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Abstract. In this study, the location and the size of a three-dimensional semi-elliptical surface crack in a semi- 
infinite body are detected from data of strains measured around a region of the crack. Also the loading stress at 
infinity is treated as an unknown parameter. The crack location, size and the loading stress are determined through 
the condition which minimizes the square sum of residuals between measured strain distributions and computed 
ones for an assumed crack. The body force method is used to calculate the strain field around the crack. In order 
to obtain the solution with short CPU time, the crack is represented by a set of force doublets, and the database of 
the magnitudes of force doublets for various aspect ratios of the crack is utilized. The method of gradient search is 
employed to find out an optimal set of parameters. The fact that the strain field around the surface crack is mainly 
dominated by the crack area is utilized in detecting the crack. Several inversion schemes are examined to obtain 
accurate results. Numerical simulations are carded out and the results show that crack location, shape and loading 
stress are determined efficiently with good accuracy. 

1. Introduct ion  

Detecting and sizing surface cracks are the prerequisites of  an evaluation of  the remaining 
strength of  structures based on fracture mechanics. Recently, crack detection has been regarded 

as one of  the inverse problems. Quantitative measurement of  cracks and defects based on the 
application of  inverse analysis has been made by a lot of  researchers using D.C. or A.C. 
electric potential method [1-5],  ultrasonic method [6,7], elastodynamic method [8] and strain 

measurement  [9], etc. [10,11]. Analysis of  inverse problems has been generally carded out 
through the iteration of  direct analyses developed so far. In the inverse problem of  3-D crack 
identification, however, a large number of  iterations of  the direct analysis must be performed 
to determine a lot of  unknown parameters, such as crack location and size, etc. Then large 
scale analysis has to be performed using supercomputers. Therefore it is difficult to apply 

those methods to the practical measurement of  the crack. 
In this study, the location and the size of  the semi-elliptical surface crack are detected from 

data of  strains measured around a region involving the crack. In order to carry out high-speed 
computat ion on a standard workstation, an efficient method of  inverse analysis is proposed 
on the basic concept  of  body force method. The body force method [12,13] is known as one 
of  the most  useful numerical methods for the stress analysis of  various crack problems. On 
the idea of  the body force method, strain field due to a crack can be represented by embedded 
body force doublets in the structure without a crack. Thus, the search for the location and the 
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Fig. 1. Problem of 3-D surface crack identification. 

shape of the crack is reduced to determining the location and the magnitude of these force 
doublets so as to produce the most similar strain field around the crack. By extending this 
concept, the efficient analysis scheme is developed. Moreover, in order to obtain the solution 
accurately, several inversion schemes are examined and numerical experiments are carried 
out to investigate the usefulness of the proposed method. 

2. Efficient determination of crack using the body force method 

In this section, by solving the inverse problem of a three-dimensional surface crack, the method 
of inverse analysis based on the body force method will be explained. Consider a semi-infinite 
solid containing a semi-elliptical surface crack under uniform stress # ~  at infinity as shown 
in Fig. 1. Here, actual crack center locations ~0, ~0, an actual surface crack length 20~ and 
an actual crack depth b are unknown. In addition, the loading stress # ~  is also treated as an 
unknown parameter because the applied stress in structures usually changes every moment 
and cannot be known in advance. As the information to identify the crack, strains gz~(P~) 
measured at points Pk(k = 1, . . .  , 4 M )  are used. Then, the problem is to determine five 
unknown parameters x0, z0, a, b and cr ~ on the basis of the data of strains measured at the 
points Pk. 

The inverse problem is analyzed by iteration of a direct analysis. When the unknown 
parameters x0, z0, a, b and a M are assumed, the corresponding strains at the points Pk can be 
calculated through straightforward computation. Then, the strains S~z(Pk) corresponding to 
the assumed parameters are compared with the measured strains Ezz (Pk) through the following 
function 

4M 

R =  - 2 .  

k--1 

(1) 

Here, R is called the objective function. If assumed parameters x0, z0, a, b and a M are close 
to the actual ones, the objective function R becomes small because the computed strains 
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Fig. 2. Flow chart of the body force method to calculate strains due to a crack. 

ezz (Pk) are close to the measured strains gzz (Pk). Therefore the inverse analysis is reduced to 
searching for the optimal set of parameters x0, z0, a, b and a ~ which minimizes the objective 
function R. 

In principle, the optimal set of parameters may be obtained through trial and error of the 
direct analysis. However, it is actually impossible to obtain the optimal set of parameters only 
through trial and error because the number of all possible combinations of the five unknown 
parameters is so enormous. Then it is essential to find how to reduce the calculation time 
necessary to find out the solution. In this study, in order to shorten the calculation time, the 
following method of the inverse analysis is proposed. 

2.1. EFFICIENT CALCULATION OF STRAINS AROUND THE CRACK 

It is important to shorten the CPU time necessary for one time calculation of the direct analyis 
because a large number of iterations must be made. In the calculation of the strain for the 
assumed parameters, the body force method is employed. In this method, a crack is replaced 
by distribution of body force doublets in the semi-infinite solid without the crack [12,13]. The 
strain at the measured point Pk is calculated from the density of body force doublet, as shown 
in the following equation 

eij(Pk) = eij(P~,oc)a ~ + / js  eij(Pk,Q)T(Q)dQ, (2) 
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Fig. 3. Approximation method to calculate the strain field around the crack. 

where eij(Pk, c~) is the strain at a point Pk due to the uniform stress o "~ = 1 at infinity in 
the semi-infinite solid without the crack, eij(Pk, Q) is the strain at a point Pk due to the set of 
point force doublets with unit magnitude acting at a point Q, and S is the prospective domain 
of the crack. The flow chart of analysis based on (2) is shown in Fig. 2(a), where most of the 
running time is consumed for determining the density of body force doublet (illustrated step 
(2) ,,o (5) in Fig. 2(a)). To simplify the calculation of the strains, in this study, the following 
method will be proposed. 

As shown in Fig. 3, the crack is assumed to be approximated by discrete force doublets 
applied at nine points instead of continuous distribution of force doublets. These discrete 
force doublets are named 'giant force doublets'. From Fig. 3, the strain at the point Pk is 
expressed by 

9 

e j(Pk) =   j(Pk, +   j(ek, Q.)T. ,  
n = l  

(3) 

where Eij(Pk, Q~) is strain eij at a point Pk in the semi-infinite solid due to the giant force 
doublet with unit magnitude acting at a point Qn. In (3), the magnitude of the giant force 
doublet Tn is determined by integrating the density of the body force doublet, T(Q), in each 
subdomain shown in Fig. 4. In this study, the magnitude of the giant force doublet T,~ is 
calculated beforehand and is stored in a computer file as a database. The magnitude of force 
doublet varies smoothly depending on the aspect ratio b/a and can be expressed as a simple 
function of b/a. 

T,~ = 4 ( 1  - u)2ab2cr ~ 
( 1 - 2 u )  fn(b/a), ( n =  1 , . . . , 9 ) ,  (4) 

fl(b/a) = 0 . 2 2 0 1 9 -  

f2(b/a) = 0 . 1 8 2 5 6 -  

f3(b/a) = 0 . 1 7 7 4 6 -  

f4(b/a) = 0 . 1 0 0 0 8 -  

fs(b/a) = 0 . 0 9 8 5 1 -  

f6(b/a) = 0 . 0 9 9 3 2 -  

O.O12487(b/a) + O.02983(b/a) 2 - O.O01684(b/a) 3, 

O.lO171(b/a) + O.02441(b/a) 2 -  O.O01484(b/a) 3, 

O.lO037(b/a) + O.02487(b/a) 2 

O.05068(b/a) + O.O0992(b/a) 2 

O.05223(b/a) + O.Ola56(b/a) 2 

O.05554(b/a) + O.O1411(b/a) 2 

- O.O01631(b/a) 3, 

- o . o o o l o 2 ( b / a )  3, 

- O.O00479(b/a) 3, 

-O.O01060(b/a) 3. 

(5) 

The subscripts in (5) correspond to the number of subdomain shown in Fig. 4. Since the giant 
force doublets are symmetrically distributed with respect to ~/-axis, only the six equations 
are needed as the database. Each of the coefficient in (5) are determined by the least square 
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regression method. Usually, the strain distribution far from the crack can be available as a piece 
of information to identify the crack. Since the error of strain due to the giant force doublets 
decreases rapidly with increasing the distance from the crack, the proposed method is good 
enough to represent the strain field except near the crack. Namely, as shown in Fig. 2(b), with 
the aid of the database, the computation of strain can be made easily and the running time can 
be reduced. 

2.2. EFFICIENT METHOD OF GRADIENT SEARCH 

To find out rapidly the optimal set of the parameters which minimize the objective function R, 
the method of gradient search is applied. In this method, the gradient vector of the objective 
function R at the assumed set of unknowns is calculated and the assumed point is modified 
iteratively in the most improved direction of R [9]. However, if this method is applied, 
it is found that there are two major difficulties in the process of searching the optimum 
condition. 

(A) To determine the searching direction it is necessary to calculate numerically the 
derivative of the objective function with respect to all of the parameters to be searched. 

(B) Since only the local information for assumed parameters is used, the results obtained 
by the gradient search tend to be drawn to a local minimum instead of the true minimum. 

In this study, to avoid such difficulties the following scheme is proposed [9]. 

2.2.1. Reduction of the number of parameters to be searched 

In order to determine the searching direction with short CPU time, it is preferable to decrease 
the number of parameters to be searched. As shown in (3) and (4), the strain due to the crack 
can be expressed as a linear function of crC¢. On the basis of this fact, the value of ~r ~ can be 
directly obtained by the following equation 

o R / o a  = o. (6) 

Therefore, in this study, the method of gradient search is applied only for the four parameters 
xo, zo, a, b. 
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2.2.2. Efficient determination of the starting point of gradient search 

To avoid the difficulty due to the local minimum, the most promising starting point for the 
gradient search should be selected. This can be determined by using the concept of the body 
force method. 

As shown in Fig. 5, the strain field due to the surface crack is simply approximated by the 
single embedded giant force doublet with magnitude T in an infinite solid. The most suitable 
initial values of unknown parameters, x0s, z0s and Ts, are determined by the condition which 
minimizes R. For certain points suitably chosen in the searching region, the value of R can 
be calculated. Since the strain field in Fig. 5(c) is expressed as a linear function of  T as well 
as ~r ~ ,  the values of T and cr °° are directly obtained from the condition 

O R / O T  = O, OR/Oa  °° = O. (7) 
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Through the comparison of R-values, the point with the smallest value of R is selected as 
the starting point :Cos , z0,. The initial value of the crack size is estimated by the following 
expression on the assumption of the circular crack (% = b~, see Appendix) 

3 /  3(1 - 2u)Ts 
as = g 1 6 ( 1 - u - - ~  ~"  

(8) 

The gradient search started from these values xos, zos, as, bs can reach the true minimum of 
R without the difficulty of a local minimum. 

3. Accurate determination of crack size 

As shown in Fig. 6, the problem is solved in the process of two main steps. 

(Step 1) Select the starting point of the gradient search. 
(Step 2) Search for the solution by using the method of gradient search from the selected 

starting point. 

When the method of gradient search is applied for the four unknowns x0, z0, a, b, the crack 
center location xo, Zo is estimated earlier and the crack size a, b is obtained later. However, the 
crack size a, b cannot be determined very accurately compared with the crack location x0, z0. 
Thus, it is necessary to introduce the third procedure (Step 3) to determine the accurate crack 
size (see Fig. 6). 

In this study, several inversion schemes are proposed and examined to estimate the crack 
size a, b accurately. First, since the crack location is estimated accurately at (Step 2), the crack 
location is fixed and the gradient search is carried out only for two parameters a, b. This scheme 
is named 'method (a)'. Next, as 'method (b)', the crack area S and aspect ratio b/a are chosen 
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as searching parameters instead of the crack size a, b, and the gradient search is performed 
after (Step 2). To compare both methods, the problem shown in Fig. 7 is analyzed. The results 
in Fig. 8 show that the crack size cannot be determined with good accuracy by either method 
(a) or (b). However, it should be noted that the crack area S = 7tab~2 is estimated accurately 
within 2 percent error. This suggests that the strain field around the crack is mainly dominated 
by the crack area S [14] and therefore other parameters such as b/a cannot be determined 
accurately using the method of gradient search. 

In the following section, the effect of crack parameters on the strain field around the crack 
will be discussed in more detail. 

3.1. EFFECT OF THE CRACK SIZE ON THE STRAIN FIELD 

In the body force method, the strain due to a crack is calculated from the influence coefficient 
eij(Pk, Qr~) and the magnitude of force doublet Tn as shown in (3). Based on this idea the 
strain is found to be closely related to T~. The magnitude Tn defined by (4) becomes 

4 ( 1 - v )  2 ( 2 S ) 3 / 2  
T.  _ -(i (bla) '12A(bla)" (9) 

As shown in (9), Tn is proportional to S 3/2. As an example, the T1 - ab relation and T] - b/a 
relation are shown in Fig. 9. Here, the parameter ab is double the size of the crack area. As 
shown in Fig. 9, 771 increases in proportion to (ab) 3/2 when b/a = constant. On the other 
hand, when ab = constant the variation of Tt is about 10 percent in the range 0.5 ~< b~ a <<. 2.0. 
A similar discussion can be applied to T2 ,'~ T6. Since the magnitude of force doublet Tn is 
mainly dominated by the crack area S, the strain field is also controlled by S [14]. 

Next, the variation of strain ezz at the point A shown in Fig. 7 is examined with varying 
crack size a, b. First, the ezz - ab relation is shown in Fig. 10(a) when b/a is constant. Here, 
the strain ez~ is normalized by the strain at infinity e~ .  Next, Fig. 10(b) shows the ez~ - b/a 
relation under the constant value of ab. From Fig. 10, it is found that the variation of the strain 
under ab = constant is small in the range 0.5 ~< b/a <<. 2.0, that is, the variation of the crack 
aspect ratio has only small effect on the strain around the crack. In other words, the strain 
distribution around the surface crack is mainly dominated by the crack area. 



Mode I type 3-D surface crack 351 

4J 

c~ 

0 

U 

0 
R-q 

R-I 
0 

(D 

4J 
.,-t 

2 0 . 0  

i0.0 

0.0 
0.0 

b / a = 1 . 0 ~  

1 .  

0 . 2  

i t i i i , , 

2.0 4.0 6.0 8.0 I0.0 
ab 

E~ 1.2 
4J 

,-I 1.0' 
0 

0.8 

o 0.6 

0.4 

.u 0.2 .,-.i 

0 0 x: • 
0.0 

(a) 

ab= 1.0 

a b = O .  5 

. . . .  ! i 

1.0 : . 0  
b/a  

(b) 
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and ~r ~ = 1. 

Furthermore, the relations between the objective function R and the parameters ab or b/a 
are also investigated. Figure 11 shows the variation of R under the condition that b/a = 
constant or ab = constant. In the case of b/a = constant, the objective function R varies 
significantly with ab having a true minimum at ab = 1.5. On the other hand, in the case of 
ab = constant, the values of R are almost zero and the variation of R is small. From Fig. 1 l(a) 
it is seen that if the parameter ab is close to the true value, the R-value is close to zero 
even when b/a is far different from the true value. The detailed variation of R is plotted in 
Fig. 1 l(b), where the ordinate represents log R. Figure 1 l(b) shows that when ab = constant 
the function R is almost less than 10 -5 having a local minimum at b/a ~. 0.5. Figure l l (b)  
shows us the reason why the determination of crack size is difficult. The reason is that the 
R-value has some local minima causing difficulties in searching for the true minimum. 

The discussion mentioned above leads to the conclusions: 

(1) The strain distribution around the surface crack is mainly dominated by the crack area 
almost irrespective of crack aspect ratio. 
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(2) When the crack area is close to the true value, R-value is almost zero and the variation 
of R has some local minima. This is the reason why the crack aspect ratio is difficult to 
determine compared with the crack area by only using the methods (a) and (b). 

(3) To estimate the crack size accurately, it is necessary to introduce the new method to 
overcome the difficulty due to local minimum. 

3.2. P R O C E D U R E  OF SEARCHING FOR ACCURATE CRACK SIZE 

In the ordinary method of gradient search such as methods (a) and (b), since the modification 
of crack aspect ratio is very small, the obtained results are drawn to a local minimum. If all 
ranges of b/a can be examined, the true minimum of R can be searched because the true 
minimum of R is smaller than the local minimum as illustrated in Fig. 11. 

In the discussion in Section 3.1, method (c) is proposed as follows using the crack area S 
and the crack aspect ratio b/a as the deter~oining parameters. First, the crack aspect ratio b/a 
is assumed within the range 0 ~< b/a << ~ 0 at the intervals of 0.1. Next, under each value of 
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assumed b/a, the most suitable crack area S can be determined by the condition of minimizing 
R using the method of gradient search. At that time, the parameter to be searched is the crack 
area only. Finally, through the comparison of the obtained R-values for all the assumed b/a, 
the most suitable crack size a, b can be obtained from the set of S and b/a. Figure 12 shows 
the flow chart of this procedure. In this procedure, first, b/a is roughly estimated at the interval 
of 0.1. Second, the aspect ratio is assumed at the intervals of 0.01 near the most suitable value 
of b/a, then the same searching procedure is performed again. The result obtained by method 
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(c) is shown in Fig. 13. Figure 13 shows that the proposed method is found to be useful for 
searching the crack size accurately. 

4. Numerical results and discussion 

The numerical experiment for determining the crack location, the crack size and the loading 
stress is carried out to confirm the usefulness of the proposed method. Here, the strains due to 
the real cracks obtained by the direct analysis are used as 'measured' reference data instead of 
the actually measured data. The data of strains is calculated exactly by the ordinary body force 
method shown in Fig. 2(a). The analysis is made using the workstation SUN ELC 4/25 FM-8, 
and the CPU time needed to solve the inverse problem is very short, about one minute. 

Table 1 shows the results of the problem for various crack depths b when the measuring 
region bx = 10, bz = 10 and the number of points M = 5. By comparing the given problems 
with the obtained results, it is found that the five unknowns, the crack location z0, z0, the 
crack size a, b and the loading stress ~r ~ ,  are determined with good accuracy in the range 
b/a <~ 2.0. 

In general, when the measuring regions bx, bz become larger or the crack becomes smaller, 
it becomes difficult to obtain accurately the solution because the strain induced by the crack 
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Fig. 14. Results of inverse analysis for various values ofbz and bz(M = 5). 

decreases. Figure 14 shows the results of the problem for various values of bx and bz. As 
shown in Fig. 14, it is found that the proposed method is useful in the range a/bx ~< 1/100. 

In this study, since the crack is replaced by the discrete force doublets at nine points, the 
accuracy of the present result decreases with decreasing the distance between the crack and 
the measured point Pk. Figure 15 shows the results of the problem for the variation of the 
distance d between the crack location and the measured point. From Fig. 15, it is found that 
the proposed method is useful when the distance between the crack location and the measured 
point is larger than the half size of surface crack length a. 
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(el d/a:l.5 (d) d/a=l.O 

Fig. 15. Results of inverse analysis for various values of distance d between crack location and measured point 
(bx = bz = lO, M = 8). 

5. Conclusion 

In this study, the location and the size of the 3-D surface crack and the loading stress were 
detected by the data of the strains measured around the region of the crack. The conclusions 
are summarized as follows: 

(1) An efficient inverse scheme was proposed on the basis of the body force method, 
where the crack was represented by a set of force doublets. In the calculation of strains, the 
magnitudes of these force doublets were stored as a database for various aspect ratios of the 
crack. By using the database, the strain around the crack was calculated easily with short CPU 
time. 

(2) To estimate crack size accurately, the effect of unknown parameters on the strain field 
were investigated. As a result, it was found that the strain field around the surface crack is 
mainly dominated by the crack area and therefore the determination of the crack shape is 
difficult. On the basis of this discussion, several inversion schemes were examined. Finally, a 
new inversion scheme was found to be successful in estimating the accurate crack size. 

(3) Numerical simulations were carried out to investigate the usefulness of the proposed 
method. The results showed that crack location and shape and loading stress were determined 
efficiently with good accuracy. CPU time needed to solve the problem was very short, about 
one minute using the workstation SUN ELC 4/25 FM-8. The proposed method was useful 
even for the deep crack in the range that b / a  <<, 2.0 and a / b x  >>. 1/100 in Fig. 1. 

Appendix 

Consider an embedded circular crack whose radius a in an infinite body subjected to uniform 
tension cr °~ at infinity, as illustrated in Fig. A-1. By means of the body force method, the crack 
is replaced by the distribution of body force doublets in an infinite body without a crack. The 
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Fig. 16. Fig. A-I Circular crack in an infinite body. 

exact density of the body force doublet distributed on the imaginary crack surface has been 
given in the following closed form 

8(1 - u)2ao "°° d ~2 7.]2 
w(e, 7) = (-1 7-'2--~)~ v l  a2 a2 , (A-l) 

where u is Poisson's ratio. The density w(G 7) is related with the crack opening displacement 
Uz(G 7) by the following relation 

E(1- ~,) 
w({,r/) = (1 - ~ u ~ - i +  u) Uz(~,~), (A-2) 

where E is Young's modulus. 
On this idea of the body force method, the circular crack is approximated by the single 

giant force doublet as shown in Fig. 5. Then, the magnitude T of the single giant force doublet 
is determined by integrating the density of the body force doublet w(G ~/) acting over the 
crack surface, that is 

8(1 - v)2acr °° i ~2 72 
T= c~-- -~  ffs 1 a2 a2d~d,, (A-3) 

where S is the area of the imaginary crack. If we put 

= pcos0, ~/= psin0, d~dr/= pdpdO, (A-4) 

the magnitude T is given as follows 

T _ 7] : 2u)Tr .10 .10 pV/--aT- pZdpdO 

8(1 - u)2o "°° [ (a 2 -  p2)3/2" 

(i ~ 2u)Tr [ 3 
× 2rr = 16(1 - u)2crC~a3 

3(1 - 2u) 
(A-5) 
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From (A-5), the initial value of  the crack size as expressed in (8) is estimated. 
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