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Abstract. In this paper, numerical solutions of the singular integral equations of the body force method in the crack 
problems are discussed. The stress fields induced by 'two kinds of displacement discontinuity' are used as fundamental 
solutions. Then, the problem is formulated as a hypersingular integral equation with the singularity of the form r -2. In 
the numerical calculation, two kinds of unknown functions are approximated by the products of the fundamental 
density function and the Chebyshev polynomials. As examples, the stress intensity factors of the oblique edge crack, 
kinked crack, branched crack and zig-zag crack are analyzed. The calculation shows that the present method gives 
accurate results even for the extremely oblique edge crack and kinked crack with extremely short bend which has been 
difficult to analyze by the previous method using the approximation by the products of the fundamental density function 
and the stepped functions etc. 

1. Introduction 

As a result of computer developments, various numerical methods useful for stress analysis 
have been developed. The body force method (BFM) was originally proposed by Nisitani [1] 
as a new method for solving the stress problems using a digital computer. This method has 
been widely applied to the analysis of the stress concentration factors and the stress intensity 
factors for various notch and crack problems [2]. In solving the two-dimensional crack 
problems, the body force method uses the stress field due to 'the pair of point force' or 'the 
displacement discontinuity' in an infinite plate as a fundamental solution. The fundamental 
stress field has a singularity of the form r -2. The given boundary conditions are satisfied by 
applying 'the body force doublet' (continuously embedded pairs of point forces) along the 
prospective boundary of the crack. Therefore, solving the problems is reduced to determining 
the densities of the body force doublets which are unknown functions at the imaginary 
boundary. In the numerical solutions of the body force method, the concept of the fundamen- 
tal density function was originally proposed and the unknown functions have been approxi- 
mated by the products of the fundamental density functions and the stepped functions [2]. 
The stress at an arbitrary point can be calculated by superposing the stress field of the 
fundamental solutions. 

On the other hand, the singular integral equation method, which is based on the same 
principle of the body force method, has generally used the stress field due to an edge dislocation 
as the fundamental solution [3]. In this method, the crack problem is formulated as an integral 
equation having a Cauchy-type singularity r-1. In the analysis of the body force method, 
however, the problem is formulated as an integral equation with higher singularity of the form 
r-2. The integral equation of this kind has been recently considered by Ioakimidis [4] and Kaya 
and Erdogan [5]; it has been called the hypersingular integral equation method (HIEM) or the 
integral equations with strongly singular kernels. 
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In this paper, numerical solutions of the singular integral equation of the body force method 
are discussed and the various crack problems are shown to be solved with higher accuracy 
compared with previous research. 

2. Solution of the integral equations of the body force method for the straight crack 

Consider a two-dimensional elastic plate with a straight crack as shown in Fig. 1. Normal and 
shear tractions p(x), q(x) are prescribed on the crack surfaces. The problem may be reduced to 
the following integral equations where the crack opening displacements, normal and tangential 
to the crack surface VI(~), V2(~) are to be unknown functions [5]: 

a - '~T~-  ~ . -F a U' l (~ 'X )V l (~ )d~  + H12(~'x)V2(~)d~ ----- - - / t2 -G~P(X) '  

a - ~  X-~ "" + a H21(~'x)Vx(~)d~ + H22(~,x)V2(~)d ~ = -- It q(x), 

(1) 

where G = shear modulus, ~ = 3-4v (for plane strain), v = Poisson's ratio. 
Here ~ is interpreted in the Hadamard sense by retaining the finite part of the divergent 

integral and the kernel Hij(~, x) (i,j = 1, 2) is a function known to satisfy the boundary condition 
expected at the crack surface. It should be noted that Eqns. (1) are virtually the boundary 
conditions which should be satisfied by continuous distribution of 'the two kinds of displace- 
ment discontinuity' along the prospective crack site in the elastic plate without a crack [17]. The 
two kinds of displacement discontinuity are defined in Fig. 2(a). Figure 2(a) shows the 
discontinuity in the normal direction of facets and the discontinuity in the tangential direction of 
facets, both having the magnitude ds x d6 (ds: the area of dF). 

The stress fields due to the displacement discontinuity can be obtained by distributing 'the 
standard set of force doublet' as shown in Fig. 2(b). We have the relationship between the 
stresses due to the unit displacement discontinuity rrvl, av2 and the stresses due to the tension 
type and shear type force doublets of unit size apt, aps as shown in (2). 

G(~c -4- 1) 
try1 = - -  opt, or2 = Gcrp~. (2) 

I ¢ - 1  

y , r l  

a t-l-l-l  b 

Fig. 1. Elastic plate with a crack. 

x , ~  
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0 ' -  × 

p I P2 

X 

Pl = T ~ - P 2  PI = P2 

(a) (b) 

Fig. 2. (a) Two kinds of displacement discontinuity having magnitude of ds x d6, (b) and two kinds of standard set of 
force doublet having magnitude of P2 x e. 

We have defined the magnitude of a force doublet as follows. 

T = l i m ( P 2  × e) (P2 × e = cons t . ) .  (3)  
~ 0  

Using the relationship shown in (2), the integral equations (1) become 

P~(¢~) d e +  n ~ l ( ¢ , x ) P ~ ( ¢ ) d ¢ +  
a ( ~  - x )  2 

b P2(¢) d" b 
a(¢--X-~ ~ + U21(¢,x)P1(¢)d¢ + 

(t¢ + 1) 2 
H,2(~, x)P2(~) d~ = - z r ~ p ( x ) ,  

x + l  
H22(¢, x ) P 2 ( Q  d¢ = - n ~ q ( x ) ,  

z 

(4) 

where Pi(~) (i = 1, 2) is the density of force doublets which is an unknown function at the 
imaginary boundary. 

In solving the integral equations (4) for the body force method, the imaginary crack line has 
been divided into M equal intervals and the continuously varying unknown functions have 
been approximated by the products of the fundamental density function and the stepped 
function, constant in each interval [2]. Namely, unknown functions PI(X), P2(x)  in (4) are 
expressed by 

(x + 1) z / 2 
Pl(~)=taJ2( K -  1)x/c - ( ~ - d )  z, 

where 

P~(~) = taj (~ + 1)=/c~ 2 - ( ~  - d)2 (j = 1, 2 , . . . ,  M), 

(5) 

c = (b - a)/2, d = (a + b)/2 (6) 
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and tis (i = 1, 2) is the stepped function which is a constant in each interval. The given boundary 
conditions are satisfied at the mid-point of each interval. We have defined 

bma  
x i = - - ~ ( j - O . 5 ) + a  ( j =  1, 2 , . . . ,  M). (7) 

In another approach to the solution of the body force method, Isida has used the piecewise 
linear functions at each interval instead of the stepped functions and the boundary condition has 
been satisfied by the resultant forces at each interval [7]. lsida has shown that those methods 
have given results of better accuracy compared with the previous method using the stepped 
function and the boundary conditions at the mid-point of each interval. 

In this study the unknown functions are approximated by using the continuous functions 
instead of the stepped functions at each interval. 

First, normalizing the interval (a, b) of integration by defining 

24 - (b + a) 2 x -  (b + a) 
, s -  , ( 8 )  r -  b - a  b - a  

2 
f , (r )  = b - a P'(~) (i = 1, 2), (9) 

the integral equations (4) become 

;_ ;1 f_ 1 f l ( r )  d r (~+1)2  , ,  
1 (r - s) 2 + -1 h l l (r ,  s ) f l ( r )  dr + i hlz(r,  s ) f2(r)  dr = - r c ~ p t s ~ ,  

1 ( d r  + -1 hzl(r,  s ) f l ( r )  dr + -1 h22(r, s)f2(r) dr  = - ~ - - q ( s ) ,  

where 

(10) 

h~s(r, s) = H~(~, x) (i, j = 1, 2). (11) 

In the solution of (10), the unknown function f~(r) (i = 1, 2) is approximated by the product of 
the fundamental density function w~(r) (i = 1, 2) and the Chebyshev polynomial U.(r)  

+_14 / 1 - 
wl(r) -- 2(t¢ -- 1 ) v  r2, 

f l ( r )  = F,(r)wl(r) ,  

f z(r) = Fn(r)wz(r) ,  

K + I  w2(r) : 2 x/1 -- r2' 

M-1 
F,(r) "~= ~ a.U,(r) ,  

n=0 
M-1 

V.(r) ~ ~ b.U.(r). 
n ~ O  

(12) 

(13) 
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The integral involves a singular term which is evaluated by using the following expression: 

f_ tl.(,),/1 - r 2 
1 (r -- s) 2 dr = - u(n + 1)U.(s). (14) 

By substituting from (12) and (13) into (10) and by using (14), the following set of 2M linear 
equations is obtained 

M - 1  

E 
n = O  

M - 1  

E 
n ~ O  

[ a . { -  u(n + 1)U.(s) + A.(s)} + b.B.(s)]  = - up(s), 

[a .C. (s )  + b . { - u ( n  + 1)U.(s) + D.(s)}] = - uq(s), 

(15) 

where 

f An(s) = h11(r, s)U.(r)~/1  - r 2 dr, 
1 

_ ~ -  1 ~ 1  
B.(s)  

1¢+I  J._l 
hlz(r,  s )U . ( r )x /1  - r 2 dr, 

C.(s) J ~ c - 1  -1 
h21(r, s ) U . ( r ) ~  - r e dr, 

f D,(s) = h22(r, s )U, ( r )x /1  -- r 2 dr. 
1 

(16) 

The convenient set of collocation points is given by 

sj = cos (j = 0, 1 .... , M - 1). (17) 

The unknown coefficients a., b. are determined from (15). The stress intensity factors can be 
calculated from 

K,(b) = F , ( 1 ) ~ , b  - a K,,(b) = Fu(1)~/~ b -2 a (18) 

3. Solution of the integral equations of the body force method for the intricate crack shape 

This section concerns the application of the present method for the solution of the problems 
with intricate crack shapes. By taking as an example, the kinked crack problem, the method of 
solution will be illustrated. 
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3.1. Method of analysis 

Consider a kinked crack in an elastic plate as shown in Fig. 3. It consists of the main part whose 
length is 'a' and the bend part whose length is 'b' inclined by 0 to the main part. By superposing 
the stress fields of a standard set of force doublets on the imaginary crack line, the problem is 
reduced to the following integral equations. 

d+a PIA(~A) I d+a (~ -Z~-~2 d~AA.~A, -4- K 1 A ( ~ A , X A ) P , A ( ¢ A ) d ¢ A  + 
Jd 

fo + [kts(~.,XA) + KIB(~B, XA)]P~B(~n)d~B + 

t 
d+a 

+ [k2A(~A, XA) + K2a(~a, XA)]P2A(~A) d~A + 
da 

fo' (x + 1 )  2 , , + [k2~(~,xA) + K2B(~B, Xa)]P2B(¢B)d~B = -- 7t2(---~_l)PtXA), 

ga+a P2A(¢A) dCA + K2A(~A,XA)P2A(¢A)d¢A + (19) 
d+a 

;o + [k2s(¢a, XA) + K2B(~B, Xa)]P2B(~B) des + 

I 
d+a 

+ [klA(~A,XA) + KI~(~A, XA)]PIA(~A)d~A "4- 
ja 

fo ' ~c+l  
+ [kls(~B, XA) + KIB(~B, XA)]P1B(~B) d~8 = - n - - ~  q(XA), 

where the subscripts A and B denote the main and bend part of the crack, respectively. The 
kernels ku(~, x) (i = 1, 2, j = A, B) are stresses due to the standard set of body force doublets in 

YA 

Fig. 3. Elastic plate with a kinked crack. 
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an infinite plate and the kernels Kij(~, x) (i = 1, 2, j = A, B) are functions known to satisfy the 
boundary conditions except at the crack surface. Equations (19) are corresponding to the 
boundary equations of the main part. The equations of the bend part can be expressed by 
exchanging the subscript A in (19) for B. 

The intervals of integration are normalized by introduction of the new variables r and s: 

ri = (~i - ei)/Li, si = (xi - ei)/Li, (20) 

fl,(ri) = P~,(¢~)/L,, fz,(r,) = PE,(¢,)/L, (i = A, B), 

where LA,  LB are some specific length to be determined from the pattern of the fundamental 
density function. The notations CA, en are the distance from the origin of the x - y coordinate 
axes. Although there are a few patterns for choosing the fundamental density function, in this 
section LA,  LB and CA, eB are defined as follows: 

LA = (a + b cos 0)/2, LB = b, e A = d + LA, en = 0. (21) 

Unknown functions are approximated by the products of the fundamental density functions 
wl(r), w2(r) as shown in (12) and the Chebyshev polynomials U.(r). Here, M1 and M2 are the 
collocation numbers of the main and the bend part of the crack, respectively. 

f la(r A) = F ~(r a)Wl(r a), 

f 2A(r A) = F A(r A)w2(r A), 

flB(rB) = F~(rI~)wl(rB), 

f2n(rB) = F~I(rB)w2(rB), 

M1 - 1  

Fla(ra) ~ ~ a,U,(rA), 
n = 0  

M I - 1  

F~(rA) ~ ~ b.U.(rA), 
n = 0  

M 2 - 1  

F~(rnl-~ 2 c.U.(rB), 
n = 0  

M 2 -  1 

F~(rB) ~-- Z d.U.(r.).  
n = 0  

(22) 

By substituting from (12), (20), (21) and (22) into (19) and by using (14), we obtain the following 
system of linear equations for the determination of coefficients an, bn, Cn and d.. 

M I - 1  

[ a , { -  rc(n + 1)Un(SA) + Anl(SA) } + b.B,l(sA)] + 
n = O  

M 2 -  1 

+ Y~ { c . C . l ( s ~ )  + d .O .x (Sa ) }  = - ~p(s~) ,  
n = 0  

M I - 1  

[a,A,z(Sa) + bn{ -  r~(n + 1)U,(sa) + B.2(sa)}] + 
n=O 

M 2 - 1  

+ Z {c.C.2(SA) + d,D,2(SA)} = - rtq(Sa), 
n = 0  

M I - 1  

[a.A.3(s,) + bnB.3(sn)} + 
n = 0  

(23) 
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M 2 - 1  

+ ~, [cn{ -- x(n + l)Un(sn) + C~3(SB)} + dnD,3(sn)] = - ~zp(sB), 
n = 0  

M I - 1  

2 [a.A~4(s.) + b.B~.(sB)} + 
n = O  

M 2 -  1 

+ ~, [c.C.4(SB) + d . { -  n(n + 1)U.(sB) + D.4(sB)}] = -- xq(sn), 
t l=O 

where we have defined 

ft.  Un(ra) X/i-- 'r  2 drA + 
a ~ ( s ~ )  = - ( d - -  SA---) ~ 

f. 
+ K~A(rA, S A ) U . ( r A ) x / i - - ~  dra, 

- 1  

B ~ ( s ~ )  = 

C~,(sA) = 

D~l(sa) = 

a 

m ~ LA I t  

f 
m ~--  1 -- 
-1 [k2a(ra, SA) + K2A(rA, SA)] U.(rA) ~ X/1 -- r] drA, 

f O ....... 
[klB(r.. SA) + K I.(rB, sa)] Un(rs) x/ i  - r~drB, 

f o  ~--  1 x/1 _ r ZdrB" [k2a(rn, sA) + K2B(rB, SA)] Un(rs) 

(24) 

A,2(SA) "" Dn4(sB) are defined from similar formulas. 

3.2. Discussion on the solution accuracy 

In the case of the analysis of the kinked crack with an extremely short bend, it is well 
known that the solution accuracy generally goes down as bend length b approaches zero. 
Hence, we have to give special consideration to the position of the collocation points and the 
ratio of the collocation point number for the main and the bend part, etc. [8]. In this section, 
by taking as an example of the tension an infinite plate with the 45 ° angled kinked crack, as 
shown in Fig. 4, we will investigate the primary factors which seem to affect the numerical 
results. 

3.2.1. Effect of the position of the collocation points 
First the collocation points are selected at the same intervals as shown in (25) 

J 
s B J - - M 2 + I  ( j = l , 2  ..... M 2 , 0 < s B j < I ) .  (25) 

When b/a < 0.1 in Fig. 4, however, the convergency of the solution goes down and a lot of 
collocation points are needed to get accurate results. Therefore, the position of the collocation 
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A '~~~B~O... 
I" 7 

Fig. 4. Tension of an infinite plate with a kinked crack. 

points is modified as shown in (26). In using (26), we have more  collocation points near the bend 

point  and the crack tip 

snj = ~ c o s ~  (j  = 1, 2,. . . ,  M2, 0 < snj < 1). (26) 

As shown in Table 1, it is found that the position of collocation points has a considerable effect 

on the numerical calculations and the calculation using the collocation points as shown in (26) 

gives rapidly converging numerical results. 

Table 1. Effect of the position of the collocation points (0 = 45 ° in Fig. 4) 

b/a Eq. M 1 M2 F~ Fg 

5 5 0.62308 0.53435 
(25) 10 10 0.63066 0.50958 

15 15 0.63116 0.50702 
0.1 

5 5 0.63262 0.50713 
(26) 10 10 0.63293 0.50753 

15 15 0.63298 0.50651 

Kitagawa et al. [9] 0.634 0.505 

16 4 0.68209 0.47046 
(25) 20 5 0.68675 0.47049 

24 6 0.69170 0.45723 
0.01 

16 4 0.73096 0.39338 
(26) 20 5 0.73026 0.39262 

24 6 0.73015 0.39219 

Kitagawa et al. [9] 0.732 0.389 

3.2.2. Effect of the ratio of the collocation point number M2/M1 
In the previous analysis of the body  force method using such stepped function, it has been found 

that  the ratio of  the collocation point M2/M1 should be chosen to be nearly equal to the ratio 

b/a. Therefore, we will consider the effect of  M2/M1 on the numerical calculation. Table 2 shows 

the convergency of  the dimensionless stress intensity factor for different ratio M2/M1. As shown 
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Table 2. Effect of the ratio of the collocation point number M2/MI (0 = 45 °, 
b/a = 0.01 in Fig. 4) 

M2/M1 M1 M2 F~ F~ 

25 5 0.73062 0.39181 
0,2 30 6 0.73053 0.39113 

35 7 0.73046 0.39052 

30 3 0.73280 0.38943 
0.1 40 4 0.73122 0.38931 

50 5 0.73131 0.38836 

60 3 0.73195 0.38627 
0.05 80 4 0.73147 0.38656 

100 5 0.73118 0.38684 

in Table 2, in the case that b/a = 0.01, the results have enough accuracies even when 
M2/M1 = 0.2. 

3.2.3. Effect of the specific length of the fundamental density function 
The fundamental density function as shown in (12) is an important concept of the body force 
method to obtain accurate solutions I-2]. In this section, the two kinds of specific length of the 
fundamental density functions as shown in Fig. 5(a) and (b) are used and both numerical results 
are compared. The specific length L~ as shown in Fig. 5(a) is defined by (21), and the specific 
length LB shown in Fig. 5(b) is defined by 

1 a 

Table 3 shows the convergency of the dimensionless SIFs for different specific length. As shown 
in Table 3, the specific length of the fundamental density function does not have much effect on 
the solution accuracy. Therefore, in the numerical calculations of the other results, the specific 
length LA shown in Fig. 5(a) is used. 

h 

B B 

(a) (b) 
Fig. 5, Specific length of the fundamental density function. 
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Table 3. Effect of the specific length of the fundamental density function 
(0 = 45 ° in Fig. 3) 

F~ = K , / a x / ~  

b/a M1 M2 La Ls 

12 4 0.6337 0.6337 
0.I 18 6 0.6334 0.6334 

24 8 0.6334 0.6330 

9 9 0.5691 0.5691 
1.0 11 1l 0.5691 0.5691 

13 13 0.5691 0.5691 

F~ = K, , /ax /~  

b/a M1 M 2 L a Ln 

12 4 0.5062 0.5061 
0.1 18 6 0.5057 0.5057 

24 8 0.5056 0.5052 

9 9 0.6411 0.6411 
1.0 11 11 0.6411 0.6411 

13 13 0.6411 0.6411 

295 

4. Numerical results and discussion 

4.1. Oblique edge crack 

The problem of the oblique edge crack in the semi-infinite plate under uniform tension as shown 
in Fig. 6 has been analyzed by Nisitani I-6] and Isida 18] using the body force method. Nisitani 
has used the stepped function and the boundary conditions have been satisfied at the mid-point 
of each interval. Isida has used the piecewise linear functions at each interval and the boundary 
condition has been satisfied by the resultant force at each interval. On the other hand, Hasebe 

i 

Fig. 6. Oblique edge crack in a semi-infinite plate under uniform tension. 
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[10] has analyzed this problem by using the rational mapping function and the complex 
variable method. In Table 4, the stress intensity factors of the oblique edge crack for various 
values of 0 are shown, where F~ and F,  are dimensionless SIFs based on a~x//-~. The numerical 
results obtained by those methods are in close agreement; however, when 0 < 30 °, each result 
makes a small difference. Present results are in better agreement with the results by 
Hasebe than those of Nisitani and Isida. In Table 4, it should be noted that Nisitani's values are 
obtained by the extrapolation for the results for M = 32 and 24. 

Table 5 shows the convergency of the numerical results by the present method compared with 
the results by using the stepped functions. In Table 5, the symbol oo(32 - 24) designates the 
extrapolated value using the results of M = 32 and M = 24 on the basis of the linear 
relationship between the SIFs and 1/M. As shown in Table 5, it is found that when increasing 
the collocation points M, the extrapolated values approach the present results even when 
0 < 30 °. The present method is found to give results of better accuracy and shorter CPU time 
compared with the previous method using such stepped functions. 

In Fig. 7(a)-(c), the expressions of the unknown functions F~, F.  in (13) are compared using 
the Chebyshev polynomials and the stepped functions (BFM). In the present analysis using the 
Chebyshev polynomials, the expresion of M = 20 and the one of M = 30 almost coincide with 
each other and therefore they seem to express the unknown functions F~ and F.  very 
accurately. On the other hand, when we use the stepped functions to analyze the extremely 
oblique edge crack (0 < 30°), both expressions of M = 20 and 40 don't coincide with the 
present analysis. However, on increasing the collocation points M, they seem to approach the 
present analysis. 

Table 5. Comparison of the convergence of SIFs (Chebyshev polynomials and stepped function). 

Present analysis BFM(stepped function) 
0 o 

M Fi FII M Fi Fxl 

45 

5 0.70403 0.36557 24 0.70788 0.36106 
10 0.70499 0.36455 32 0.70704 0.36190 
15 0.70488 0.36446 64 0.70583 0.36321 
20 0.70489 0.36447 96 0.70546 0.36365 
25 0.70490 0.36448 oo(32-24) 0.70453 0.36443 

oo(64-32) 0.70462 0.36452 
oo(96-64) 0.70472 0.36454 

30 

10 0.46260 0.33590 24 0.45300 0.34275 
15 0.46257 0.33620 32 0.45505 0.34122 
20 0.46254 0.33619 64 0.45838 0.33880 
24 0.46250 0.33617 96 0.45960 0.33795 
30 0.46247 0.33616 oo(32-24) 0.46117 0.33660 

oo(64-32) 0.46171 0.33636 
oo(96-64) 0.46204 0.33626 

15 

20 0.23225 0.22637 
25 0.23184 0.22617 
30 0.23182 0.22616 
35 0.23181 0.22615 
40 0.23180 0.22614 

24 0.23976 0.22916 
32 0.23611 0.22884 
64 0.23247 0.22780 
96 0.23175 0.22733 
128 0.23151 0.22707 
oo(32-24) 0,22517 0.22786 
oo(96-64) 0,23031 0.22639 
oo(128-96) 0,23078 0.22628 
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Fig. 7. Comparison of approximation of weight function F1, Fl~ (Chebyshev polynomials and stepped function). (a) In 
the case of 0 = 45 °. (b) In the case of 0 = 30 °. (c) In the case of 0 = 15 °. 

Figure 8 shows the oblique edge crack subjected to non-linear tractions. The tractions on the 
crack surface are expressed by 

Pyy = (x /b) ' ,  P,y = O, 

P:~y = (x/b)", Pyy = O. 
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[ ?  
Fig. 8. Oblique edge crack subjected to nonlinear tractions. 

Numerical results are given in Table 6 for various m and 0. This problem has been analyzed by 
Stallybrass [11] (when 0 = 90 °) and Nisitani and Oda [12] (when 0 = 30-90°). The present 
method gives accurate results even for the small angle of 0 which has been difficult to calculate 
by the previous method. The results in Table 6 are useful for estimating the SIFs of the crack 
emanating from the notch root and the crack in the residual stress field. 

4.2. Kinked and branched crack in the infinite plate 

The tension problems of kinked crack in the infinite plate as shown in Fig. 4 are analyzed for 
various values of b/a. The dimensionless factors FIB and FnB based on a~/-~, where c is the 
projected length of the total crack, are summarized in Table 7 in comparison with Isida's results 
[7, 13]. The value of b/a = 0.000 in Table 7 is the result of an infinitesimal kinked crack 
calculated by Kageyama et al. [14]. Both of Isida's results were analyzed by the body force 
method in which the unknown body force densities are expressed by the piecewise linear 
functions and the boundary conditions are satisfied by the resultant forces. In [13], unknown 
body force densities are derived from the solution of the isolated force doublet in a plane with a 
line crack and can be determined only from the boundary condition along the bend. In this 
method, because the traction-free condition along the main crack is completely satisfied, a high 
accurate analysis was actualized compared with the results in [8]. Although the present analysis 
is based on continuous distributions of body force doublets along the crack of main and bend 
parts, the results are in close agreement with the results of [13]. 

The tension problem of the branched crack as shown in Fig. 9 is also analyzed for various values 
of b/a. Dimensionless factors FIB and Fna based on a ~ , ~  in the case of 0 = 45 o, where c is the 
projected length of the total crack, are summarized in Table 8 in comparison with the previous 
values. Present results are in remarkable agreement with the results by Isida and Noguchi [15]. 

4.3. Kinked and zig-zag edge crack in the semi-infinite plate 

A kinked edge crack in a semi-infinite plate subjected to uniform tension is considered, see 
Fig. 10. This problem in the case of c2/cl > 0.1 has been investigated by Nisitani [6]. 
The dimensionless factors, normalized with respect to a~/nCx/COS 0, are shown in Table 9. 
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Table 7. Dimensionless SIFs of the 45°-kinked crack at the crack tip B in the infinite plate 
(Fig. 4). 

301 

F~ = K ~ / a ~  

Present Isida Isida 
analysis [7] [13] 

b/a 

0.000[4] 0.791 0.791 0.791 
0.005 0.749 - -  0.748 
0.0l 0.731 0.710 0.730 
0.1 0.633 0.634 0.633 
1.0 0.569 0.569 0.569 

F~ = K~/ax/ '~ 

Present Isida Isida 
analysis [7] [13] 

b/a 

0.000 [14] 0.324 0.324 0.324 
0.005 0.370 - -  0.369 
0.01 0.388 0.356 0.388 
0.1 0.506 0.504 0.505 
1.0 0.641 0.641 0.641 

I f  

Fig. 9. Tension of an infinite plate with a branched crack. 

It is found that present results approach the previous results by Nisitani et al. [16] when 
b/a ~ O. 

The problems of zig-zag crack in the semi-infinite plate under tension as shown in Fig. 11 are 
treated. Here, the number of the branch is N, collocation point number of the bend part is M 
and total collocation point number is M x N. The dimensionless factors F~ and F .  are defined 
as multiples of ax//-~, where c is the total length N x a of the crack. Values of Ft and F ,  are 
given in Table 10 for various 0 and N. This problem in the case of 0 = 45 ° has been analyzed by 
Isida I-8]. In Table 10, these results are in close agreement with the results of the straight edge 
crack (when N = l). Table 11 shows the convergency of the SIFs. Even in the case of the 
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Table 8. Dimensionless SIFs of the 45°-branched crack 
(Fig. 9). 

F~ = K~/aW/Tzc 

Present lsida 
analysis [ 15] 

b/a 

0.02 0.631 0.631 
0.03 0.615 0.615 
0.05 0.593 0.593 
0.1 0.560 0.560 
0.5 0.500 0.500 
1.0 0.495 

F~ = K~ / ( r x /~  

Present Isida 
analysis [15] 

b/a 

0.02 0.246 0.246 
0.03 0.267 0.267 
0.05 0.297 0.297 
0.1 0.347 0.347 
0.5 0.474 0.474 
1.0 0.506 

I t I 

Fig. 10. Tension of a semi-infinite plate with kinked edge 
crack. 

T t t 

Fig. 11. Tension of a semi-infinite plate with zig-zag 
crack. 

problem with intricate crack shapes, it is found that the convergence of the present numerical 
method is extremely good. 

5. Conclusion 

In this paper, the numerical solution of the singular integral equations based on the body force 
method was investigated. The conclusions are summarized as follows: 
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Table 9. Dimensionless S1Fs of the kinked edge crack (Fig. 10) 

FI,II = gl,n/a nx/~l/cos 0. 

C2/C1 0 ° Fj Ell 

60.0 0.467 0.340 
45.0 0.708 0.358 

0.10 
30.0 0.921 0.295 
15.0 1.068 O. 167 

60.0 0.472 0.324 
45.0 0.713 0.342 

0.05 
30.0 0.924 0.285 
15,0 1.070 0.162 

60.0 0.479 0.313 
45.0 0.717 0.332 

0.03 
30.0 0.926 0.277 
15.0 1,070 0.158 

60.0 
45.0 0.74 0.3l 

0.00 
30.0 0.94 0.25 

[16] 15.0 1,07 0.14 

Table 10. Dimensionless SIFs of the zig-zag crack (Fig. 11) Fial= 

Kl.ll/•X/Tcc, c = N × a. 

Fl F .  
0 o 

N Present Isida Present lsida 
analysis [8] analysis [8] 

1 0.4625 0.3362 
2 0.463 0.337 

30.0 
3 0.465 0.332 
4 0.470 0.325 

1 0.7049 0.705 0.3645 0.365 
2 0.705 0,703 0.365 0.364 

45,0 
3 0,706 0.704 0.359 0,360 
4 0,708 0.704 0.353 0.355 

1 0.9201 0.3058 
2 0.920 0,305 

60.0 
3 0.920 0.302 
4 0.921 0.298 

Table 11. Convergence of the SIFs of 45°-zig-zag crack (Fig. 11). 

N = 3  N = 4  

M FI FII M Fi Fu 

3 0.7075 0.3621 3 0.7096 0.3561 
4 0.7062 0.3606 4 0.7084 0.3544 
5 0.7055 0.3601 5 0.7078 0.3539 
6 0.7056 0.3598 6 0.7080 0.3536 
7 0.7057 0,3596 7 0.7080 0.3534 
8 0.7057 0,3595 8 0.7081 0.3533 
9 0,7058 0.3594 9 0.7082 0.3532 

10 0.7058 0.3593 10 0.7082 0.3532 
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1. In the analysis of the body force method, the problem is formulated as an integral equation 
with higher singularity of the form r-2. The present numerical method, in which unknown 
functions are approximated by the products of the fundamental density functions and the 
Chebyshev polynomials, was found to give the results of better accuracy and shorter CPU 
time compared with the previous method using stepped functions etc. 

2. The stress intensity factors of the oblique edge crack in the semi-infinite plate were calculated. 
The present method gave accurate results even for the extremely oblique edge crack which 
has been difficult to calculate by the previous method. 

3. As examples of the problems with the intricate crack shapes, the tension problems of the 
kinked crack, branched crack and zig-zag crack were treated. Even in the case of the crack 
with extremely short bend, the accurate numerical results were obtained by selecting a 
convenient set of collocation points. The present results were in close agreement with 
previous research. The present method was found to be useful for analyzing exactly various 
crack problems. 
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