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Abstract. In this paper, the plane problems of a single edge crack in two bonded elastic layers and in an elastic surface 
layer bonded to an elastic semi-infinite plane are analyzed by the body force method. The stress fields induced by a 
point force and a displacement discontinuity in two bonded elastic half-planes obtained by Hetenyi's solution, in other 
words, Green's function in closed forms, are used as fundamental solutions to solve those problems. The boundary 
conditions for stress free-edges of the layers and the crack surface are satisfied by superposing the distributed 
fundamental solutions and adjusting their densities. The stress intensity factors are systematically calculated for the 
various geometrical conditions and the various stiffness ratios of the layers. 

1. Introduction 

In recent years, composite materials have been widely used for high performance structures 
where both light weight and high strength are pursued. In general composite materials have 
many interfaces. However, the plane problems of a crack in two bonded elastic layers are 
basically important to understand the fatigue crack extension behavior near the interface. 
Therefore, there has been considerable research into the crack near the interface in an elastic 
infinite plane [1-6]; however, the exact analysis of the finite plate having the interface has been 
expected to promote more advanced experimental research into the fracture of the composite 
materials. 

In previous work, Yu-uki et al. [7] have applied Hetenyi's solution to the body force method 
(BFM), and have analyzed the stress intensity factor for an imbedded crack crossing the 
interface of the two bonded elastic layers. Lu and Erdogan [8] have analyzed cracks 
perpendicular to and on the interface in two bonded elastic layers formulating the problem in 
terms of a coupled system of four singular integral equations. However, generally the integral 
kernel to formulate the problem is very complicated and the expression may have some mistakes 
[8, 9]. Lately the boundary element method (BEM) and the finite element method (FEM) have 
been used to calculate the stress intensity factor of the problem [10, 11]. However, in the fatigue 
experimental test the exact analysis has been required to study the fracture of layered materials. 

In this paper, the stress intensity factor in two bonded elastic layers with a single edge crack 
under various remote loading conditions (Fig. 1) are analyzed by the BFM. As the fundamental 
solutions, the stress fields induced by a point force and a displacement discontinuity in an 
infinite plate having the interface, which are obtained by Hetenyi's solution [12], are used. In 
the analysis, we especially consider the resultant P and the bending moment Mp which appear 
at the mid-point of the ligament of the two bonded layers in order to get the accurate solution 
for the problem of a single edge crack [13]. In addition, the problem of a cracked elastic surface 
layer bonded to an elastic half space and the problem of a crack crossing the interface are also 
analyzed and the results are compared with previous research. 
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Fig. I. Two bonded elastic layers with a single edge crack. 

2. Fundamental solutions 

In this analysis, the stress fields induced by a point force and a displacement discontinuity 
shown in Figs. 2(a, b), which are obtained by Hetenyi's solutions [12] are used as fundamental 
solutions. The point forces and the displacement discontinuities are distributed continuously 
along the prospective sites of the stress free boundaries for edges and crack respectively. 

2.1. Stress fields induced by a point force in an infinite plate having the interface 

When a point force P or Q acting in the x or y-direction is applied to a point (3, ~/) in material 
1, the stresses at (x, y) are given by (1)-(12). 
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Fig. 2(a). Fundamental stress field for the point force of an infinite plane having the interface. 
(b). Stress field for the displacement discontinuity of an infinite plane having the interface. 
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(A) In the case that a point  (x, y) exists in material 1 
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(B) In the case that a point (x, y) exists in material 2 
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2.2. Stress fields induced by a displacement discontinuity with the magnitude D in an 
infinite plate having the interface 

When a displacement discontinuity acting in the y-direction is applied to a point (~, q) in 
material 1, the stresses at (x, y) are given by (13)-(18). 

(A) In the case that a point (x, y) exists in material 1 
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(B) In the case that  a point (x, y) exists in material 2 
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where r 2, r 2, xl,  X2, Yl are defined as follows 

r ~ = x  2 + y 2 , r 2 2 = x  2 + y 2 , x l  = ( x - - ~ ) , x 2 = ( x + ~ ) , y l  = (Y- - r / )  (19) 

and xi, A, B, F is defined as follows. 

3 - 4vi 
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(20) 
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FXl + 1 '  F + K 2  G1 

When a point force acts to a point (4, q) in material 2, the notations xl, x2, F in (1)-(12), (21) 
must be replaced by x2, Xl, 1/F respectively. When a displacement discontinuity acts to a point 
(4, q) in material 2, they must be replaced in a similar manner. 

3. Method  o f  analys is  

3.1. Outline o f  the analysis method 

Figure 3 shows the present analysis method. Consider the imaginary boundaries where body 
forces or displacement discontinuities are distributed in an infinite plate having the interface. 
The body forces means continuously embedded point force. The given boundary conditions are 
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Fig. 3. Imaginary boundaries where body forces or displacement discontinuities are distributed. 

satisfied by applying body force and displacement discontinuities along the prospective sites of 
stress free boundaries for edge and crack respectively. Therefore the method of analysis is 
reduced to determining the densities of body force and displacement discontinuity. In this 
analysis, the displacement discontinuities are symmetrically distributed not only along the 
boundary AB but also along the boundary AB' in order to make the shear stress which will 
appear at the boundary AC small in advance. The boundary length in the y-direction AC and 
DE are determined from the condition that the calculated results virtually do not change by 
increasing its length. The minimum value of the length AC is about two times the width H. In 
this paper, the solutions are obtained by superposing the stress fields of body forces and 
displacement discontinuities so as to satisfy a given boundary condition. The detail for the 
numerical procedure may be found in [13, 14, 17]. 

3.2. Definition of stress intensity factor and the boundary conditions 9iven at infinity 

In this paper, the stress intensity factors in two bonded elastic layers with a single edge crack 
under various boundary conditions at infinity are analyzed. The dimensionless stress intensity 
factor F~ is defined as follows 

g l  
F, - , - - ,  (22) 

O" o 

w h e r e  K I is stress intensity factor, ao is a constant corresponding to the magnitude of the stress 
at infinity. Now we define the stresses at infinity in material 1 and in material 2 as arl~ and 
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O'y2m respectively. The relation between arab and O'y2m at the interface is shown in (23) from the 
condition that the strains at infinity must be equal. 

O'y2~o I x = 0  _ E 2  (Plane stress) ) 

artoolx=o Ea l 
at2® Ix=o _ E2(1 - v 2) (Plane strain) 
aytoolx=O El(1 - v2 2) 

(23) 

where va = v2 = 0.3. 
The stresses at infinity at1 ~, O'y2~ are given as follows: 

(A) In the case that a single edge crack exists in material 1 (c < ha) 
(1) Uniform tension (Fig. l(a)) 

O'yl~ = 0"0, O'r2o o = (E2/E1)~7o," [ 
ao = P/{ha + (E2/E~)h2} J '  

(24) 

where P is the magnitude of external tensile force. 
(2) In-plane bending (Fig. l(b)) 

(7 o 
- -  ( x  - e ) ,  ayx oo - hx + e 

E2 ao ( x -  e), (25) 
ar2~ - E1 hi + e 

ao = M(h l  + e)/I  o (I o is given by (38)). 

The stress Oylo 0 is equal to go when x = - h a .  Here M is the magnitude of external 
bending moment at infinity and e is the distance from the interface to the neutral axis 
shown in Fig. 4(a) and defined as follows. 

e = {(E2/E,)h 2 - h2}/[2{(Ez/E,)h2 + ha}3. (26) 

(3) Pure tension (tension at the mid-point of the ligament) (Fig. l(c)) 

tro = P/(hl  + h2 - c), (27) 

where P is the magnitude of external tensile force. 
(4) Tension at the mid-point of the width H (Fig. l(d)) 

ao = P/[hx + (E2/Ex)hz] + M(h~ + e)/I o 

= p { 2 l g  + [hl + (E2/Ex)h2](h~ + e ) ( 2 e -  h2 + h l ) }  

2Io[hl + (E2/E1)h2] 
(28) 
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where P is the magnitude of external tensile force and the bending moment M is shown 

in (29). 

M = P(e + (hi - h2)/2}. (29) 

(B) In the case that a single edge crack crossing the interface (c > hi) 
(1) Uniform tension 

ayioo = (Ei/E2)tro, ay2o~ = eo,~,. 
(30) 

fro P/{(El/EE)hl + h2} J 

where P is the magnitude of external tensile force. 
(2) In-plane bending 

E1  tro 
- - ( x  - e) trYi~ - E2 hi + e 

O" o 
- -  ( x  - e ) ,  ( 3 1 )  

O'y2°e - -  h I + e 

tro = M(hi  + e)/I o (I o is given by (38)). 

The stress arloo become (Ei/E2)tr o at x = - h i .  
(3) Pure tension (tension at the mid-point of the ligament) 

tro= P/(hi + h2 - -  C), (32) 

where P is the magnitude of external tensile force. 
(4) Tension at the mid-point of the width H 

ao = P/[(E1/E2)h~ + h2] + M(h,  + e)/I 9, 

= p{2Io + [(Ei/Ez)ht + h2](hl + e ) ( 2 e -  h2 + hl !}  
2lg[(E1/E2)hl + h2] ' (33) 

where P is the magnitude of external tensile force and the bending moment M is shown 
in (34). 

M = P{e + (hi - h2)/2}. (34) 

3.3. Solution for two bonded elastic layers with a single edge crack 

In the actual numerical analysis the densities of the body force and the displacement 
discontinuity that satisfy the boundary conditions completely for the free edges and the crack 
can not be obtained in the closed form. Therefore, the imaginary boundaries are divided and 
the problem is solved numerically. The densities of the body forces and the displacement 
discontinuity, which are assumed to be constant in each interval, are determined from the 
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boundary condition at the mid-point of each interval. Thus, the values of the resultant and the 
bending moment at the minimum section would be different from the values of them at infinity 
because the stress that should be zero at the boundaries would remain slightly. In the analysis 
for this problem we have to estimate exactly both the resultant and the bending moment at the 
minimum section to get an accurate solution. Therefore, the following analysis method is used 
in this paper. First, a uniform tensile stress is applied as the boundary condition at infinity. 

Under this condition, the resultant P1,  the bending moment M1 at the minimum section and 
the density of displacement discontinuities 7 at the crack tip are calculated numerically. Next, 
a bending stesss is applied as a boundary condition at infinity. Under this condition, the 
resultant P2, the bending moment M2 and the density of displacement discontinuities ~B are 
also calculated. Using both of those results, we obtain the dimensionless stress intensity factor 
F~c for the case in which only resultant is produced at the minimum section and the bending 

moment equals to zero (Fig. 4c). 

(A) Pure tension 

7 - ~:7~ (35) 
Fie (P1 -- oqP2) /A . '  

where ~1 = M 1 / M z ,  A ,  = hi + h2 - C. (36) 

And we can estimate the dimensionless stress intensity factor for the case in which only the 
bending moment is produced at the minimum section and the resultant equals to zero (Fig. 4b). 

(B) In-plane bending 

7B - ~27 (37) 
Fib = (M 2 - o~2M1)/Z o' 

Cyi~ (:Ty:= 

c H-c 

l P 

H-c H-c 
2 2 

( : )  :o=P/Ag (b) 

#-%. T P 

T H-c H-c 

c s = H ( h : + e ) / I g  (c) :o=P/An 
Fig. 4. Resultant and bending moment at the minimum sections under various loading conditions. 
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where o~ 2 ~-- Pz/P1, Z o = lo/fll, fla = hi + e, 

ih3+E~xh3) e(h2_E2h2"~ e Z ( h l + ~ h 2 )  (c < hi) 1 
-- + ~-I 2/] + (38) I o = ' (  • . 

(h3 +3 E1 3' E22 1j l + ek~2h I - + (c > hi) 

Using (35) and (37), we can obtain the dimensionless stress intensity factor Fla for the case of 
uniform tension (Fig. 4a) by superposing the two loading conditions: (A) only the resultant P is 
produced at the minimum section (Fig. 4c) and (B) only the bending moment Mp is produced 
at the minimum section (Fig. 4b). 

(C) Uniform tension 

Mp 
Fi~ = o~3Fk + ~ Fib, 

where O~ 3 = Ao/A . 

h i + (E2/Ea)h 2 (c < hi) 
A° = h2 + (E1/E2)hl (C > hl) 

Mp = ~ao{h,(hz + c) + E2/E,(c -- ha)he}~2 (c < hi) 
[ao{Ex/E2(h2 + c)hi + (c hi)h2}/2 (c > hi) 

(39) 

~- (40) 

Moreover, we can estimate the dimensionless stress intensity factor Fie for the case in which the 
external load P is applied at mid-point of the plate at infinity. 

(D) Tension at the mid-point of the width H 

f ot4F,b + FI. 
FIa= ] c~4 + 1 

t. ot,,Fib + Fl. 

(c < h~)t, 
(c > hl)) 

(41) 

where 

{ (hi - h2! hl + (eJex)h~ (hi + e) (c < h,) 1 { e + T }  'o 
°~4 = e+ (hl~- h2)]; (El/E2)hlio + h2 (hi + e) (c > h,)tJ" 

(42) 
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4. Results and discussion 

4.1. Stress intensity factor  o f  a homogeneous strip with a single edge crack 

If we put  the modul i  of direct  elast ici ty of bo th  mater ia l s  equal  to: E1 = E2(Vl = v2). Hetenyi ' s  

solut ion used as the fundamenta l  solut ions  in this analysis  becomes the solut ions  for homo-  

geneous infinite plate,  namely,  Kelvin 's  solution.  Then, we can ob ta in  the stress intensi ty factor 

of a homogeneous  str ip with a single edge crack. In  Table  1, the present  results (BFM)  are 

c o m p a r e d  with the values given by K a y a  and Erdogan  1-15]. The values of B F M  in Table  1 are 

de te rmined  by the ex t r apo la t ion  me thod  [16, 17]. The two results coincide with each o ther  in 

the 4 significant digits and  the relat ive er ror  is within 0.15 percent.  

4.2. Stress intensity factor  o f  a surface layer bonded to a semi-infinite plane with an edge crack 

Table  2 shows the stress intensi ty factors of a surface layer  bonded  to a semi-infinite p lane with 

an edge crack. The results in Table  2 are p lo t ted  in Fig. 5. In  Table  2, the values in the 

parentheses  are  analyzed  for plane stress condi t ion.  The o ther  values in Table  2 are analyzed  

for p lane strain condi t ion.  As the crack length increases, the difference of bo th  results for plane 

Table 1. SIFs of an edge crack in a homogeneous strip (El = E2)  

Uniform tension In-plane bending 

c/H HIEM BFM (El = E2)  HIEM BFM (Et = E2) 

~P 

0.1 1.1892 1.189 1.0472 1.046 
0.2 1.3673 1.367 1.0553 1.054 
0.3 1.6599 1.659 1.1241 1.123 
0.4 2.1114 2.111 1.2606 1.259 
0.5 2.8246 2.823 1.4972 1.495 
0.6 4.0332 4.032 1.9140 1.913 
0.7 6.3549 6.355 2.7252 2.725 
0.8 11.955 11.95 4.6764 4.675 
0.9 34.633 34.62 12.462 12.46 

F l = K 1 / ¢ 7 o ~  
ao ~ P/H (Tension) 
Go = 6M/If z (Bending) 

Table 2. SIFs of an edge crack in a surface layer bonded to a semi-infinite plane 

c/hl E2/E 1 = 1/3 E2/E 1 = 3.0 E2/E1 = oc 

0.1 1.133 1.113(1.113) 1.106 
0.2 1.160 1.095 (1.095) 1.074 
0.3 1.195 1.073 (1.073) 1.034 
0.4 1.234 1.049 (1.048) 0.992 
0.5 1.276 1.024 (1.021) 0.946 
0.6 1.320 0.996 (0.991) 0.896 
0.7 1.371 0.964 (0.956) 0.839 
0.8 1.437 0.922 (0.911) 0.767 
0.9 1.552 0.857 (0.841) 0.658 
0.925 1.604 0.832 0.617 
0.95 1.682 0.797 (0.776) 0.563 
0.975 1.831 0.741 0.482 
0.995 2.280 0.623 (0.594) 0.337 

[-Plane strain, ( ): Plane stress] 

Oyl~  C y r ~  

Cy1= (7y2~ 

O'y2~ = E 2 / E  1 "O-y 1 

v~ = v2 = 0.3 
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Fig, 5. SIFs of an edge crack in a surface layer bonded to a semi-infinite plane. 

stress and plane strain increases. However, even in the case that the relative crack length 
c/ha = 0.995, the relative error is only about 5 percent. In this paper, the stress intensity factors 
for plane strain condition are mainly shown. The values from the chart given by Gecit [18] are 
in good agreement with the present results shown in Table 2 within 2 percent. 

4.3. Stress intensity factor of two bonded elastic layers with a single edge crack (c < h j  

In Table 3, the values given by [10] using the boundary element method (BEM) are compared 
with the present results when the crack tip exists near the interface in the two bonded elastic 
layers. As the crack tip approaches the interface exceedingly fast, the solution of the BEM has 
the relative error of about 6 percent. Table 4 shows the stress intensity factors of two bounded 
elastic layers with a single edge crack under uniform tension. The results in Table 4 are plotted 
in Figs. 6 and 7. The values for E2/Ea = ~ in Table 4 coincide with the values for E2/E1 = oo 

Table  3. Comparison of the results of analysis given 
by BFM and BEM (c < hi) 

c / H  BFM BEM c ~'" oy: 

0.2 1.572 1.549 ~ ~ 
0.25 1.868 1.855 ~.7, 
0.28 2.191 2.238 
0.285 2.281 2.340 
0.29 2.402 2.504 
0.293 2.506 2.637 c~ 
0.295 2.605 2.754 [_[j_j ~ , 
0.297 2.753 2.919 oj,~ Oy~ 

F I  ~ K l / ° ' y l  Qc " x ~  

0"~1 ~ ~ E 1 / E 2 " o ' ~ , 2 ~  

E2/E~ = 1/2 
v~ = v z ;.= 0.3 
Plane stress 
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Table 4. SIFs of two bonded elastic layers with a single edge crack under uniform tension (c < hi) 

E2/E1 = 3.0 E2/E1 = 1/3 E2/E1 = oo 

" ~  h2/h 1 
C/hl ~ , ~  1.0 3.0 1.0 3.0 1.0 3.0 

0.05 1.122 1.118 1.128 1.125 
0.1 1.129 1.116 1.152 1.138 
0.2 1.154 1.107 1.232 1.181 1.074 1.074 
0.4 1.250 1.090 1.511 1.319 0.992 0.992 
0.6 1.390 1.071 1.984 1.527 0.896 0.896 
0.8 1.528 1.031 2.817 1.859 0.767 0.767 
0.9 1.538 0.976 3.589 2.163 0.658 0.658 
0.95 1.481 0.916 4.300 2.456 
0.995 1.198 0.792 6.566 3.581 0.337 0.337 

FI = Kl/tryl ~ ~ ' ~  
crr2~: = E2/E 1 'O'rl ,~ 
vl = v2 = 0.3 
Plane strain 

FI 

3.0 

2.0 

l.O 

/ 
E2 

- E2/Ez=3.0 

FI =Ki/oy,./~c 

vz =v2=O. 3 
Plane S t ra in  

O.l 0.2 0.3 
I t T 

0.0 0.4 0,5 0.6 0.7 0.8 0.9 
c/h~_ ~ [Iq (~ 

.0 

Fig. 6. SIFs of two bonded elastic layers with a single edge crack under uniform tension (h2 = 3h0. 

in Table 2. In Tables 5-7, the stress intensity factors of the same composite material in Table 4 
under in-plane bending, pure tension and tension at mid-point of width H at infinity are shown. 
The results in Tables 5-7 are plotted in Figs. 8-13. 

The stress intensity factors which are normalized by the surface stress at the crack side tro 
and the crack length c are shown in Figs. 6-9, and 12, 13. The normalized stress intensity factors 
go to infinity when E1 > E2 and they decrease to zero when E1 < E2. Moreover, when the crack 
length decreases, the stress intensity factors approach the value 1.1215 for the homogeneous 
semi-infinite plane having an edge crack. 

4.4. Stress intensity factor of two bonded elastic layers with a single edge crack crossing the 
interface (c > hi) 

In Table 8, the values given by [10] using the BEM are compared with the present results when 
the crack tip crosses the interface in the two bonded elastic layers. Both of them are different by 
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o 
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I 
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Fi9. 7. SIFs of two bonded elastic layers with a single edge crack under uniform tension (h2 = hi). 

about 16 percent for the worst case. However, the results in the present analysis approach the 
solutions of the deep crack smoothly as the relative crack length c/H --* 1. Tables 9-12 show 
the stress intensity factors for the fixed crack length c = 1.2hl under uniform tension, in-plane 
bending, pure tension and tension at the mid-point of the width H. The results in Tables 9-12 
are plotted in Figs. 14-17 respectively. When the crack tip crosses the interface and the 
relative crack length c/H is large enough, the stress intensity factor can be estimated with 
good accuracy by using the solution of the deep crack. The solutions of the deep crack [21] 

Table 5. SIFs of two bonded elastic layers with a single edge crack under in-plane bending (c < hi) 
Q" ; l : .  * J  

E ~ / E ,  = 3 0  E ~ / E ,  = 1/3  E ~ / E ,  = o~ ,,,~!? 
c/hl ~ 1.0 3.0 1.0 3.0 1.0 3.0 

0.05 1.094 1.103 1.082 1.102 ~ .  r . ~ l  G ~  
0.1 1.074 1.086 1.059 1.092 ~ - r  • 
0.2 1.043 1.048 1.038 1.087 0.985 1.020 " c ~  A 
0.4 1.015 0.973 1.065 1.! 16 0.823 0.890 
0.6 1.012 0.898 1.171 1.189 0.659 0.754 ~ , 7  . . . .  
0.8 0.995 0.808 1.393 1.336 c :~. 
0.9 0.946 0.738 1.619 1.494 0.378 0.490 Fj = KJaox/-~ 
0.95 0.886 0.680 1.846 1.660 ao = err 1 ~ Ix = - h, 
0.995 0.701 0.535 2.680 2.369 0.177 0.241 h = v2 = 0.3 

Plane strain 
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Table 6. SIFs of 

Noda et al. 

two bonded elastic layers with a single edge crack under pure tension (c < hi) 

E2/E 1 = 3.0 

h2/hl 
c/hl ~ 1.0 

0.0 1.208 
0.05 1.101 
0.1 1.007 
0.2 0.844 
0.4 0.594 
0.6 0.405 
0.8 0.252 
0.9 0.183 
0.95 0.147 
0.995 0.111 
---, 1.0 

E2/E 1 = 1/3 E2/E 1 = 1.0 

3.0 1.0 3.0 1.0 3.0 

0.745 0.518 1.056 0.793 0.561 
0.706 0.445 1.012 
0.669 0.388 0.980 0.657 0.509 
0.596 0.305 0.933 0.557 0.465 
0.469 0.221 0.886 0.415 0.394 
0.364 0.211 0.882 0.321 0.338 
0.273 0.279 0.937 0.254 0.294 
0.227 0.372 1.025 
0.199 0.467 1.132 
0.149 0.768 1.621 

0.205 0.257 

t 
, 

H-c H-c 

LF- i ,, , 

P 

Fl = K i / a o  

ao = P/(H - c) 
vl = v2 = 0.3 
Plane strain 

Table 7. SIFs of 

c/hl• hi 

0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.995 

two bonded elastic layers with a single edge crack under tension at mid-point of width H(c < hi) 

F: 

3.0 

2.0 

1.0 
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y = , 

E2/EI=I/3 

j 
_ ~ _ ~ M  

-- E:/El=l. 0 ~ 
E2/EI=3.0 I 

~ 0  =~y l~ ,Ex=_h  ~ 

VI----V2----O. 3 

Pl ane Strain 

0.0 O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
C/~tL 

Fig. 8. SIFs of two bonded elastic layers with a single edge crack under in-plane bending (h2 = 3hl). 

i ? 
E2/E13.0 E2/Et = 1/3 

I ~"~: H,,'2 'i 
1.0 3.0 1.0 3.0 ~ !  

1.107 1.112 1.232 1.150 ~::~i 
1.100 1.104 1.361 1.190 
1.095 1.084 1.669 1.288 [ i I 
1.124 1.043 2.515 1.548 [ 
1.187 1.002 3.814 1.906 ~ ? 
1.242 0.942 6.021 2.447 FI = K{ao x ~  
1.221 0.881 8.021 2.917 ao = P/[hl + (Ez/E1)hE] 
1.163 0.822 9.820 3.352 + M(hl + e)/l a 
0.931 0.690 15.31 4.944 Vl = v2 = 0.3 

Plane strain 
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Fig. 9. SIFs of two bonded elastic layers with a single edge crack under in-plane bending (h2 = hi). 
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Fig. I0. SIFs of two bonded elastic layers with a single edge crack under pure tension (h 2 = 3hl). 
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Fig. 11. SIFs of two bonded elastic layers with a single edge crack under pure tension ( h  2 = h 0. 
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Fig. 12. SIFs of two bonded elastic layers with a single edge crack under tension at mid-point of width 
H(E2 = 3E1). 
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Fig. 13. SIFs of two bonded elastic layers with a single edge crack under tension at mid-point of width H(E2 = El~3). 

Table 8. Comparison of the results of analysis given by BFM, BEM and the solution of deep crack (c > hi) 

c/H BFM BEM Deep crack a ~, ® a y:, 

0.303 3.561 4.093 2.952 I I I I  ~ t t t t t t 

0.305 3.451 3.992 2.961 
0.307 3.386 3.927 2.971 
0.31 3.330 3.821 2.986 
0.315 3.282 3.785 3.012 
0.32 3.261 3.745 3.038 
0.35 3.314 3.801 3.212 
0.4 3.613 4.113 3.571 
0.6 6.453 6.451 
0.8 18.45 18.49 
0.9 52.76 52.87 cy,~ c~:~ 

ay2 oc = E2/E 1" ay 1 ~c 
E2/E1 = 1/2 
vl = v2 = 0.3 
Plane stress 

Table 9. SIFs of two bonded elastic layers with a single edge crack crossing the interface under uniform tension 
(c = 1.2hl) 

BFM Deep crack 

E2/E1 

h2/h~ c/H 1/3 3.0 1/3 3.0 

0.5 0.8 34.01 4.526 34.13 4.565 
1.0 0.6 11.10 1.701 10.94 1.738 
2.0 0.4 5.444 1.019 5.246 1.092 
3.0 0.3 4.072 0.868 3.853 0.975 
4.0 0.24 3.466 0.807 3.237 0.951 

f , = K , / , ,  y 2 ~  

ayl ® = El~E2 "ay2~ 
vl = v2 = 0.3 
c = 1.2h1 
Plane strain 
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Table lO. SIFs of two bonded elastic layers with a single edge crack crossing the interface 
under in-plane bending (c = 1.2h~) 

BFM Deep crack 

E2/Ea 

h2/hl c/H 1/3 3.0 1/3 3.0 

Y 

' \  4 !1  

0.5 0.8 10.25 1.961 10.29 1.977 
1.0 0.6 4.203 0.811 4.133 0.827 
2.0 0.4 2.899 0.583 2.788 0.635 
3.0 0.3 2.602 0.562 2.476 0.661 
4.0 0.24 2.461 0.568 2.336 0.717 

Table 11. SIFs of two bonded elastic layers with a single edge crack crossing the 
interface under pure tension (c = 1.2h0 

BFM Deep crack 

E2/E1 

h2/h 1 c/H 1/3 3.0 1.0 1/3 3.0 1.0 

0.5 0.8 0.150 0.146 0.146 0.148 0.148 0.148 
1.0 0.6 0.241 0.235 0.236 0.242 0.242 0.242 
2.0 0.4 0.373 0.346 0.359 0.363 0.363 0.363 
3.0 0.3 0.486 0.417 0.454 0.452 0.452 0.452 
4.0 0.24 0.585 0.465 0.528 0.527 0.527 0.527 

Table 12. SIFs of two bonded elastic layers with a single edge crack crossing the interface 
under tension at mid-point of width H(c = 1.2hl) 

F, = K,/a o x / ~  
(7 0 : E r y l o c l x = - h  1 

v~ = vz = 0.3 
c = 1.2h~ 
Plane strain 

F! = Kl/ao X ~  
tro = P/(H - c) 
V I : V 2 = 0.3 
c = 1.2hl 
Plane strain 

BFM Deep crack 

E2/E1 

hz/h~ c/H 1/3 3.0 1/3 3.0 

i 
,2 

? , " i 

0.5 0.8 27.81 6.587 27.89 6.642 
1.0 0.6 8.187 2.637 8.076 2.692 
2.0 0.4 3.681 1.538 3.551 1.657 
3.0 0.3 2.694 1.239 2.542 1.412 
4.0 0.24 2.300 1.099 2.131 1.319 

i 

are shown in (43), (44). 

f ~SFlcO + fl2FlbD 

o~6Flbo 

F m  = (1 - 2)FIND 

~sFI~D + fl3Flb. 

(Uniform tension) t 
(In-plane bending) 

(Pure tension) 

(Tension at mid-point of width) 

F, = K,/o'o x ~  
a o = P/E(E1/E2)hl + h2] 

+M(h~ + e)/Ig 
V 1 = 9 2 = 0.3 
c = 1.2hi 
Plane strain 

(43) 
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Fig. 14. SIFs of two bonded elastic layers with a single edge crack crossing the interface under uniform tension 
(c = 1.2hl). 
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Fig. 15. SIFs of two bonded elastic layers with a single edge crack crossing the interface under in-plane bending 
(c = 1.2hl). 
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Fig. 17. SIFs of two bonded elastic layers with a single edge crack crossing the interface under tension at mid-point of 
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where c~5, ~6, Flco, Flbo, f12, f13 are defined as follows. 

ct5 = {(E1/EE)hl + hE}/H, ~6 = 6lg/[(hl + e)H 2] 

F, co = (-gT- 4 ~  ] - -  ~ - f l  4 - 0.5 (44) 

F, bo = fl/[3X//~ll Z ~ ] ,  f12 = 3~5{H -- 2(hl + e) + c}/H 2 

f13 = 3ct5c/H2 (2 = c/H, fl = 1.1215) 

5. Conclusion 

In this paper, the stress intensity factors in two bonded elastic layers with a single edge crack 
under various loading conditions are analyzed by BFM. The stress fields induced by a point 
force and a displacement discontinuity in two bonded elastic half planes, which were obtained 
by Hetenyi's solution, are used as fundamental solutions to solve those problems. The 
conclusions can be made as follows: 

(1) The stress intensity factors in two bonded elastic layers with a single edge crack under 
various loading conditions were calculated when the crack length, the stiffness ratio of 
materials and the plate width were changed systematically. The exact results are shown in 
Tables 1-12 and Figs. 5-17. 

(2) The results calculated for a homogeneous strip coincide with the results by Kaya and 
Erdogan within 0.15 percent. The results for a single edge crack in an elastic surface layer 
bonded to an elastic semi-infinite plane coincide with the results by Gecit within 2 percent. 

(3) The stress intensity factors of a single edge crack crossing the interface can be estimated with 
good accuracy by using the solutions of the deep crack. 

Appendix 

The error estimation of the approximate formulas for the stress intensity factors of a homogeneous 
strip with a single edge crack 

As we described in Chap. 4.1, the results of the present analysis coincide with the results of the 
HIEM within 0.15 percent. Therefore, we can estimate the error of the approximate formulas 
which have been used in the experimental research or the design until now. The approximate 
formulas considered here are shown in (45) (50). Figures 18 and 19 show the ratio of the 
approximate formula to the exact result under uniform tension and in-plane bending. In Fig. 18, 
we can conclude that Brown's approximate formula [19] underestimates the stress intensity 
factors by about 0.6 percent for the worst case of uniform tension and Tada's approximate 
formula [20] overestimates the stress intensity factors when the relative crack length c/H < 0.I 
by about 0.6 percent for the worst case of uniform tension. In Fig. 19, Tada's approximate 
formula is found to give an underestimated stress intensity factor by about 2.2 percent for the 
case of in-plane bending. However, Brown's approximate formula is also accurate enough for 
in-plane bending. 
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Fig. 18. Error estimation of the approximate formulas for SIFs of a homogeneous strip with a single edge crack under 
uniform tension. 
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(A) Uniform tension 

[ao = P/H, P is the magnitude of external tensile force] 

F1 = 1.12 - 0.2312 + 10.5522 - 21.7223 + 30.3924 0 ~< 2 ~< 0.6 

X f •  7t2 0.752 + 2.022 + 0.37{1 - sin(zt2/2)} 3 
Fl = tan ~ -  cos(n2/2) 
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1 
F, = (n z - 4)(1 - 2) 

(Deep crack) 

(Brown), (45) 

(B) In-plane bending 

0 <~ 2 ~< 1.0 (Tada), (46) 

- / 7 ( f l X / ~ 2 _ _  4 0"5)~ / ( I  1 2 ) } + 3 2 ( 3 A _ _ 2 ) ~  ) 

[ao = 6M/H 2, M is the magni tude of external bending moment ]  

FI = 1.122 -- 1.402 + 7.3322 - 13.0823 + 14.024 0 ~< 2 ~< 0.6 (Brown) 

(47) 

(48) 

•/2 0.923 + 0.199{1 - sin(n2/2)} 4 
FI = tan cos(n2/2) 0 ~< 2 ~< 1.0 (Tada), (49) 

F I = f l / [ 3 x ~ l  - 2)33 (Deep crack), (50) 

where 2 = c/H, fl = 1.1215. 
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