

0.4 4.175 
0.5 3.881 

i.! 
0:s 

3.527 3.112 
2.610 

0.9 1.967 

4.11 
4.04 
3.87 
3.61 
3.26 2.603 
2.80 2.196 
2.16 1.698 

“max 
Kt= 0” 

a,=++ 

3.3 Stress concentration factors of the 60” V-shaped notch 
Tables 4-6 show SCFs of the 60” V-shaped notch (K,) under uniform tension, in-plane 

bending and pure tension. In the case of the shallow notch (t d p/2), K, means SCF of 
partically-circular notch. Neuber’s values K,, (eq. 6) are also shown in order to be compared 
with the K, values. The results in Tables 4-6 are plotted in Figs 9-14 so as to be useful further in 
design or research. 

In Figs 9, 11 and 13, the ordinate represents the values of SCFs, and the abscissa represents 
the relative notch depth t/D. After comparing the values of the 60” V-shaped notch with 
corresponding Neuber’s value, we conclude that Neuber’s rule eq. (6) underestimates SCFs of 
the 60” V-shaped notch by about 12% for the worst case of uniform tension and by about 4% for 
the worst case of in-plane bending. Furthermore, it is found that Neuber’s formula overestimates 
by about 12% for the worst case of in-plane bending. The charts of SCF are also shown in 
different ways from Figs 10, 12 and 14. In Figs 10, 12 and 14, the absissa represents the 
relative notch radius p/D. Using those charts (Figs 9-Id), SCF K, not calculated in this paper 
can be estimated. 

Table 5. SCFs of 60” V-shaped notches under in-plane bending 

T 
- 

f 

r p/w-o.03 p/w-o.02 p/w=o.o5 p/W=O.l p/w=o.2 plW.O.5 p/W=l.O 

t/W 1 Kt KtN - 
2.85 
3.64 
4.22 
4.58 
4.56 
4.39 
4.13 
3.79 
3.37 
2.85 
2.18 
- 

! KtN Kt Kt KtN Kt KtN Kt KtN Kt KtN 

1.748 
2.064 
2.280 
2.356 
2.273 
2.136 
1.980 
1.815 
1.640 
1.451 
1.241 

1.56 1.284 
1.75 1.373 
1.87 1.413 
1.91 1.393 
1.87 1.344 

i 

1.79 1.294 
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1.19 1.052 
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1.44 1.178 1.25 
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1.29 1.102 1.16 
1.23 1.077 1.12 
1.16 1.052 1.08 
1.08 1.027 1.04 

0.02 2.865 
0.05 3.736 
0.1 4.386 
0.2 4.733 
0.3 4.629 7 0.4 4.353 
0.5 3.998 
0.6 3.594 
0.7 3.142 
0.8 2.622 
0.9 1.969 

2.113 2.16 
2.612 2.63 
2.974 2.95 
3.140 3.13 
3.048 3.09 
2.862 2.97 
2.636 2.80 
2.388 2.58 
2.116 2.32 
1.811 2.01 
1.451 1.61 
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Table 6. SCFs of 60” V-shaped notches under pure tension 
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Kt 
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Kt 
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Fig. 7. Stress distribution at the 

(b) 

minimum section (p/D = 0.2). (a) Uniform 
bending. (c) Pure tension. 

tension. (b) In-plane 
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Fig. 8. Stress distribution at the minimum section (p/D = 0.5). (a) 
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3.4 Special relationship between the notch shape and the stress concentration factor 
Tables 7-9 show the values KJK,,, where Kt means the SCF of double V-notches in the 

strip and K,, means the SCF of the notch in the semi-infinite plate [S]. In Tables 7-9, it is found 
that the values of K,/K,, are mainly determined by the relative notch depth t/D alone, especially 
for shallow notches. Utilizing this fact, we can estimate the SCF of sharp V-notched strip not 
calculated in this paper (p/D < 0.02) from the SCF of the V-shaped semi-infinite plate [S]. 

4. CONCLUSION 

In this paper, the stress concentration problems of the double V-notched strip under tension 
and in-plane bending were considered. Green’s function of the semi-infinite plate in the closed 
form was used as a fundamental solution for strip problems. The conclusions can be made as 
follows: 

(I) The stress concentration factors K, of the 60” V-shaped notch were systematically 
calculated under various geometrical conditions. Neuber’s formula is found to give an 
underestimated stress concentration factor by about 12% in tension case and by about 4% in 
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Fig. 9. SW oE 60” V-shaped notches under uniform tension. 

bending case when the notch is sharp and shallow. On the other hand, the maximum error 
including overestimation is about 12% for both cases of tension and bending. The stress 
concentration factors were illustrated in the diagrams for design and research. 

(2) The values K/K, (K,, = Ki l~~-~J are found to be mainly determined by the relative 
notch depth tl W alone. Taking this into account, the K, values of the extremely sharp notch in 
the strip not calculated in this paper can also be estimated from the values of K,,,. 

Table 7. Values K,lK,j,,,,, in uniform tension of a strip 
- 

0.1 
I I 

0.2 0.5 
II 

1.0 

0.927 
0.839 
0.725 
0.571 
0.469 
0.393 
0.334 
0.284 
0.240 
0.200 
0.163 

0.929 I 0.932 0.936 
0.842 0.849 I 0.857 0.732 0.747 0.765 
0.583 0.610 0.644 
0.484 

II 0.457 
0.521 0.565 

0.411 0.509 
0.355 0.406 0.465 
0.308 0.367 0.429 
0.268 0.332 0.398 
0.233 0.302 0.371 
0.201 0.275 0.348 
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0.2 0.4 0.6 0.8 

t/W 

Fig. 1 I. SCF of 60” V-shaped notches under in-plane bending. 

Table 8. Values K,/K,l,lw_,o in in-plane bending of a strip 

0.03 

0.935 0.933 
0.853 0.852 
0.745 0.744 
0.589 0.589 
0.479 0.479 
0.394 0.395 
0.326 0.329 
0.270 0.274 
0.221 0.226 
0.174 0.182 
0.127 0.138 

0.05 0.1 

0.933 0.933 0.934 0.937 
0.851 0.851 0.855 0.861 
0.744 0.745 0.754 0.768 
0.590 0.595 0.615 0.645 
0.482 0.491 0.523 0.565 
0.401 0.415 0.457 0.508 
0.337 0.356 0.406 0.465 
0.285 0.308 0.367 0.429 
0.240 0.268 0.331 0.398 
0.200 0.233 0.302 0.371 
0.162 0.201 0.275 0.348 

0.2 I I 0.5 1.0 
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Fig. 13. SCF of hO" V-shaped notches under pure tension. 

Table 9. Values K,/K,\,lw_oin pure tension of a strip 

z 
0.200 

0:9 
0.161 
0.119 

I 

- 

0.03 0.05 0.1 0.2 

0.927 0.927 0.927 0.928 
0.833 0.835 0.837 0.841 
0.710 0.713 0.719 0.727 
0.539 0.546 0.556 0.573 
0.429 0.436 0.451 0.474 
0.351 0.360 0.378 0.404 
0.294 0.304 0.324 0.352 
0.248 0.259 0.279 0.309 
0.207 0.218 0.240 0.271 
0.167 0.180 0.202 0.235 
0.126 0.139 0.164 0.202 

0.369 0.430 
0.333 0.399 -L 0.302 0.372 
0.275 0.348 
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