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Abstract. This paper is concerned with numerical solutions of singular integral equations with Cauchy-type singular 
kernel. It is well-known that this type of singular integral equations appears in the analysis of crack problems using 
the continuously distributed dislocation method. In addition, it also appears in the analysis of notch problems 
using the body force method. In the present analysis, the unknown function of densities of dislocations and body 
forces are approximated by the product of the fundamental density functions and polynomials. The accuracy of stress 
intensity factors and stress concentration factors obtained by the present method is verified through the comparison 
with the exact solution and the reliable numerical solution obtained by other researchers. The present method is 
found to give good convergency of the numerical results for notch problem as well as internal and edge crack 
problems. 

1. Introduction 

In the analysis of stress intensity factors for crack problems, various numerical methods, 
such as conformal mapping technique, Laurent series expansion method, body force method, 
continuously distributed dislocation method and finite element method have been applied 
to different types of problems depending on their peculiarity. Among those methods, the 
continuously distributed dislocation method has been used by a lot of researchers: in 
the analysis, a crack is represented by a distribution of infinitesimal dislocations and the 
problem is reduced to the singular integral equations having Cauchy-type singular kernel. 
To solve this type of singular integral equations, Erdogan [1, 2], Theocaris-Ioakimidis 
[3], Boiko-Kerpenko [4] and other researchers have discussed several numerical methods. 
Recently, Fujimoto [-5] has applied Boiko's method to internal crack problems and has shown 
that internal crack problems are solved with higher accuracy than previous research has 
shown. 

On the other hand, in previous papers [-6, 7, 8], numerical solutions of the singular integral 
equation in the crack analysis using the body force method, which has the singularity of the 
form r - z ,  have been discussed. Then, an approximation of the unknown function by the 
product of the fundamental density function and Chebyshev polynomials is found to give 
more accurate results compared with previous research. In this paper, the Cauchy-type 
singular integral equations for crack and notch problems are solved using a similar approxi- 
mation, namely, by the product of the fundamental density function and polynomials. Then, 
the accuracy of stress intensity factors obtained by the present method are compared with the 
results given by the hypersingular integral equations in the previous paper. Moreover, 
problems of a cruciform crack, an internal crack and an edge crack are solved and compared 
with exact solutions and reliable numerical solutions obtained by quadrature methods. The 
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problem of a semi-elliptical notch is also solved and the results are compared with previous 
body force method research [9, 10]. 

2. Numerical solution of singular integral equations using expansion method 

In this section, the present numerical solution is described for internal crack problem, edge crack 
problem and notch problem, separately. 

2.1. Numer ica l  solution Jbr internal crack problem 

Consider a two-dimensional elastic plate with a straight crack whose length is ( b -  a). This 
problem may be reduced to the following integral equations where two kinds of dislocation 
densities, tension and shear type PI(~) and P2(~), at the imaginary crack surface are to be 
unknown functions 

f ; ; b p~(¢) d~ + Kll(~ , x)Px(¢) de + Klz(~, x )P2(¢ )d~  - - -  p(x). 
~ - x  2G 

P2(~) d~ + K z 1 ( ~ , x ) P l ( ~ ) d ~  + K 2 2 ( ~ , x ) P z ( ~ ) d ~  - ~:q(x). 
3a g - x  2G 

( 1 )  

Pl(~)d~ = 0, P2(~)d~ = 0, (2) 

where h-= 3 -  4v (for plane strain), G is shear modulus and v is Poisson's ratio. Here 
is interpreted in the sense of Cauchy's principle of integration and the kernel Kij(~,  x) ( i , j  = 1, 2) 
is a function known to satisfy the boundary condition except at the crack surface. And p(x), 
q(x) are normal and shear traction prescribed on the crack surface. Equations (2) are 
additional conditions which mean the total sum of dislocation densities should be zero because 
of the single-valuedness of displacement. 

First, normalizing the interval (a, b) of integration by defining 

2~ - (a - b) 2x  - (a + b) 
r - s - ( 3 )  

b - a  ' b - a  ' 

2 P , ( ¢ )  
- ( i  = 1 2 ) .  ( 4 )  f i ( r )  b - a ' 
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The integral equations (1), (2) become 

f fl fl 1 f l ( r )  dr + k11(r,s) f l(r)dr + kx2(r,s)fz(r)dr - 
- 1  r - s  -1 -1 

I + K  
2G p(s), 

1 fz( r  ) dr + k21(r,s)f l(r)dr + k22(r,s)f2(r)dr - q(s), 
- l r - s  -1 -1 2G 

(5) 

fl f l  (r) dr = 0, f2 (r) dr = 0. (6) 
- 1  - 1  

In the solution of (5), the unknown functionfi(r) (i = 1, 2) is approximated by the product of the 
fundamental  dislocation density function wi(r) (i = 1, 2) and Chebyshev polynomial T.(r) 

l + ~ c  
W~(r) - 2 G ~ , x / l - r ~  (i = 1, 2), (7) 

N 

f l (r) = Wl (r)F,(r), F,(r) = ~ a. T.(r), 
n = l  

N 

fz(r) = Wz(r)F.(r), F,,(r) = ~ b.T.(r). 
n = l  

(8) 

The integral involves a singular term which is evaluated by using the following expression 

f l = n U . -  l (s) 
T.(r) 

dr 
-1 (r - s)x/1 - r 2 

(9) 

where T.(r) and U.(r) are the first and the second kind of Chebyshev polynomials, respectively, 
and are represented by the following expression 

sin(n0) 
T.(r) = cos(n0), U._l(r)  - s in0 ' r = cos0. (10) 

By substituting from (7) and (8) into (5) and using (9), the following set of 2N linear equations is 
obtained 

N 

2 [ an {'KUn-I(S) -[- A.(s)} + b.B.(s)] = - ~p(s), 
n = l  

N 

[a.C.(s) + b.{~zU._l(s) + D.(s)}] = - ~q(s), 
n = l  

(11) 
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where 

Ads) = 
1 

2 
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To(r )  
1 kll(r, s ) ~ d r ,  

f l , , T,(r) • 

B,(s) = K 1 2 t r  , s ~ ~  ar, 
- 1  , , / 1  - r  ~ 

(12) 

f 
l 

C,(s) = k21(r,s) T,(r) dr, 
- 1 x / l - r  ~ 

f l T,(r) dr. D,(s) = 1 k22(r, s)x/1 _ r~ 

The unknown coefficients a,, b, are determined from (l 1). And additional condition (6) is 
satisfied automatically by the method mentioned above. The convenient set of collocation points 

is given by 

s = c o s  ½7r , j = l , 2  . . . . .  N (--1 < s < l ) .  (13) 

The stress intensity factors can be calculated from 

K m =  Fm(1)x/~(b - a)/2, 

K,A = F,A( -- 1) ~/=(b - a)/2, 
(14) 

K,m = F,m(1)x/rc(b - a)/2, 

KnA ---- Fna ( -- 1) x/~z(b - a)/2. 

2.2. Numerical solution for edge crack problem 

Consider an elastic plate with a straight edge crack whose length is a. This problem may be 
reduced to the following integral equations where the dislocation densities at the imaginary 
crack surface PI (0 ,  P2(0  are to be unknown functions. 

f "P1(~)d~ fi '  fo t c + l  o ~ _  X + K11(~,x)P1(~)d~ + K12(~.,x)V2(~)d~- 2 ~ - -  P(x), 

P2(~) d~ + K21(~,x) PI(~)d~ + K22(~,x)P2(~)d~ -- 
o ~ - - X  " o - 2G 

q(x). 

(15) 
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Normalizing the interval (0, a) of integration by defining 

X 
r = - - ,  S = - - ,  

a a 
(16) 

Pi(~) 
f i ( r ) -  , ( i=  1,2). 

a 
(17) 

In order to use integration formula (9), Eqn. (15) is transformed to the following expression. 

f fO f l (r)  fo f ° K+ 1 1 f l(r)  dr - dr + k11(r,s)f1(r)dr + k12(r,s)f2(r)dr= - - - p ( s ) ,  
- l r - s  - l r - s  2G 

f fo., fo 1 fE(r) dr - d r  + 

_ l r - - s  . J _ l r - - s  
k21 (r, s)fl  (r) dr + fo 

K + I  
k 2 2 ( r  , s).f2(r ) d r -  - -  q(s). 

2G 

(18) 

The unknown function fi(r) (i = 1, 2) is approximated by the product of the fundamental 
dislocation density function wi(r) (i = 1, 2) and Chebyshev polynomial T.(r). Equation (9) is 
applied to the first term of (18) and the second, the third and fourth terms of (18) are 
integrated by using numerical integral. Then, (18) becomes the following set of 2N linear 
equations: 

N 

~, [a.{TtU._~(s) + A.(s)) + b.B.(s)] = -- ~zp(s), 
n = l  

N 

[a.C.(s) + b .{gU._ , (s )  + D.(s))] = - gq(s), 
n = l  

(19) 

where 

f 
o r.(r) j"  

A,(s) = - dr + kll(r, s) - -  
-1 (r - s)x/1 - r 2 o 

fo' B.(s) = kl 2 (r, s dr, 

f /  T.(r) C,(s) = k21(r,s) ~ d r ,  

; ;o o T.(r) dr + k 2 2 ( r  , s )  - -  
D.(s) = -- - l (r -- s )x /1--  r 2 

r.(r) 
1 , , ~ _  r dr' 

T.(r) 
dr. 

x/1 - r 2 

(20) 
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The unknown coefficients a, ,  b, are determined from (19). The convenient  set of collocation 
points is given by 

{ 2j 15 
s : c o s L ~ z ) ,  j : 1,2 . . . .  N, (0 < s  < 1). (21) 

The stress intensity factors can be calculated from 

K, = F , ( 1 ) ~ ,  K,, = F,,(1)x/~a. (22) 

2.3. Numerical solution .[or notch problem 

We consider a semi-infinite plate with a semi-elliptical notch as shown in Fig. 1 to explain the 
numerical  solution of stress concentra t ion problems.  The p rob lem can be solved by using the 

stress field at an arbi t rary  point  (x = a cos 0, y = b sin 0) when a point  force acts at another  

point  (3 = a cos 49, ~/= b sin 49) in a semi-infinite plate, on the basis of the principle of the 
super-posi t ion [-9, 10]. This p rob lem m a y  be reduced to the following integral equations,  where 

the body  force densities distr ibuted along the prospect ive bounda ry  of the notch in the x, y 

directions p*(49), p*(49) are to be unknown functions 

- ½ { p*(O) cos Oo + p*(O) sin Oo } 

+ Fx Fy K.. (49, O)p* (49) ds + g.. (49, O)py (49) ds = - (r °~ sin 2 0o, 
0 0 

(23) 

- ½ { p*(O) sin Oo + p*(O) cos Oo } 

i Fx + K,,  (O,O)p*(49)ds + KV,~(49,0)p*(49)ds = - o ~ sin Oo cos 0o, 
o 0 

X=a COSO 
y=b sinE) 

\ C :a  c o s *  ~ \ 

0 x , ~  

Fig. I. Semi-elliptical notch in a semi-infinite plate. 
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where 

- de = a sin ~b d~b, dr /=  b cos tk dO, ds = x/a 2 sin 2 q~ + b 2 cos 2 gb d~b, 

Oo = arctan(bZy/aZx). 

0o is the angle between x-axis and normal direction of the notch at the point (x, y). 
Equations (23) are virtually the boundary conditions on the imaginary boundary; that is, 

a, = 0, z,t = 0. The first terms of (23) represent the stresses due to the body force distributed on 
the O boundary. The G boundary means the imaginary boundary composed of the internal 
points that are infinitesimally apart from the initial boundary [9]. Taking K,v; (qS, 0) for example, 
the notation means the normal stress a, induced at the point (x, y) when the body force with unit 
density in the x-direction is acting at the infinitesimal arc length ds = x/(d~) 2 + (dr/) 2. These 
equations include the singular terms having the singularity of the form 1/sin{(0 - q~)/2} at 0 = q~ 
[11], in this case the integrations should be interpreted as the meaning of Cauchy's principal 
values. 

The unknown functions of the singular integral equations (23) P*(4~), P*(q~) are defined by the 
following equations, where the components of the resultant of the body force in the x, y 
directions acting on the infinitesimal arc length ds are dF o dF,,  respectively 

dF¢ dF~ (24) 
p*(~b)- d s '  P*(q~)= d s '  

In the numerical solution of the singular integral equations (23), the unknown functions p*(q~), 
p*(q~) are approximated by the products of the weight functions px(~b), py(~b) and the fundamental 
density functions nx, n r [11]. 

dF¢ _ dF¢ 
P*(O) -- dss ~r/nx = p~(~b)n~, 

dF~ dF~ 
P*(¢) - ds - d~ nr = PY(¢) ny, (25) 

where nx and ny are the x- and y-component of the unit vector in the normal direction at the 
point (x, y), respectively 

dr/ b cos ~b d~ a sin ~b 
nx - ds - cos 00 = x/a2 sin 2 q~ + b 2 cos 2 q, ny - ds - sin 00 x/a2 sin 2 q~ + b 2 cos 2 q. 

(26) 

In the previous analysis of the body force method, the imaginary notch boundary has divided 
into M equal intervals and the continuously varying unknown functions Px(q~), Pr(q ~) have been 
approximated by the stepped functions which take constant value in each interval. While in this 
paper, we use polynomials to approximate the weight functions as continuous functions. Now, 
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from the symmetry of the problem we use following expressions 

M M 

Px(O) = ~ a.G(O), Py(O)= ~ b.t.(4)), (27) 
n = l  n = l  

t . ( ~ )  = (½~ - ~ ) 2 ~ . - 1 ,  (28) 

Using the approximation method mentioned above, we obtain the following system of linear 
equations for the determination of the coefficients a. and b. 

M 

(a .A.  + b .B. )  = - o "~ sin 2 0o, 
n = l  

M 

(a.C. + b.D.)  = - a °~ sin 0o cos 0o, 

(29) 

f ~ Fx A .  = - ½t.(O) cos 20o + K. .  (qS, O)b cos qSt.(qS) d~b, 
0 

f 
ro Fy  

B. = - ½t.(O) sin20o + K.n(O,O)asinOt.(O)d(o, 
0 

f r~ Fx C. = ½t.(O) sin Oo cos Oo + K.~ (4), O)b cos q~tdq~) d4,, 
0 

(30) 

D. = - ½t.(O) sin 0o cos Oo + KvJ(O, O)a sin qSt.(~b) dqS. 
0 

The stresses at an arbitrary point are represented by a linear combination of the coefficients a., 
b. and the influence coefficients correspond to A., B., C. and D.. 

Using above numerical solution we will obtain the stress concentration factors and the stress 

distribution along the notch boundary in the semi-infinite plate. 

3. Numerical results and discussion 

3.1. Cruciform crack in an infinite plate 

As an application of the present method mentioned above, the problem of a symmetric 
cruciform crack whose length of each branch is 'a' in an elastic infinite plate under constant 
tensile stress a along all its four branches is treated (Fig. 2). The singular integral equation of this 
problem is shown by the following equation 

f ,, p(~) f a  ~(~2_x2)  K +  1 
-,, ~---~ -'ode + -a ( ~ + x S ~  P(~)d¢ = -- n ~ a .  (31) 
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Fig. 2. Cruciform crack in an infinite plate. Fig. 3. Internal crack in a semi-infinite plate. 

In Table 1 the convergency of the stress intensity factors of symmetric cruciform crack is shown 
to be compared with other numerical results [3,4]. Here N is the number of collocation points 
in the range of -a < x < a. The present results show better convergency than the quadrature 
method of Gauss-Chebyshev and Lobatto-Chebyshev and worse convergency than the results of 
Boiko et al. However, the stress intensity factor obtained by the present method when N/2 = 15 
coincides with Boiko’s results in the 4 digits. 

3.2. Internal crack in a semi-infinite plate 

As another application of the present method, the problem of an internal crack whose length is 
2a in an elastic semi-infinite plate under constant tensile stress CJ is treated (Fig. 3). The singular 

Table I. Dimensionless stress intensity factors at the tip of a cruciform crack shown in Fig. 2 

IW(~&)l 
N Present Boiko- Lobatto- Gauss- 

analysis Karpenko Chebyshev Chebyshev 
c41 Method [3] Method [3] 

2 0.9028 1 0.86412 0.83658 0.94445 
3 0.85374 0.86428 0.85970 0.83635 
4 0.86687 0.86379 0.86387 0.83882 
5 0.86168 0.86365 0.86449 0.86289 
6 0.86341 0.86359 0.86441 0.86381 
7 0.86296 0.86356 0.86424 0.86528 
8 0.86318 0.86356 0.86408 0.86282 
9 0.86328 0.86353 0.86396 0.86503 

10 0.86325 0.86356 0.86387 0.86283 
12 0.86334 
15 0.86348 
18 0.86351 
21 0.86352 
25 0.86343 
30 0.86343 
35 0.86354 
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integral equation of this problem is shown by the following equation 

s d+aX2 + 4(x - 42 Ic+l 
d-a (r + xl3 

P(l) di: = - nFa (32) 

In Table 2 (a), (b), (c), (d) the convergency of the stress intensity factors of internal crack is 
compared with Fujimoto’s numerical results [S]. Here N is the number of collocation points in 
the range of -a 6 x d a. The present results show worse convergency than Fujimoto’s results. 
However, with an increase of N the present results coincide with Fujimoto’s results in the 7 
digits completely. 

3.3. Edge crack in a semi-infinite plate 

As an application of the present method for the edge crack, the problem of an edge crack whose 
length is ‘a’ in a semi-infinite plate under constant tensile stress g is treated (Fig. 4). This singular 

Table 2. Dimensionless stress intensity factors at the tip of an internal crack shown in 

Fig. 3 [K&J?ra)]. (a) I n case of a/d = 0.5. (b) In case of a/d = 0.8. (c) In case of 
a/d = 0.9. (d) In case of a/d = 0.99 

IV 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Present analysis 

F,(A) 

1.089895 
1.091654 
1.091332 
1.091305 
1.091304 
1.09 1304 
1.091304 
1.09 1304 
1.09 1304 
1.091304 

(4 ajd = 0.5 

Fujimoto [S] 

F,(B) F,(A) F,(B) 

1.051646 1.094767 1.054415 
1.053985 1.091304 1.053898 
1.053914 1.09 1304 1.053904 
1.053904 1.09 1304 1.053904 
1.053904 1.091304 1.053904 
1.053904 1.091304 1.053904 
1.053904 1.091304 1.053904 
1.053904 1.09 1304 1.053904 
1.053904 1.09 1304 1.053904 
1.053904 1.09 1304 1.053904 

(W a/d = 0.8 

N 

Present analysis 

F,(A) F,(B) F,(A) F,(B) 
1 1.354188 1.123180 1.491856 1.171283 
2 1.402175 1.146014 1.389341 1.145685 
3 1.392623 1.146908 1.387476 1.146380 
4 1.388719 1.146573 1.387524 1.146416 
5 1.387771 1.146452 1.387528 1.146417 
6 1.387574 1.146424 1.387528 1.146417 
7 1.387536 1.146418 1.387528 1.146417 
8 1.387529 1.146417 1.38752X 1.146417 
9 1.387528 1.146417 1.387528 1.146417 

10 1.387528 1.146417 1.387528 1.146417 

Fujimoto [S] 
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Table 2.-- Contd. 

(c) aid = 0.9 

Present analysis Fujimoto [5] 

N FI (A) Fi (B) F, (A) FI (B) 

1 1.553727 1.153680 2.069667 1.300961 
2 1.745955 1.198726 1.742502 1.202468 
3 1.738335 1.204325 1.708220 1.203254 
4 1.721242 1.204419 1.707451 1.203730 
5 1.712807 1.204100 1.707622 1.203791 
6 1.709469 1.203918 1.707653 1.203797 
7 1.708266 1.203841 1.707656 1.203797 
8 1.707855 1.203812 1.707656 1.203798 
9 1.707720 1.203802 1.707656 1.203798 

10 1.707676 1.203799 1.707656 1.203798 
11 1.707662 1.203798 
12 1.707658 1.203798 
13 1.707656 1.203798 
14 1.707656 1.203798 

(d) a/d = 0.99 

Present analysis Fujimoto [5] 

N FI (A) FI (B) FI (A) FI(B) 

3 3.229821 1.307982 
6 3.786204 1.328642 
9 3.756009 1.330088 

12 3.689253 1.330034 
15 3.653149 1.329904 
18 3.637370 1.329826 
21 3.631059 1.329788 
24 3.628662 1.329773 
27 3.627783 1.329764 
30 3.627469 1.329764 
33 3.627359 1.329764 
36 3.627320 1.329763 
39 3.627308 1.329763 
42 3.627304 1.329763 
45 3.627302 1.329763 
48 3.627301 1.329763 
50 3.627301 1.329763 

4.895297 1.372572 
3.714837 1.328830 
3.626008 1.329372 
3.625948 1.329740 
3.627061 1.329756 
3.627272 1.329762 
3.627299 1.329763 
3.627301 1.329763 
3.627301 1.329763 
3.627301 1.329763 
3.627301 1.329763 

integral equation of the problem is shown by the following equation 

a p I + 4~x - -  ~2 K - ] -  1 (~) d~ '~x2 
J o ¢ - - x  + d o  ~ + x ~  P ( ¢ ) d ¢ - -  - n ~ - - a .  

(33) 

In  T a b l e  3 the  c o n v e r g e n c y  of  the  stress in tens i ty  fac tors  of  edge  c rack  is c o m p a r e d  wi th  B o i k o  

and  K e r p e n k o ' s  n u m e r i c a l  resul ts  [4].  H e r e  N is n u m b e r  of  c o l l o c a t i o n  po in t s  in the  r ange  of  

0 ~< x ~< a. In  an  edge  c rack  p r o b l e m ,  resul ts  o f  o t h e r  r e sea rchers  s h o w  worse  c o n v e r g e n c y  

c o m p a r e d  wi th  in t e rna l  c rack  p rob lems .  O n  the  o t h e r  hand ,  the  stress in tens i ty  fac to r  o b t a i n e d  

by the  p resen t  m e t h o d  co inc ides  wi th  K o i t e r ' s  exac t  so lu t ion  [12, 13] in the  7 digi ts  w h e n  
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I' t t o  

Y ' ~  a 

0 

t t t 

Fig. 4. Edge crack in a semi-infinite plate. Fig. 5. Oblique edge crack in a semi-infinite plate. 

Table 3. Dimensionless stress intensity factors at the tip of an edge crack shown in Fig. 4 
[ K , / ( o ~ ) ]  

N Present Boiko [4] Kerpenko 
analysis [4] 

t0 1.121853 1.12379 1.11801 1.1194 
20 1.121537 1.12212 1.12054 1.1209 
30 1.121524 1.12182 1.12103 1.113 
40 1.121521 1.12167 1.12147 1.1214 
50 1.121521 1.12148 1.12121 1.1214 

Koiter 1.121522 

N = 30. The present  results have a lmost  the same accuracy as the results of hypers ingular  

integral  equa t ion  shown in the previous  papers  [7, 8]. 

3.4. Oblique edge crack in a semi-infinite plate 

As ano ther  app l ica t ion  of the present  method,  the p rob lem of an obl ique edge crack whose 

length is 'a '  in an elastic semi-infinite plate under  cons tan t  tensile stress a is t rea ted  (Fig. 5). The 

s ingular  integral  equat ions  of this p rob lem are shown by the fol lowing equat ions  

2G PI(~) ; fo i "  d~ + g l , ~ , x ) P l ( ~ ) d ~  + K l z ( ~ . , x ) P 2 ( ~ ) d ~  = - p(x), 
~(~ + 1)Jo ~ - x 

;o ; 2G a P2(~)d{  + K 2 1 ( ~ , x ) P l ( { ) d {  -}- K 2 2 ( ~ , x ) P 2 ( ~ ) d :  = - q(x), 
rc(K + o ~ - x 

p(x) = a sin 2 0, q(x) = a sin 0 cos 0, 

(34) 
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where Kij(~,  x) ( i , j  = 1, 2) is a function known to satisfy the boundary  condit ion except at the 

crack surface and expressed by the following equations 

K l 1 ( ~ ,  x )  = O'ffY sin20 + a~Y c o s 2 0 -  2z~Yy, sin 0 cos 0, 

Bx sin 2 0 + a~ x cos 2 0 - 2z~,~, sin 0 cos 0, K12(~, x) = ay, 

(35) 
K21(~, x) = (aye, y - a~, y) sin 0 cos 0 + Z~ey,(sin 2 0 - cos 2 0), 

B x  • 2 K22((, x) = (a nxy, - a f t )  sin 0 cos 0 + zx,y,(sln 0 - cos 2 0), 

aBx a ' Bx' sin 0, x B x = I  = O x  'y ] B y ' = l  COS 0 - -  O" x ,  [ B x ' = I  

(36) 
By  

ax, ]By = 1 = a~ 'r' ]By'= 1 sin 0 + a B~' x B x  = 1 COS 0.  

n~ B~ a~Y and ay, , "c:,,r,, ZxYr" can be expressed by the similar manner  of Eqn. (36). 

Bx for example, the nota t ion means the normal  stress in the x-direction induced at Taking ax 

the point  (x, y) to eliminate the stresses a~ and rxy induced at the free edge (x' = 0) when the edge 

dislocation with Burgers vector B x  which is parallel to the x-direction exists at the point  (~, r/) in 

the semi-infinite plate, a~" etc. in (36) are expressed by the following expression 

a~ x' = C [ - A  5 - 4(n 2 - n + I)A 3 - 3n2(n 2 + 4n - 4)A]Bx ' ,  

ay,B~' = C [ _ A  5 _ 4(2n 2 - n - 1)A 3 - n2(7n 2 - 20n + 12)A]Bx' ,  

Zx,y,Bx' = C [ -  (n - 2)A 4 + 12n(n - 1)A 2 - n3(n 2 - 6n + 4)]Bx', 

(37) 
a~Y'= C[(n - 2)A 4 + 12n(n - 1)A 2 - n3(n 2 + 2n - 4)]By', 

ayBY ' = C[(5n - 2)A 4 + 4n(n 2 - 3n + 3)A 2 - na(n 2 - 6n + 4]By' ,  

B ' z~y, = C [ A  5 - 4(n - 1)A 3 - nZ(n  2 12n + 12)A]By' ,  

where A, n and C are shown by (38). 

t f - y '  4 ' - x '  2G 1 
A -  x' ' n x' C = n ( K +  1) x ' (A 2 + n 2 )  3" (38) 

This problem has been solved by the hypersingular integral equat ion method where the 

discontinuity or  body force doublet  densities [P*(0 ,  P*(~)] which have stronger singularity than 
the dislocation are to be unknown functions [7, 8]. The singular integral equations are shown by 
the following equations 

P*(~) 

J o  (~ - x )  2 o = 
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fa ;o ~7 -P~ d~ + K*2(~,x)P2(~)d~ 
f o  (g - x(~--)) 2 30 K*~(~,x)P,(~)d~+ =-q*(x ) ,  

( K +  1) 2 • 2 K-~- l 
p*(x) = - 7 t 2 ( ~ _  1 ) a s t n  0 ,  q*(x) = - ~ a s i n 0 c o s 0 ,  

(39) 

where ~ is interpreted in the Hadamard sense by retaining the finite part of the divergent 
integral and the kernel K*(~, x) (i,j = 1, 2) is a function known to satisfy the boundary condition 
except at the crack surface. These integral equations have been solved using the same 
approximation, namely, by the product of the fundamental density function and Chebyshev 
polynomials. In Table 4 the convergency of the stress intensity factors of oblique edge crack are 
shown and compared with the numerical results of the hypersingular integral equation method 
in the previous papers [7, 8]. Here N is the number of collocation points in the range of 
0 ~< x ~< a. It is found that in the case of 0 >~ 15 ° both results have almost the same accuracy. 

3.5. Semi-elliptical notch in a semi-infinite plate 

Figure 6 (a), (b) shows the comparison of the approximation of the unknown functions between 
the polynomials and the stepped functions for b/a = 1, 2. In the present analysis using the 
polynomials, the expression of M = 12 and the one of M = 24 almost coincide with each other 
and therefore they seem to express the unknown functions Px and Pr very accurately. On the 
other hand, when we use the stepped functions, both expressions of M = 12 and M = 24 do not 
coincide with the present analysis especially near the free edge (0 < 10°). 

Table 4. Dimensionless stress intensity factors at the tip of an oblique edge crack in Fig. 5 

[K, / (ax /~) ,  K , , / ( a x ~ ) ]  

0 Present analysis HIEM [7,8] 

deg. N Fi Fll FI F,, 

45 ° 5 0.70403 0.36557 0.70403 0.36557 
10 0.70500 0.36455 0.70449 0.36455 
15 0.70488 0.36446 0.70488 0.36446 
20 0.70489 0.36448 0.70489 0.36447 
25 0.70490 0.36448 0.70490 0.36448 

30 ° 10 0.46256 0.35388 0.46260 0.33590 
15 0.46254 0.33620 0.46257 0.33620 
20 0.46252 0.33619 0.46254 0.33619 
24 0.46250 0.33617 0.46250 0.33617 
30 0.46247 0.33616 0.46247 0.33616 

15 ° 20 0.23197 0.22618 0.23225 0.22637 
25 0.23180 0.22616 0.23184 0.22617 
30 0.23188 0.22621 0.23182 0.22616 
35 0.23180 0.22614 0.23181 0.22615 
40 0.23174 0.22616 0.23180 0.22614 

10 ° 30 0.18916 0.18916 0.16125 0.17333 
35 0.16108 0.17408 0.16207 0.17347 
40 0.16236 0.17337 0.16206 0.17346 
45 0.16782 0.17054 0.16205 0.17345 
50 0.16155 0.17428 0.16205 0.17345 
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Fig. 6. Comparison ofthe approximation ofthe unknown functions between the polynomials and the stepped function. 
(a) In case of b/a = 1. (b) In case of b/a =2. 

In  T a b l e  5 (a), (b), (c) the  c o n v e r g e n c y  of  the stress c o n c e n t r a t i o n  fac tors  is c o m p a r e d  wi th  the  

p r e v i o u s  b o d y  force m e t h o d  us ing  s t epped  funct ions .  Here ,  we cons ide r  the  r ap id  change  of  the  

dens i ty  of  the  b o d y  force n e a r  the  free edge,  we pu t  M1 c o l l o c a t i o n  po in t s  in 0 ° ~< 0 <~ 10 ° a n d  

M 2  in 10°~< 0 ~ < 9 0  °. There fo re ,  M = M1 + M 2  is to ta l  c o l l o c a t i o n  po in t  n u m b e r  in 

Table 5. Convergency of the stress concentration factors (Com- 
parison between the polynomials and the stepped function). (a) In 
case of b/a = 1. (b) In case of b/a = 2. (c) In case of b/a = 10 

(a) b/a = 1 

Present analysis B.F.M. 

M Kt M Kt 

4 3.056586 8 3.052064 
6 3.061805 12 3.056805 
8 3.064102 24 3.061290 

10 3.064920 32 3.062307 
12 3.065215 48 3.063353 
14 3.065321 oo(48 - 32) 3.0654 

[14] 3.0653 

(b) b/a=2 

Present analysis B.F.M. 

M K, 

4 
6 
8 

10 
12 
14 

M K, 

5.199307 
5.213694 
5.218326 
5.219638 
5.220068 
5.220230 

8 
12 
24 
32 
48 
oc(48 - 32) 
[14] 

5.178407 
5.193873 
5.207968 
5.211044 
5.214306 
5.2208 
5.2204 
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(c) b/'a = 10 

Present analysis B.F.M. 

M K, M Kt 

4 22.90348 8 22.50020 
6 23.02375 12 22.64869 
8 23.00240 24 22.81734 

10 22.99309 32 22.85534 
12 22.99903 48 22.90320 
14 23.00849 ,~(48 - 32) 22.999 

El4] 23.000 

Table 6. Stress along the notch boundary at the mid-point of collocation 
points (b/a = 1, M1 = 4, M2 = 8 in Fig. 1) 

0 (deg.) r~ 0 G ~,0 

1 0.0012 0.00042 - 0.00040 
3 - 0.0108 0.00003 0.00004 
5 - 0.0266 - 0.00001 - 0.00001 
7 0.0398 0.00001 0.00001 

13.5 0.0326 - 0.00025 - 0.00037 
23.4 0.1814 0.00012 0.00015 
32.3 0.5499 - 0.00006 - 0.00006 
41.2 1.0332 0.00003 0.00001 
50.0 1.5621 - 0.00002 0.00000 
58.9 2.0854 0.00001 0.00000 
67.8 2.5376 -0.00001 0.00000 
76.7 2.8689 0.00002 0.00000 

0 ~< 0 ~< ~/2. In Table 5, the symbol cc (48 - 32) designates the extrapolated value using the 

results of M = 48 and M = 32. The stress concent ra t ion  factor by the present method M = 12 

coincides with the results of Chen et al. [14] in the 5 digits. The present results show better 

convergency than the results using stepped functions which need the extrapolation.  

In order to investigate the satisfaction of the boundary  condit ions (G = 0, rr0 = 0), Table 6 

shows the stress dis t r ibut ion along the semi-circular notch boundary  at the mid-point  of the 

collocation points. Here, M1 = 4, M2 = 8, and the total collocation point  number  M is 12. The 

values of a, and rr0 which should be 0 along the boundary  are less than 10 .3  even for M = 12. 

Therefore, in the present analysis, it is found that the boundary  requirements can be highly 

satisfied anywhere along the boundary.  

4. Conclusion 

In this paper, the numerical  solution of the Cauchy-type singular integral equat ions based on 

the cont inuously  distr ibuted dislocation method in crack problems and the body force method 

in notch problems was investigated. In the numerical  solution, the u n k n o w n  functions are 

approximated by the product  of the fundamenta l  density functions and polynomials.  The 

conclusions are summarized as follows: 

(1) The stress intensity factors of a cruciform crack in an infinite plate and an internal  crack in a 

semi-infinite plate were solved and compared with previous research. The present results 
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showed better convergency than the quadrature method of Gauss-Chebyshev and Lobatto- 
Chebyshev, and worse convergency than the results of Boiko and Fujimoto. However, with 
an increase of collocation points, the present results gave the same accuracy as the results of 
Boiko and Fujimoto. 

(2) The stress intensity factors of an edge crack in semi-infinite plate were solved and compared 
with previous research. Other numerical methods could not give the solution with the same 
accuracy as the internal crack problem. However, the present results of an edge crack having 
the right angle to the free edge coincided with Koiter's exact solution in the 7 digits. 
Moreover, the oblique edge crack problem was found to be solved with almost the same 
accuracy as the solution of the hypersingular integral equation method. 

(3) The stress concentration factors of a semi-elliptical notch in a semi-infinite plate were 
calculated. The present method gave more accurate results than the previous body force 
method where the stepped functions and the extrapolation method were used. And the 
present analysis could highly satisfy the boundary conditions and gave the exact stress 
distribution anywhere along the boundary. 

(4) In the numerical solution of the Cauchy-type singular integral equation, an approximation 
of the unknown functions by the product of the fundamental density function and the 
polynomials was found to give good convergency of the numerical results for various kinds 
of notch and crack problems. 
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