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Effect of curvature at the crack tip on the stress intensity factor
for curved cracks
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Abstract. In this paper, the numerical solution of the hypersingular integral equation using the body force method in
curved crack problems is presented. In the body force method, the stress fields induced by two kinds of standard set of
force doublets are used as fundamental solutions. Then, the problem is formulated as a system of integral equations
with the singularity of the form r~ 2, In the numerical calculation, two kinds of unknown functions are approximated
by the products of the fundamental density functions and power series. The calculation shows that the present method
gives rapidly converging numerical results for curved cracks under various geometrical conditions. In addition, a
method of evaluation of the stress intensity factors for arbitrary shaped curved cracks is proposed using the approximate
replacement to a simple straight crack.

1. Introduction

In the investigation of fatigue crack growth behavior based on linear fracture mechanics, it is
quite important to calculate exactly the stress intensity factor of the crack for various geometric
configurations. In the two-dimensional curved crack problem, the solution for a circular-arc
crack in an infinite plate has been first presented by Sih-Paris-Erdogan [1] using the stress
function given by Muskhelishvili [2]; however, Atluri-Kobayashi-Nakagaki [3] and Cotterell-
Rice [4] have corrected the error of the expression of the solution. Ioakimidis and Theocaris [5]
have given the numerical solutions of a circular-arc crack in an isotropic elastic half-plane. Chen
et al. [6] have analyzed crack problems of parabolic shape, sine shape and snake shape in an
infinite plate. Other curved crack problems have been analyzed by an approximate method
using the first order solution [4, 7] and using the solution of the circular-arc crack [8, 9].
However, little attention has been given to the relation between curvature at the tip of the
curved crack and the stress intensity factor.

In the previous papers [10, 117, numerical solution of the singular integral equation of the
body force method has been discussed and the various crack problems have been shown to be
solved with higher accuracy compared with previous research. In this study, the method is
applied to the analysis of the curved crack problem. As a basic model, the problem of a crack
that consists of a straight part and a circular-arc part is treated. The calculation is carried out
for the curved crack under various geometrical conditions in order to investigate the effect of
curvature at the crack tip on the stress intensity factor. In addition, a method of evaluation of
the stress intensity factors for arbitrary shaped curved cracks is proposed using the approximate
replacement to a simple straight crack.

2. Numerical solution of the singular integral equation

In this section, by taking as an example the tension of a semi-infinite plate with a circular-arc
edge crack (Fig. 1), a method of solution will be explained. The hypersingular integral equation
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Fig. 1. Circular-arc edge crack in a semi-infinite plate Fig. 2. Division of the integration interval.

under uniform tension.

for this problem can be formulated by means of the body force method {11, 15]. This method
uses the stress field induced by two kinds of standard set of force doublets in an infinite plate as
a fundamental solution. The problem is reduced to the following integral equation, where the
densities of the body force doublets (continuously distributed pairs of point forces) along the
imaginary boundary of the crack, tension and shear type f(¢) and f,(¢), are to be unknown
functions

f:hu(e, $f(¢)dg + f:HU(e, Do) do + J(:hu(e, ) () dg
+ 'rHu(B, D) f2(p)dp = —0® cos? 8, (1a)
fhmw@ﬁwm¢+fHu0¢mwm¢+f}n&wﬁwm¢

+ J‘asz((), &) f2(¢)d¢ = 6 sin B cos 6. (1b)

Equation (1} is virtually the boundary conditions on the imaginary boundary; that is, ¢, = 0,
T = 0. Here h;;(0, ¢) (i, j = 1, 2) is stresses due to the standard set of force doublets in an infinite
plate and H;;(0, ¢) is the function known to satisfy the boundary condition expected at the crack
surface.

In the numerical solution of (1), the unknown function f;(¢) (i = 1, 2) is approximated by the
product of the fundamental density function w;(¢) and the power series ¢"
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where N is a number of collocation points, k = 3 — 4v in plane strain, and v is Poisson’s ratio.
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Using the approximation method mentioned above, the problem is reduced to determining
the coefficients a, and b, in (2). The convenient set of collocation points is given by

2j—1
0,.=Lacos(JN g>+%cx, (=12, ..,N). 3)

The stress intensity factor can be calculated from

KI,I] = Fl,u(OC)CTw\/ TP, (4)

The present method in this section can be applied to various curved crack problems. As an
example, a crack that consists of a straight part and a circular-arc part is considered in this
study. The boundary conditions along the straight part of the crack are satisfied by the product
of the fundamental density functions and Chebyshev polynomials as shown in [10, 11].

3. Evaluation of singular integral

The integration of the first and the third terms in the left-hand sides of (1) involve singular terms.
In the analysis of straight crack problems, the singular integral is easily evaluated by the formula
using Chebyshev polynomials [10-13]. However, in the curved crack problem, the formula is
not available; therefore, the following method of evaluation of finite-part integrals is applied
[15].

The integration interval is divided into three parts as shown in Fig. 2.

I= f :h(e, 0)f () dé

8+eo

0—¢o
= L h(®, 9)f(¢)do + j( h(B, §)f ($)do + f ho, Q) f(P)dp =1, + I, + 15, (5)

8—¢eo 8+zg0
The first and the third integral can be easily evaluated by the numerical integration procedure.
The second integral can be expressed as follows by letting ¢ = 8 + ¢

L=t We0+af0+ede=1" (S+24e . )de (©)
e ¢

— &0 — &0

The first term integral in the right-hand side in (6) is evaluated as the meaning of the finite-part
integral proposed by Hadamard [14]. The second term integral, which is interpreted as meaning
Cauchy’s principle value, should be zero. Neglecting the terms of a higher order than &3, we find

2
12 = — “ + 2C380. (7)
o

Then the singular integrals are calculated by determining of the coefficients ¢, and c; in (6).
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4. Numerical results and discussion

4.1. Circular-arc crack in an infinite plate

Since the exact solution for a circular-arc crack in an infinite plate is available, the accuracy of
the result obtained by the present method is verified through the comparison with the exact
solution. Table | shows the stress intensity factors calculated by the previous body force
method, in which the unknown functions are approximated by the stepped function instead of
the power series in (2). Here N is the number of collocation points and the symbol oo (100-150)
designates the extrapolated value using the results of N = 100 and 150 on the basis of the linear
relationship between the SIF and 1/N. As shown in Table 1, the results obtained by the previous
method using stepped function coincide with the exact solution in the 3 digits.

On the other hand, Table 2 shows the results obtained by the present method. The present
results coincide with the exact solution in the 7 digits completely when N = 6. It is found that
the present method gives rapidly converging numerical result with short CPU time.

4.2. Curved crack in an infinite plate

To investigate the effect of curvature at the crack tip on the stress intensity factor, a curved
crack that consists of a straight part and a circular-arc part is considered as a basic crack
model. In Table 3, dimensionless SIFs at the crack tip B for various values of the relative
curvature p/2c¢ and the angle « are shown, where 2¢ is the projected length of the total crack in
a direction perpendicular to the tensile axis. In consideration of the estimation of the SIF for an
arbitrary shaped crack in an actual structure, the present results are compared with the SIF of
the straight crack with the same inclination angle » and with the same projected iength 2c¢ as
shown in Fig. 3. As shown in Table 3, the value of F| at the tip B of the curved crack can be
estimated by that of the straight crack within about 4 percent when p/2c > 0.2 and o < 45°. On
the other hand, the difference of the values of Fy; between the curved and the straight crack is
quite large.

Next, the effect of the position of crack tip A on the SIF at the crack tip B is considered. The
position of crack tip A varies in the range that — 15° < < 45° as shown by the parameter f§ in
Fig. 4. The results are shown in Table 4, when p/2c = 0.2 ~ 0.8 and « = 30°. It is seen that the
SIF at crack tip B is not much influenced by the position of the other crack tip A, if p/2c¢ > 0.4.
Judging from Table 3 and 4, the mode 1 SIF of arbitrary curved crack can be approximately
evaluated by that of the straight crack with the same inclination angle and with the same
projected length of the curved crack, when p/2¢ > 0.4 and o < 45°.

4.3. Circular-arc edge crack in a semi-infinite plate

The circular-arc edge crack in a semi-infinite plate under uniform tension is considered. In the
case that the tangent of the crack tip is perpendicular to the half-plane boundary, the
dimensionless SIFs for various values of 6 obtained by the present analysis are shown to be
compared with the results of Toakimidis et al. [5] in Table 5. Both results are in good agreement
with each other. In Table 5, F{ is the dimensionless SIF based on a“‘\/ﬁ, where b = psin a is
the projected crack length. The values of Fj are in close agreement with the well-known value
1.1215. The corresponding values of F;; can be seen almost to vanish.
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Fig. 3. Estimation of the SIF using the approximate
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Table 4. Values of F| and F in Fig. 4

{oo

Fig. 4. Effect of the position of the crack tip A on the SIF

pl2c 0.2 0.4 0.6 0.8
B F Fy F, Fy F Fy Fy Fy
—150 0.8165 0.4034 0.8130 04172 0.8107 0.4267 0.8091 0.4340
0.0 0.8389 0.3557 0.8207 0.3934 0.8100 0.4183 0.8034 0.4361
150 0.8642 0.3188 0.8228 0.3780 0.8005 0.4175 0.7891 0.4446
300 0.8965 0.2832 0.830t 0.3559 0.7934 0.4103 0.7771 0.4478
45.0 0.9448 0.2480 0.8597 0.3213 0.8003 0.3927 0.7749 0.4466
Straight 0.8059 0.4653 0.8059 0.4653 0.8059 0.4653 0.8059 0.4653

Table 5. Dimensionless SIF of the circular-arc edge crack, in which
the tangent of the crack tip is perpendicular to the half-plane
boundary (F, = K;/6*/npa, Ft = K\/6®/nb,b = psin a)

o || Present analysis Toakimidis
et al. [5]
F (F¥) Fy
15.0 1.1152 (1.1216) 1.115
30.0 1.0962 (1.1218) 1.100
45.0 1.0647 (1.1221) 1.065
60.0 1.0206 (1.1223) 1.023
75.0 0.9642 (1.1224) 0.965
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Next, the circular-arc edge crack as shown in Fig. 1 is analyzed. Table 6 shows the
convergency of the SIFs. In the case of the edge crack problem, it is found that the
convergency of the present results is extremely good. In Table 7, the dimensionless SIFs for
various values of « are shown in comparison with the SIFs for an oblique edge crack. The
angle of the oblique edge crack is chosen such as to have the same tangent of the tip of the
circular-arc edge crack as shown in Fig. 5. As shown in Table 7, it can be seen that mode 1
SIFs of the straight crack conform more closely to one of the circular-arc cracks for a wide
range of «. The values of Fy; of the oblique edge crack are also in good agreement within 5
percent for o < 60°.

4.4. Curved edge crack in a semi-infinite plate

Finally, the edge crack that consists of a straight part and a circular-arc part, which we called
‘the curved edge crack’ in this paper, is considered. The SIFs are calculated for various values of
o and c,/c,, where o is the angle of the crack tip, ¢; is the projected crack length, and
¢, = p sin o is the projected length of the circular-arc part. The dimensionless SIFs are shown in
Table 8 in comparison with the SIFs for an oblique edge crack as shown in Section 4.3. As
shown in Table 8, it can be seen that mode I SIFs of the straight crack are in close agreement
with those of the curved edge crack for wide range of « and ¢, /c, . The difference between mode
I1 SIFs for curved and straight edge crack is generally small except for the case of large « and
small ¢, /c;.

In the case of the edge crack, it is found that the curvature of the crack tip does not have
much effect on the stress intensity factor. Hence, the approximate SIF for arbitrary curved edge
crack can be evaluated, if the inclined angle at the crack tip and the projected crack length are
given.

In addition, the stress intensity normal to tensile directions is considered [16]. The edge crack
subjected to uniform tension has a strong tendency to grow in a direction perpendicular to that
of the applied stress and macroscopically the crack grows in that direction. At the crack tip, the
stress o, on the y-axis as shown in Table 9 is expressed by

- - K, zﬁla“\/ncl ®)
iy 2y 2Ty ’

K, = (G cosia + cos 130K, + (3sin $a + 2 sin 4 30)K ). 9)

Table 6. Convergency of the SIF for the circular-arc edge crack as shown in Fig. 1

N 2 =300 2 = 60.0
Fl Fll Fl Fll

4 0920717 0.304933 0.453699 0.352683

6 0.919676 0.305050 0.462889 0.352426

8 0.919664 0.305088 0.462765 0.352481

10 0919671 0.305095 0.462749 0.352493

12 0.919675 0.305096 0.462747 0.352496

14 0.919677 0.305097 0462747 0.352496
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Fig. 5. Oblique edge crack with the same inclination angle at the crack tip and with the same projected crack length.

Table 9. Values of F, of the curved edge crack in a semi-infinite plate
under uniform tension, when o, on the y-axis is expressed in the form of

0. =Fio%/nc //2ny

o 15.0 30.0 450 60.0

ca/ey

0.1 1.124 1.119 1.080 0.984
0.2 1.125 1.122 1.085 0.989
04 1.126 1.125 1.090 0.992
0.6 1.126 1.127 1.092 0.991
0.8 1.127 1.128 1.092 0.988
1.0 1.127 1.128 1.092 0.986

Table 9 shows the values of F,. As shown in Table 9, F, is almost constant for a < 45° and is
about the same value of straight edge crack, 1.12. Consequently the stress intensity in the
direction normal to the tensile axis is nearly equal to that of the straight edge crack with the

same projected crack length.

5. Conclusion

In this paper, the method of numerical analysis of the hypersingular integral equation based on
the body force method in the curved crack problem was considered. Numerical calculations
were carried out for curved cracks under various geometrical conditions, and the effect of
curvature at the crack tip on the stress intensity factor was discussed. The conclusions are

summarized as follows:

1. Since the convenient formula using Chebyshev polynomial useful for straight crack problems
cannot be applied to curved crack problems, in the present numerical method, the unknown
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functions are approximated by the product of the fundamental density function and power
series. It was found that the present method gives good convergency of the numerical results;
in particular, the present result of the circular-arc crack in an infinite plate under uniform
tension coincided with the exact solution in the 7 digits.

The curved crack that consists of a straight part and a circular-arc part was considered as
a basic crack model. Dimensionless SIFs at the curved crack tip B for various values of the
relative radius of curvature p/2c and the angle o were shown (see Fig. 3). The present
results were compared with the SIF of the straight crack with the same inclination angle
and with the same projected length. The mode I SIF of an arbitrary curved crack can be
approximately given by that of the straight crack with the same inclination angle and with
the same projected length of the curved crack, when p/2c¢ > 0.4 and « < 45°. On the other
hand, the difference of the values of F; between the curved and the straight crack is quite
large.

The edge crack that consists of a straight part and a circular-arc part was considered. The
dimensionless SIFs for the curved edge crack were shown in comparison with the SIFs for an
oblique edge crack. In the case of the edge crack, it was found that the curvature of the crack
tip did not have much effect on the stress intensity factor. Hence, the SIF for arbitrary
curved edge crack can be evaluated by that of the straight edge crack with the same inclined
angle and the projected length of the curved crack.
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