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Abstract. In this paper, the numerical solution of the hypersingular integral equation using the body force method in 
cucved crack problems is presented. In the body force method, the stress fields induced by two kinds of standard set of 
force doublets are used as fundamental solutions. Then, the problem is formulated as a system of integral equations 
with the singularity of the form r- 2. In the numerical calculation, two kinds of unknown functions are approximated 
by the products of the fundamental density functions and power series. The calculation shows that the present method 
gives rapidly converging numerical results for curved cracks under various geometrical conditions, In addition, a 
method of evaluation of the stress intensity factors for arbitrary shaped curved cracks is proposed using the approximate 
replacement to a simple straight crack. 

1. Introduction 

In the investigation of fatigue crack growth behavior based on linear fracture mechanics, it is 
quite important to calculate exactly the stress intensity factor of the crack for various geometric 
configurations. In the two-dimensional curved crack problem, the solution for a circular-arc 
crack in an infinite plate has been first presented by Sih-Paris-Erdogan [1] using the stress 
function given by Muskhelishvili [2]; however, Atluri-Kobayashi-Nakagaki [3] and Cotterell- 
Rice [4] have corrected the error of the expression of the solution. Ioakimidis and Theocaris [5] 
have given the numerical solutions of a circular-arc crack in an isotropic elastic half-plane. Chen 
et al. [6] have analyzed crack problems of parabolic shape, sine shape and snake shape in an 
infinite plate. Other curved crack problems have been analyzed by an approximate method 
using the first order solution [4, 7] and using the solution of the circular-arc crack [8, 9]. 
However, little attention has been given to the relation between curvature at the tip of the 
curved crack and the stress intensity factor. 

In the previous papers [10, 11], numerical solution of the singular integral equation of the 
body force method has been discussed and the various crack problems have been shown to be 
solved with higher accuracy compared with previous research. In this study, the method is 
applied to the analysis of the curved crack problem. As a basic model, the problem of a crack 
that consists of a straight part and a circular-arc part is treated. The calculation is carried out 
for the curved crack under various geometrical conditions in order to investigate the effect of 
curvature at the crack tip on the stress intensity factor. In addition, a method of evaluation of 
the stress intensity factors for arbitrary shaped curved cracks is proposed using the approximate 
replacement to a simple straight crack. 

2. Numerical solution of the singular integral equation 

In this section, by taking as an example the tension of a semi-infinite plate with a circular-arc 
edge crack (Fig. 1), a method of solution will be explained. The hypersingular integral equation 
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Fig. 1. Circular-arc edge crack in a semi-infinite plate 
under uniform tension. 
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Fig. 2. Division of the integration interval. 

for this problem can be formulated by means of the body force method 1-11, 15]. This method 
uses the stress field induced by two kinds of standard set of force doublets in an infinite plate as 
a fundamental solution. The problem is reduced to the following integral equation, where the 
densities of the body force doublets (continuously distributed pairs of point forces) along the 
imaginary boundary of the crack, tension and shear type f1(¢)  and fz(q~), are to be unknown 
functions 

h,~(O, ¢)A(¢) de  + HI,(O, ¢)A(¢) dq~ + h12(0, ¢)A(qS)d¢ 
0 0 

+ H12(0, ¢) fz (¢ )de  = - a °~ cos z O, (la) 
0 

h21(0, ~b)fl(~b) de  + H21(0, ¢)f1(¢) de  + h22(0, ¢) f2(¢)d¢ 
0 0 

+ H22 (0, ¢)f2 (¢) de  = o ~ sin 0 cos 0. 
0 

(lb) 

Equation (1) is virtually the boundary conditions on the imaginary boundary; that is, a,  = 0, 
r,t = 0. Here hij(O, ¢) (i,j = 1, 2) is stresses due to the standard set of force doublets in an infinite 
plate and Hij(O, O) is the function known to satisfy the boundary condition expected at the crack 
surface. 

In the numerical solution of (1), the unknown function J~(¢) (i = 1, 2) is approximated by the 
product of the fundamental density function w~(~b) and the power series ¢" 

u-1 (K + 1)% ~ 
f1(¢) = F,(¢)w1(¢), F,(¢) ~- ~ a,¢", Wl((~) - -  20¢ - 1) px/~] - i f )2  (2a) 

n = 0  

u 1 (~ + 1) °~° p ~  _ ¢2, (2b) 
f2(¢) = F,,(¢)w2(¢), FI l (q~  ) ~- Z bn~t~", w2(~)  - 2 

n = o  

where N is a number of collocation points, K = 3 - 4v in plane strain, and v is Poisson's ratio. 
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Using the approximation method mentioned above, the problem is reduced to determining 
the coefficients a, and b. in (2). The convenient set of collocation points is given by 

The stress intensity factor can be calculated from 

K l , n  "= Fl , l i (~x)o '°°x/@~x.  (4) 

The present method in this section can be applied to various curved crack problems. As an 
example, a crack that consists of a straight part and a circular-arc part is considered in this 
study. The boundary conditions along the straight part of the crack are satisfied by the product 
of the fundamental density functions and Chebyshev polynomials as shown in [10, 11]. 

3. Evaluation of singular integral 

The integration of the first and the third terms in the left-hand sides of (1) involve singular terms. 
In the analysis of straight crack problems, the singular integral is easily evaluated by the formula 
using Chebyshev polynomials [10-13]. However, in the curved crack problem, the formula is 
not available; therefore, the following method of evaluation of finite-part integrals is applied 
[15]. 

The integration interval is divided into three parts as shown in Fig. 2. 

f 
or 

I = h(O, q~)f(q~) dq~ 
0 

IO-eo ~ O+eo fo z 
= h(O, ~a)f((a) d~b + h(O, (a)f(~) dc~ + h(O, ck)f(c~) ddp = 11 + 12 -4- 13 . 

J o J O  - ~o + eo 

(5) 

The first and the third integral can be easily evaluated by the numerical integration procedure. 
The second integral can be expressed as follows by letting ~b = 0 + e 

eo eo ( C  1 "+" - -  -+- C3 -I- " "  de .  
12= - ~ o h ( O ' O + e ) f ( O + e ) d e = J - ~ o \  e2 e (6) 

The first term integral in the right-hand side in (6) is evaluated as the meaning of the finite-part 
integral proposed by Hadamard [14]. The second term integral, which is interpreted as meaning 
Cauchy's principle value, should be zero. Neglecting the terms of a higher order than eo 2, we find 

2Cl  
12 ~ "+- 2C3eo. (7) 

/3 0 

Then the singular integrals are calculated by determining of the coefficients cl and c3 in (6). 
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4. Numerical results and discussion 

4.1. Circular-arc crack in an infinite plate 

Since the exact solution for a circular-arc crack in an infinite plate is available, the accuracy of 
the result obtained by the present method is verified through the comparison with the exact 
solution. Table 1 shows the stress intensity factors calculated by the previous body force 
method, in which the unknown functions are approximated by the stepped function instead of 
the power series in (2). Here N is the number of collocation points and the symbol co (100-150) 
designates the extrapolated value using the results of N = 100 and 150 on the basis of the linear 
relationship between the SIF and 1/N. As shown in Table 1, the results obtained by the previous 
method using stepped function coincide with the exact solution in the 3 digits. 

On the other hand, Table 2 shows the results obtained by the present method. The present 
results coincide with the exact solution in the 7 digits completely when N = 6. It is found that 
the present method gives rapidly converging numerical result with short CPU time. 

4.2. Curved crack in an infinite plate 

To investigate the effect of curvature at the crack tip on the stress intensity factor, a curved 
crack that consists of a straight part and a circular-arc part is considered as a basic crack 
model. In Table 3, dimensionless SIFs at the crack tip B for various values of the relative 
curvature p/2c and the angle ~ are shown, where 2c is the projected length of the total crack in 
a direction perpendicular to the tensile axis. In consideration of the estimation of the SIF for an 
arbitrary shaped crack in an actual structure, the present results are compared with the SIF of 
the straight crack with the same inclination angle e and with the same projected, length 2c as 
shown in Fig. 3. As shown in Table 3, the value of F~ at the tip B of the curved crack can be 
estimated by that of the straight crack within about 4 percent when p/2c > 0.2 and c~ < 45 °. On 
the other hand, the difference of the values of FH between the curved and the straight crack is 
quite large. 

Next, the effect of the position of crack tip A on the SIF at the crack tip B is considered. The 
position of crack tip A varies in the range that - 15 ° ~</~ ~< 45 ° as shown by the parameter/3 in 
Fig. 4. The results are shown in Table 4, when p/2c = 0.2 ~ 0.8 and c~ = 30 °. It is seen that the 
SIF at crack tip B is not much influenced by the position of the other crack tip A, if p/2c > 0.4. 
Judging from Table 3 and 4, the mode I SIF of arbitrary curved crack can be approximately 
evaluated by that of the straight crack with the same inclination angle and with the same 

projected length of the curved crack, when p/2c > 0.4 and ~ < 45 °. 

4.3. Circular-arc edge crack in a semi-infinite plate 

The circular-arc edge crack in a semi-infinite plate under uniform tension is considered. In the 
case that the tangent of the crack tip is perpendicular to the half-plane boundary, the 
dimensionless SIFs for various values of 0 obtained by the present analysis are shown to be 
compared with the results of Ioakimidis et al. [5] in Table 5. Both results are in good agreement 
with each other. In Table 5, F* is the dimensionless SIF based on ~ x ~ b ,  where b = p sin ~ is 
the projected crack length. The values of F* are in close agreement with the well-known value 
1.1215. The corresponding values of FH can be seen almost to vanish. 
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Fi 9. 3. Estimation of the SIF using the approximate 
replacement to a straight crack. 
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Fig. 4. Effect of the position of the crack tip A on the SIF 
at the crack tip B. 

Table 4. Values of F 1 and F n in Fig. 4 

0.2 

F I F n 

0.4 0.6 0.8 

F l F n F l F a  F I Fl! 
-15.0 0.8165 0,4034 0.8130 0.4172 0.8107 0.4267 0.8091 0.4340 

0.0 0.8389 0,3557 0.8207 0.3934 0.8100 0.4183 0.8034 0.4361 
15.0 0.8642 0.3188 0.8228 0.3780 0.8005 0.4175 0.7891 0.4446 
30.0 0.8965 0.2832 0.8301 0.3559 0.7934 0.4103 0.7777 0.4478 
45.0 0.9448 0.2480 0.8597 0.3213 0.8003 0.3927 0.7749 0.4466 

Straight 0.8059 0.4653 0.8059 0.4653 0.8059 0.4653 0.8059 0.4653 

Table 5. Dimensionless SIF of the circular-arc edge crack, in which 
the tangent of the crack tip is perpendicular to the half-plane 
boundary (F, = K i / a ~ x / ~ ,  F* = K ~ / a ~ ' x ~ ,  b = p sin c0 

II Present analysis Ioakimidis 
et al. [5] 

F] (F*) F I 

15.0 1.1152 (1.1216) 1.115 
30.0 1.0962 (1.1218) 1.100 
45,0 1.0647 (1.1221) 1.065 
60.0 1.0206 (1.1223) 1.023 
75.0 0.9642 (1.1224) 0.965 
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Next, the circular-arc edge crack as shown in Fig. 1 is analyzed. Table 6 shows the 
convergency of the SIFs. In the case of the edge crack problem, it is found that the 

convergency of the present results is extremely good. In Table 7, the dimensionless SIFs for 
various values of ~ are shown in comparison with the SIFs for an oblique edge crack. The 

angle of the oblique edge crack is chosen such as to have the same tangent of the tip of the 
circular-arc edge crack as shown in Fig. 5. As shown in Table 7, it can be seen that mode I 

SIFs of the straight crack conform more closely to one of the circular-arc cracks for a wide 

range of ~. The values of FII of the oblique edge crack are also in good agreement within 5 

percent for ct < 60 °. 

4.4. Curved edge crack in a semi-infinite plate 

Finally, the edge crack that consists of a straight part  and a circular-arc part, which we called 

'the curved edge crack' in this paper, is considered. The SIFs are calculated for various values of 

and c2/cl, where ~ is the angle of the crack tip, Cl is the projected crack length, and 
c2 = p sin ~ is the projected length of the circular-arc part. The dimensionless SIFs are shown in 

Table 8 in comparison with the SIFs for an oblique edge crack as shown in Section 4.3. As 
shown in Table 8, it can be seen that mode I SIFs of the straight crack are in close agreement 
with those of the curved edge crack for wide range of ~ and c2/c~. The difference between mode 

II SIFs for curved and straight edge crack is generally small except for the case of large ~ and 

small c2/cl. 
In the case of the edge crack, it is found that the curvature of the crack tip does not have 

much effect on the stress intensity factor. Hence, the approximate SIF for arbitrary curved edge 
crack can be evaluated, if the inclined angle at the crack tip and the projected crack length are 

given. 
In addition, the stress intensity normal to tensile directions is considered [16]. The edge crack 

subjected to uniform tension has a strong tendency to grow in a direction perpendicular to that 
of the applied stress and macroscopically the crack grows in that direction. At the crack tip, the 

stress ~x on the y-axis as shown in Table 9 is expressed by 

(8) 

/,~, = (3 cos ½c~ + ¼ cos ½3c~)K, + (¼ sin ½c~ + ¼ sin ½300K]i. (9) 

Table 6. Convergency of the SIF for the circular-arc edge crack as shown in Fig. 1 

N ~ = 30.0 ~ = 60.0 

F] F, F I FIt 
4 0.920717 0.304933 0.453699 0.352683 
6 0.919676 0.305050 0.462889 0.352426 
8 0.919664 0.305088 0.462765 0.352481 

10 0.919671 0.305095 0.462749 0.352493 
12 0.919675 0.305096 0.462747 0.352496 
14 0.919677 0.305097 0.462747 0.352496 
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_ 

Fig. 5. Oblique edge crack with the same inclination angle at the crack tip and with the same projected crack length. 

Table 9. Values of FI of the curved edge crack in a semi-infinite plate 
under uniform tension, when a~ on the y-axis is expressed in the form of 

15.0 30.0 45.0 60.0 
C2/C1  

0.1 1.124 1.119 1.080 0.984 
0.2 1.125 1.122 1.085 0.989 
0.4 1.126 1.125 1.090 0.992 
0.6 1.126 1.127 1.092 0.991 
0.8 1.127 1.128 1.092 0.988 
1.0 1.127 1.128 1.092 0.986 

m 

Table 9 shows the values of z¢~. As shown in Table 9, j0 is almost constant for ~ < 45 ° and is 
about the same value of straight edge crack, 1.12. Consequently the stress intensity in the 
direction normal to the tensile axis is nearly equal to that of the straight edge crack with the 
same projected crack length. 

5. Conclusion 

In this paper, the method of numerical analysis of the hypersingular integral equation based on 
the body force method in the curved crack problem was considered. Numerical calculations 
were carried out for curved cracks under various geometrical conditions, and the effect of 
curvature at the crack tip on the stress intensity factor was discussed. The conclusions are 
summarized as follows: 

1. Since the convenient formula using Chebyshev polynomial useful for straight crack problems 
cannot be applied to curved crack problems, in the present numerical method, the unknown 
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functions are approximated by the product of the fundamental density function and power 
series. Itwas found that the present method gives good convergency of the numerical results; 
in particular, the present result of the circular-arc crack in an infinite plate under uniform 
tension coincided with the exact solution in the 7 digits. 

2. The curved crack that consists of a straight part and a circular-arc part was considered as 
a basic crack model. Dimensionless SIFs at the curved crack tip B for various values of the 
relative radius of curvature p/2c and the angle ~ were shown (see Fig. 3). The present 
results were compared with the SIF of the straight crack with the same inclination angle 
and with the same projected length. The mode I SIF of an arbitrary curved crack can be 
approximately given by that of the straight crack with the same inclination angle and with 
the same projected length of the curved crack, when p/2c > 0.4 and ~ < 45 °. On the other 
hand, the difference of the values of Ell between the curved and the straight crack is quite 
large. 

3. The edge crack that consists of a straight part and a circular-arc part was considered. The 
dimensionless SIFs for the curved edge crack were shown in comparison with the SIFs for an 
oblique edge crack. In the case of the edge crack, it was found that the curvature of the crack 
tip did not have much effect on the stress intensity factor. Hence, the SIF for arbitrary 
curved edge crack can be evaluated by that of the straight edge crack with the same inclined 
angle and the projected length of the curved crack. 
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