Stress concentration factors for round and flat test specimens with notches

N.-A. Noda, M. Sera and Y. Takase

Mechanical Engineering Department, Kyushu Institute of Technology, 1-1, Sensuicho, Tobata, Kitakyushu 804, Japan (Received 28 March 1994; revised 15 August 1994)

The stress concentration problem of round and flat bars with V-shaped notches under various loadings is especially important for test specimens used to investigate the fatigue strength of materials. Accurate stress concentration factors have been given in a recent analysis of the body force method. However, the results of the solutions have been presented in tabular form, which is not suitable for engineering applications. In this paper convenient formulae, which give the stress concentration factors with better than 1% accuracy, are proposed using the Neuber formula and the solution of a V-shaped notch in a semi-infinite plate. The stress concentration factors are also provided in a graphical way on the basis of the formulae.

(Keywords: stress concentration factor; numerical analysis; notch; round test specimen; flat test specimen; tension; bending; torsion; in-plane bending; transverse bending)

The stress concentration problem of round and flat bars with V-shaped notches, as shown in *Figure 1* is especially important for the test specimens used to investigate the fatigue strength of materials¹. Approximate values of stress concentration factors given by the Neuber trigonometric rule², K_{tN} , have been used for more than 30 years. However, through systematic analyses using the body force method it has been confirmed that the Neuber values have non-conservative errors for a wide range of notch depth³⁻¹⁵. In these papers³⁻¹⁵ the exact stress concentration factors have been illustrated in tables and charts; however, they have not been given in the form of formulae suitable for engineering applications. In this paper,

Figure 1 Round and flat bars with V-shaped notches. Left: (a) tension; (b) bending; (c) torsion. Centre: (d) tension; (e) in-plane bending; (f) transverse bending (60° V-notch); (g) transverse bending (U-notch). Right: (h) pure tension; (i) in-plane bending; (j) transverse bending (60° V-notch); (k) transverse bending (U-notch)

Figure 2 Semi-infinite plate with 60° V-shaped notch and semi-elliptical notch

therefore, convenient formulae will be proposed giving accurate stress concentration factors for a wide range of notch dimensions. In addition, the stress concentration factors are also provided in a graphical form on the basis of the formulae so that they can be used easily in design or research.

DEFINITION OF STRESS CONCENTRATION FACTORS

In this paper, the stress concentration factors (SCFs) are based on the nominal stress at the minimum section and defined by

$$K_{\rm t} = \frac{\sigma_{\rm max}}{\sigma_{\rm n}} \tag{1}$$

where σ_{max} is the maximum stress at the root of the notch. The problems treated in this paper are shown

Table 1 The values of K_t/K_{tv} in problem (d)

				2ρ/D			
2t/D	0.02	0.03	0.05	0.1	0.2	0.5	1.0
0.02	0.980	0.980	0.979	0.979	0.979	0.980	0.981
0.05	0.948	0.948	0.948	0.948	0.948	0.947	0.947
0.1	0.896	0.895	0.895	0.896	0.895	0.894	0.893
0.2	0.793	0.792	0.793	0.792	0.792	0.791	0.791
0.3	0.696	0.696	0.696	0.696	0.696	0.697	0.700
0.4	0.606	0.606	0.606	0.607	0.607	0.610	0.618
0.5	0.522	0.521	0.522	0.522	0.523	0.530	0.547
0.6	0.441	0.441	0.441	0.442	0.444	0.459	0.487
0.7	0.362	0.362	0.362	0.363	0.369	0.394	0.437
0.8	0.281	0.281	0.282	0.286	0.297	0.339	0.396
0.9	0.191	0.192	0.195	0.205	0.230	0.293	0.360

as follows with the definition of nominal net stress σ_n for each problem (*Figure 1*):

- (a) 60° V-shaped circumferential notched round bar under tension $[\sigma_n = 4P/(\pi d^2)];$
- (b) 60° V-shaped circumferential notched round bar under bending $[\sigma_n = 32M/(\pi d^3)];$
- (c) 60° V-shaped circumferential notched round bar under torsion $[\tau_n = 16T/(\pi d^3)];$
- (d) 60° V-shaped double notched flat bar under tension [σ_n = P/dh];
 (e) 60° V-shaped double notched flat bar under in-
- (e) 60° V-shaped double notched flat bar under inplane bending $[\sigma_n = 6M/d^2h]$;
- (f) 60° V-shaped double notched flat bar under transverse bending $[\sigma_n = 6M/dh^2]$;
- (g) U-shaped double notched flat bar under transverse bending $[\sigma_n = 6M/dh^2]$;
- (h) 60° V-shaped single notched flat bar under pure tension (no bending moment at the minimum section) $[\sigma_n = P/dh];$

Figure 3 Curves of K_t/K_{tN} given by the approximate formulae. $\sigma_n = 4P/(\pi d^2)$; P = magnitude of external load; d = diameter of minimum section

- (i) 60° V-shaped single notched flat bar under inplane bending $[\sigma_n = 6M/d^2h]$;
- (j) 60° V-shaped single notched flat bar under transverse bending $[\sigma_n = 6M/dh^2]$;
- (k) U-shaped single notched flat bar under transverse bending $[\sigma_n = 6M/dh^2]$;

where d is a diameter or width of minimum section, h is a plate thickness, P is the magnitude of the external load, M is the magnitude of the external bending moment, and T is the magnitude of the external tortional moment. Here, in most cases, the notch shape is assumed to be a 60° V-shape because the notch open angle has negligible effect on the SCFs in the range $0^{\circ} \le \theta \le 90^{\circ}$ except transverse bending problems.^{15,16} In problems (a), (b), (f), (g), (j) and (k) Poisson's ratio ν is assumed to be 0.3. In this study the following notations will be used:

$$\xi = \sqrt{t/\rho}, \quad \eta = \sqrt{\rho/t}, \quad \lambda = 2t/D, \quad \epsilon = 2\rho/D$$
 (2)

Figure 4 K_c of 60° V-shaped circumferential notched round bar under tension. $\sigma_n = 4P/(\pi d^2)$; P = magnitude of external load; d= diameter of minimum section

Figure 5 K, of 60° V-shaped circumferential notched round bar under bending. $\sigma_n = 32M/(\pi d^3)$; M = magnitude of external bending moment; d = diameter of minimum section

where the parameters ρ , t, D, d are indicated in Figure 1.

APPROXIMATE FORMULAE FOR SHARP NOTCH USING THE SOLUTION OF THE SEMI-INFINITE PLATE

In general, it is difficult to calculate accurately the stress concentration factors for sharp notches $(\epsilon < 0.02-0.03)$. However, for some cases the stress concentration factors can be estimated from the solution of a V-shaped notch in a semi-infinite plate, K_{tv} (Figure 2). The reason is that the values of K_t/K_{tv} ($K_{tv} = K_t|_{\lambda \to 0}$) are almost determined by λ alone independent of notch shape for problems (a), (b), (d), (e), (h) and (i) unless the notch is very deep^{5.7.8.11.13}. Here, K_t corresponds to the notch in a round or flat bar and K_{tv} corresponds to the notch in a semi-infinite plate, both having the same value of t/ρ . As an example, the values of K_t/K_{tv} are shown in Table 1 for problem (d). First, the approximate formulae for K_{tv} can be obtained through applying the least-square method to the results of the body force method^{8,12}. They are shown in Equation (3) with less than 0.2% estimated errors. Here $K_{tH} = 1 + 2\sqrt{t/\rho}$.

$$0 \leq \xi < 1.0;$$

$$K_{tv} = (1.000 - 0.120\xi + 0.2683\xi^2 - 0.1273\xi^3)K_{tH}$$
(3a)
$$0 < \eta \leq 1.0 \ (1.0 \leq \xi < \infty);$$

$$K_{tv} = (1.035 + 0.0261\eta - 0.1451\eta^2 + 0.0842\eta^3)K_{tE}$$

$$K_{tE} = (1.121 - 0.2846\eta + 0.3397\eta^2 - 0.1544\eta^3)K_{tH}$$
(3b)

Next, the K_t values can be determined by λ alone as shown in Equations (4)-(9) with the K_{tv} values of the V-shaped notch in the semi-infinite plate with the same shape ratio t/ρ :

Problem (a):

$$K_{t} = (1.0 - 1.5183 \lambda + 0.2530\lambda^{2} + 2.2356\lambda^{3} - 2.411\lambda^{4})K_{tv}$$
(4)
($\lambda \le 0.5, \epsilon \le 0.03$)

Figure 6 K_t of 60° V-shaped circumferential notched round bar under torsion. $\tau_n = 16T/(\pi d^3)$; T = magnitude of external torsional moment; d = diameter of minimum section

Figure 7 K_t of 60° V-shaped double notched flat bar under tension. $\sigma_n = P/dh$, P = magnitude of external load; d = width of minimum section; h = plate thickness

Problem (b):

$$K_{t} = (1.0 - 3.0559\lambda + 1.5324\lambda^{2} + 68.176\lambda^{3} - 249.074\lambda^{4})K_{tv} \quad (5)$$
$$(\lambda \le 0.2, \epsilon \le 0.03)$$

Problem (d):

$$K_{t} = (1.0 - 1.0340\lambda - 0.1447\lambda^{2} + 0.9246\lambda^{3} - 0.6667\lambda^{4})K_{tv}$$
(6)
($\lambda \le 0.8, \epsilon \le 0.02$)

Problem (e):

$$K_{t} = (1.0 - 2.7808\lambda + 9.7250\lambda^{2} - 34.167\lambda^{3})K_{tv}$$

($\lambda \le 0.1, \epsilon \le 0.02$) (7)

Problem (h):

$$K_{t} = (1.0 - 3.8913\lambda + 11.777\lambda^{2} - 19.477\lambda^{3})K_{tv}$$

($\lambda \le 0.1, \epsilon \le 0.02$) (8)

Problem (i):

$$K_{t} = (1.0 - 3.2698\lambda + 11.395\lambda^{2} - 31.500\lambda^{3})K_{tv}$$

($\lambda \le 0.1, \epsilon \le 0.02$) (9)

APPROXIMATE FORULAE USING THE SOLUTION OF THE NEUBER TRIGONOMETRIC RULE

Usually, the Neuber method makes use of the two exact solutions: that is, the solution of an elliptical hole in an infinite plate K_{tH} as a shallow notch K_{ts} , and the solution of a hyperbolic notch as a deep notch, K_{td} . From these values, the Neuber value, K_{tN} , is given by the following ingenious simple equation²:

$$K_{\rm tN} = \frac{(K_{\rm ts} - 1)(K_{\rm td} - 1)}{\sqrt{(K_{\rm ts} - 1)^2 + (K_{\rm td} - 1)^2}} + 1 \tag{10}$$

Figure 8 K_i of 60° V-shaped double notched flat bar under inplane bending. $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

Figure 9 K_t of 60° V-shaped double notched flat bar under transverse bending. $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

In this paper, however, the more accurate solution (Equation (3)) of the 60° V-shaped notch in the semiinfinite plate will be used as a shallow notch, K_{ts} . Then, K_{ts} and K_{td} are expressed as follows.

Problem (a):

$$K_{ts} = K_{tv}$$

$$K_{td} = \frac{1}{N} \left\{ \frac{a}{\rho} \sqrt{\left(\frac{a}{\rho} + 1\right)} + (0.5 + \nu) \frac{a}{\rho} + (1 + \nu) \left[\sqrt{\left(\frac{a}{\rho} + 1\right)} + 1 \right] \right\}$$

$$N = \frac{a}{\rho} + 2\nu \sqrt{\frac{a}{\rho} + 1} + 2 \qquad (11)$$

Problem (b):

$$K_{ts} = K_{tv}$$

$$K_{td} = \frac{1}{N} \frac{3}{4} \left[\sqrt{\left(\frac{a}{\rho} + 1\right)} + 1 \right]$$

$$\left[3\frac{a}{\rho} - (1 - 2\nu) \sqrt{\left(\frac{a}{\rho} + 1\right)} + 4 + \nu \right]$$

Figure 10 K_i of U-shaped double notched flat bar under transverse bending. $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

$$N = 3\left(\frac{a}{\rho} + 1\right) + (1+4\nu)\sqrt{\left(\frac{a}{\rho} + 1\right)}$$
$$+ (1+\nu) \left/ \left[1 + \sqrt{\left(\frac{a}{\rho} + 1\right)}\right]$$
(12)

Problem (c):

$$K_{ts} = 1 + \sqrt{\frac{t}{\rho}}$$

$$K_{td} = \frac{3(1 + \sqrt{a/\rho + 1})^2}{4(1 + 2\sqrt{a/\rho + 1})}$$
(13)

Problem (d):

$$K_{ts} = K_{tv}$$

$$K_{td} = \frac{2(a/\rho + 1)\sqrt{a/\rho}}{(a/\rho + 1)\tan^{-1}\sqrt{a/\rho} + \sqrt{a/\rho}}$$
(14)

Problem (e):

$$K_{\rm ts} = K_{\rm tv}$$

$$K_{\rm td} = \frac{4a/\rho \times \sqrt{a/\rho}}{3[\sqrt{a/\rho} + (a/\rho - 1)\tan^{-1}\sqrt{a/\rho}]}$$
(15)

Figure 11 K_t of 60° V-shaped single notched flat bar under pure tension (no bending moment at the minimum section). $\sigma_n = P/dh$; P = magnitude of external load; d = width of minimum section; h = plate thickness

Problems (f) and (g):

$$K_{ts} = 1 + \frac{2(1+\nu)}{(3+\nu)} \sqrt{\frac{t}{\rho}}$$

$$K_{td} = \frac{2(1+\nu)\sqrt{a/\rho}}{(3+\nu)\tan^{-1}\sqrt{a/\rho} - (1-\nu)\sqrt{a/\rho}/(a/\rho+1)}$$
(16)

Problem (h):

$$K_{ts} = K_{tv}$$

$$K_{td} = \frac{\beta_1 - 2c}{1 - \frac{c}{\sqrt{a/\rho + 1}}}$$
(17)

Problem (i):

$$K_{ts} = K_{tv}$$

$$K_{td} = \frac{2(a/\rho + 1) - \beta_1 \sqrt{a/\rho + 1}}{\frac{4}{\beta_2} \left(\frac{a}{\rho} + 1\right) - 3\beta_1}$$
(18)

Problems (j) and (k):

$$K_{\rm ts} = 1 + \frac{2(1+\nu)}{(3+\nu)} \sqrt{\frac{t}{\rho}}$$

$$K_{td} = \frac{2(1+\nu)\sqrt{a/\rho}}{(3+\nu)\tan^{-1}\sqrt{a/\rho} - (1-\nu)\sqrt{a/\rho}/(a/\rho+1)}$$
(19)
$$\beta_{1} = \frac{2(a/\rho+1)\sqrt{a/\rho}}{(a/\rho+1)\tan^{-1}\sqrt{a/\rho} + \sqrt{a/\rho}}$$

$$\beta_{2} = \frac{4(a/\rho)^{3/2}}{3\{\sqrt{a/\rho} + (a/\rho-1)\tan^{-1}\sqrt{a/\rho}\}}$$

$$c = \frac{\beta_{1} - \sqrt{a/\rho+1}}{\frac{4}{3\beta_{2}}\sqrt{\frac{a}{\rho}+1} - 1}$$

In this paper, approximate formulae with high accuracy are proposed by applying the least-square method to the ratio K_t/K_{tN} , where exact K_t values can be found in the previous papers³⁻¹⁵. These obtained formulae are shown in the Appendix. As an example, the curves given by the formula for problem (a) is shown in *Figure 3*. The symbol \circ in the diagram denotes the exact result of the body force method. *Figure 3* indicates that the proposed approximate formulae give the stress concentration factors to better than 1% accuracy.

The stress concentration factors for problems (a)-(k) are provided directly in a graphical way as shown in *Figures 4-14* so that they can be used easily in design or research. *Tables 2-12* also show the stress concentration factors for test specimens as a standard type obtained through two types of approximate formula (Equations (3)-(30)). The specimen geometries shown in *Tables 2-12* have been used by Nisitani *et al.*^{17,18} in fatigue experiments.

Figure 12 K_1 of 60° V-shaped single notched flat bar under inplane bending. $\sigma_n = 6M/d^2h$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

Figure 13 K_1 of 60° V-shaped single notched flat bar under transverse bending. $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

Figure 14 $K_{\rm t}$ of U-shaped single notched flat bar under transverse bending. $\sigma_{\rm n} = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

CONCLUSIONS

The stress concentration of round and flat bars with V-shaped notches under various loading is especially important for the test specimens used to investigate the fatigue strength of materials. Accurate stress concentration factors have been given in a recent analysis of the body force method. In this paper, approximate formulae that are suitable for engineering applications are proposed. The conclusions can be made as follows.

- 1. Approximate formulae with high accuracy are proposed by applying the least-square method to the ratio K_t/K_{tN} , where K_t is the result obtained by the body force method and K_{tN} is the result of the Neuber trigonometric rule. In the range $0.02 \le 2\rho/D \le 1.0$, the formulae give stress concentration factors of better than 1% accuracy.
- 2. Numerical values have not been obtained because of the difficulty in the numerical analysis for sharp notches. However, in some cases, approximate formulae can be obtained from the solution of a V-shaped notch in a semi-infinite plate. For sharp notches $(2\rho/D < 0.03)$, the approximate formulae give the stress concentration factors with better than 1% accuracy unless the notch is very deep.
- 3. The stress concentration factors are provided in a graphical way on the basis of the proposed formulae so that they can be used easily in design and research. The SCFs obtained through two types of formula are also shown in tables as a standard type for test specimens in fatigue experiments.

Table 2 K_t of 60° V-shaped circumferential notched round bar under tension

·	t/d =	= 0.01	t/d =	0.02	t/d =	• 0.03	t/d =	• 0.04	t/d =	• 0.05	t/d =	= 0.06	t/d =	• 0.10	t/d =	= 0.20	t/d =	= 0.50
ρ/d	K,	K _{ιN}	К,	K _{in}	K,	K _{tN}	K	K _{in}	K,	K,N	K,	K _{in}	K,	<i>К</i> , _N	K,	K _{in}	K,	K _{ιN}
0.001	7.771	7.665	10.396	10.097	12.229	11.722	13.635	12.929	14.762	13.874	15.689	14.640	18.181	16.675	20.839	18.951	22.735	20.879
0.002	5.704	5.639	7.545	7.349	8.831	8.492	9.818	9.339	10.609	10.002	11.259	10.538	13.003	11.958	14.854	13.536	16.158	14.860
0.005	3.886	3.856	5.029	4.922	5.828	5.633	6.441	6.160	6.932	6.570	7.335	6.901	8.414	7.772	9.546	8.727	10.322	9.515
0.010	2.975	2.961	3.773	3.707	4.326	4.200	4.750	4.562	5.088	4.844	5.366	5.070	6.106	5.662	6.874	6.301	7.382	6.818
0.020	2.352	2.348	2.880	2.851	3.256	3.191	3.540	3.438	3.765	3.627	3.951	3.779	4.453	4.170	4.989	4.584	5.305	4.910
0.030	2.082	2.080	2.505	2.481	2.795	2.744	3.020	2.941	3.198	3.090	3.343	3.208	3.737	3.509	4.163	3.823	4.424	4.066
0.040	1.923	1.923	2.281	2.261	2.526	2.483	2.711	2.643	2.861	2.769	2.983	2.868	3.312	3.116	3.664	3.370	3.869	3.564
0.050	1.817	1.818	2.129	2.112	2.344	2.305	2.506	2.444	2.633	2.550	2.740	2.635	3.025	2.848	3.325	3.062	3.491	3.223
0.060	1.740	1.741	2.018	2.002	2.211	2.174	2.356	2.297	2.470	2.390	2.562	2.464	2.814	2.650	3.075	2.835	3.214	2.972
0.080	1.632	1.633	1.865	1.850	2.026	1.991	2.146	2.092	2.240	2.167	2.316	2.226	2.519	2.374	2.726	2.518	2.826	2.623
0.100	1.560	1.560	1.762	1.747	1.900	1.867	2.003	1.952	2.084	2.015	2.149	2.065	2.318	2.186	2.490	2.304	2.565	2.388
0.200	1.383	1.381	1.508	1.495	1.593	1.563	1.655	1.609	1.702	1.643	1.739	1.669	1.832	1.731	1.913	1.787	1.930	1.826
0.300	1.306	1.301	1.397	1.383	1.460	1.430	1.504	1.461	1.537	1.483	1.562	1.500	1.623	1.538	1.668	1.572	1.663	1.595
0.400	1.261	1.253	1.332	1.317	1.381	1.352	1.416	1.375	1.441	1.390	1.460	1.402	1.503	1.428	1.528	1.451	1.512	1.466
0.500	1.230	1.221	1.289	1.272	1.329	1.300	1.356	1.317	1.376	1.329	1.391	1.337	1.423	1.357	1.436	1.373	1.413	1.384
1.000		1.139		1.164		1.175		1.182		1.186		1.189		1.196		1.201	1.209	1.205
2.000		1.083		1.093		1.097		1.099		1.101		1.102		1.104		1.105		1.106
10.000		1.021		1.021		1.021		1.022		1.022		1.022		1.022		1.022		1.022
20.000		1.011		1.011		1.011		1.011		1.011		1.011		1.011		1.011		1.011

 $\sigma_n = 4P/(\pi d^2)$; P = magnitude of external load; d = diameter of minimum section

Table 3	K, of 60°	V-shaped	circumferential	notched	round	bar un	der ben	ding
---------	-----------	----------	-----------------	---------	-------	--------	---------	------

	<i>t/d</i> :	= 0.01	t/d =	= 0.02	t/d =	0.03	t/d =	• 0.04	t/d =	= 0.05	t/d =	≈ 0.06	t/d =	= 0.10	t/d	= 0.20	t/d	= 0.50
p/d	K,	K _{in}	K,	K _{in}	K,	Kin	K,	K _{in}	K,	K _{tN}	K,	K _{tN}	K,	K _{in}	K,	K _{in}	K,	K _{tN}
0.001	7.537	7.413	9.799	9.485	11.247	10.758	12.294	11.641	13.116	12.295	13.800	12.801	15.659	14.047		15.274		16.188
0.002	5.532	5.459	7.112	6.909	8.122	7.797	8.853	8.411	9.426	8.864	9.903	9.214	11.199	10.069		10.905		11.520
0.005	3.769	3.738	4.741	4.634	5.360	5.177	5.808	5.551	6.159	5.825	6.452	6.035	7.246	6.544		7.033		7.387
0.010	2.885	2.876	3.557	3.495	3.979	3.864	4.282	4.115	4.521	4.298	4.720	4.438	5.259	4.772		5.088		5.311
0.020	2.282	2.283	2.723	2.692	3.012	2.941	3.214	3.106	3.366	3.224	3.484	3.314	3.772	3.525		3.720		3.855
0.030	2.019	2.024	2.362	2.345	2.582	2.533	2.740	2.661	2.857	2.751	2.948	2.819	3.167	2.977	3.351	3.120	3.417	3.217
0.040	1.866	1.872	2.149	2.138	2.333	2.294	2.460	2.396	2.557	2.471	2.631	2.526	2.809	2.652	2.955	2.765	3.004	2.841
0.050	1.763	1.769	2.008	1.998	2.165	2.131	2.274	2.218	2.355	2.279	2.418	2.326	2.567	2.432	2.687	2.525	2.724	2.587
0.060	1.687	1.694	1.903	1.896	2.042	2.012	2.138	2.087	2.208	2.140	2.261	2.180	2.392	2.271	2.491	2.350	2.520	2.402
0.080	1.583	1.590	1.759	1.753	1.872	1.845	1.949	1.905	2.006	1.946	2.049	1.977	2.148	2.047	2.220	2.107	2.237	2.145
0.100	1.513	1.519	1.662	1.656	1.757	1.732	1.822	1.781	1.869	1.815	1.904	1.840	1.985	1.896	2.041	1.944	2.050	1.974
0.200	1.342	1.343	1.425	1.419	1.478	1.458	1.512	1.483	1.537	1.499	1.554	1.511	1.592	1.536	1.611	1.558	1.610	1.571
0.300	1.267	1.265	1.323	1.317	1.358	1.341	1.381	1.356	1.396	1.366	1.407	1.373	1.426	1.388	1.432	1.401	1.430	1.408
0.400	1.223	1.219	1.264	1.257	1.290	1.274	1.306	1.284	1.316	1.291	1.323	1.296	1.333	1.306	1.331	1.314	1.330	1.319
0.500	1.193	1.188	1.226	1.217	1.245	1.230	1.257	1.237	1.265	1.242	1.269	1.245	1.275	1.252	1.267	1.258	1.265	1.261
1.000		1.112		1.123		1.128		1.131		1.132		1.133		1.136		1.137	1.139	1.138
2.000		1.063		1.067		1.068		1.069		1.070		1.070		1.071		1.071		1.071
10.000		1.014		1.014		1.015		1.015		1.015		1.015		1.015		1.015		1.015
20.000		1.007		1.007		1.007		1.007		1.007		1.007		1.007		1.007		1.007

 $\sigma_n = 32M/(\pi d^3)$; M = magnitude of external bending moment; d = diameter of minimum section

Table 4 K_t of 60° V-shaped circumferential notched round bar under torsion

	t/d =	= 0.01	t/d =	= 0.02	t/d =	= 0.03	t/d =	= 0.04	t/d =	= 0.05	t/d =	= 0.06	t/d =	= 0.10	t/d =	= 0.20	t/d =	= 0.50
ρ/d	K,	K _{iN}	К,	K _{iN}	K,	K _{tN}	K,	K _{in}	К,	K _{uN}	K,	K _{in}	K,	K _{in}	К,	K _{in}	К,	K _{in}
0.001	4.131	3.929	5.225	4.899	5.952	5.512	6.489	5.952		6.287		6.551		7.228		7.937		8.499
0.002	3.193	3.072	3.963	3.743	4.470	4.168	4.841	4.472		4.703		4.884		5.346		5.825		6.203
0.005	1.912	1.914	2.248	2.198	2.468	2.373	2.624	2.496		2.587		2.658		2.835		3.012		3.146
0.020	1.623	1.639	1.837	1.831	1.984	1.946	2.092	2.026	2.175	2.085	2.240	2.130	2.404	2.241	2.546	2.349	2.604	2.429
0.030	1.499	1.517	1.656	1.667	1.771	1.757	1.854	1.818	1.918	1.862	1.969	1.896	2.098	1.978	2.212	2.057	2.257	2.115
0.040	1.425	1.444	1.551	1.570	1.645	1.644	1.713	1.694	1.765	1.730	1.807	1.757	1.914	1.822	2.012	1.884	2.050	1.929
0.050	1.375	1.394	1.484	1.503	1.503	1.56/	1.620	1.609	1.664	1.639	1.700	1.662	1.790	1.716	1.875	1.767	1.909	1.804
0.000	1.338	1.328	1.397	1.416	1.459	1.309	1.555	1.340	1.590	1.572	1.620	1.592	1.701	1.038	1.774	1.001	1.805	1.712
0.100	1.252	1.269	1.320	1.337	1.368	1.374	1.401	1.398	1.427	1.415	1.447	1.428	1.498	1.456	1.544	1.482	1.558	1.500
0.200	1.165	1.180	1.204	1.219	1.230	1.239	1.248	1.251	1.262	1.260	1.272	1.266	1.299	1.279	1.324	1.291	1.332	1.298
0.300	1.127	1.140	1.154	1.167	1.171	1.180	1.182	1.188	1.191	1.193	1.197	1.197	1.213	1.205	1.228	1.211	1.237	1.216
0.400	1.104	1.116	1.126	1.136	1.138	1.146	1.146	1.151	1.151	1.155	1.156	1.157	1.165	1.163	1.174	1.167	1.182	1.170
1.000	1.089	1.100	1.108	1.110	1.118	1.123	1.124	1.12/	1.128	1.129	1.131	1.131	1.137	1.135	1.140	1.138	1.140	1.140
2.000		1.035		1.037		1.038		1.038		1.072		1.075		1.039		1.039	1.078	1.070
10.000		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008
20.000		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004

 $\tau_n = 16T/(\pi d^3)$; T = magnitude of external torsional moment; d = diameter of minimum section

Table 5 K_t of 60° V-shaped double notched flat bar under tension

	t/d =	= 0.01	t/d =	= 0.02	t/d =	• 0.03	t/d =	= 0.04	t/d =	= 0.05	t/d =	0.06	t/d =	0.10	t/d =	= 0.20	t/d =	= 0.50
ρ/d	K,	K _{tN}	<i>K</i> ,	K _{tN}	К,	K _{tN}	К,	K _{in}	K,	K _{in}	<i>Κ</i> ,	K _{1N}	K,	K _{iN}	- Κ,	K _{in}	K,	K _{iN}
0.001	7.847	7.791	10.559	10.426	12.588	12.273	14.168	13.701	15.483	14.861	16.606	15.831	19.922	18.565	24.538	21.968	31.150	25.241
0.002	5.760	5.727	7.692	7.581	9.091	8.881	10.202	9.887	11.127	10.702	11.917	11.383	14.248	13.299	17.491	15.669	22.137	17.929
0.005	3.924	3.911	5.127	5.069	5.999	5.882	6.693	6.509	7.271	7.017	7.764	7.441	9.219	8.627	11.240	10.079	14.142	11.440
0.010	3.004	3.000	3.847	3.814	4.453	4.379	4.935	4.815	5.337	5.167	5.680	5.460	6.691	6.276	8.094	7.262	10.115	8.170
0.020	2.375	2.377	2.944	2.929	3.364	3.324	3.692	3.624	3.961	3.865	4.190	4.065	4.851	4.616	5.688	5.271	6.402	5.859
0.030	2.102	2.105	2.557	2.548	2.883	2.856	3.148	3.099	3.363	3.291	3.546	3.449	4.073	3.883	4.736	4.390	5.291	4.837
0.040	1.942	1.946	2.328	2.321	2.606	2.584	2.824	2.784	3.009	2.949	3.165	3.083	3.612	3.446	4.170	3.866	4.630	4.229
0.050	1.835	1.840	2.174	2.168	2.419	2.399	2.612	2.575	2.770	2.715	2.908	2.833	3.300	3.149	3.784	3.509	4.179	3.816
0.060	1.757	1.762	2.061	2.056	2.282	2.263	2.455	2.421	2.598	2.546	2.719	2.648	3.072	2.930	3.501	3.246	3.848	3.512
0.080	1.696	1.701	1.974	1.970	2.176	2.158	2.334	2.301	2.465	2.415	2.574	2.507	2.894	2.760	3.282	3.042	3.590	3.276
0.100	1.575	1.580	1.800	1.796	1.962	1.945	2.089	2.058	2.194	2.147	2.282	2.220	2.531	2.413	2.836	2.628	3.066	2.800
0.200	1.397	1.400	1.543	1.539	1.648	1.631	1.728	1.699	1.793	1.752	1.848	1.794	1.999	1.903	2.173	2.017	2.284	2.104
0.300	1.319	1.321	1.431	1.427	1.511	1.494	1.572	1.543	1.620	1.580	1.660	1.609	1.768	1.682	1.888	1.757	1.948	1.811
0.400	1.273	1.273	1.365	1.359	1.431	1.413	1.480	1.450	1.518	1.478	1.550	1.500	1.633	1.554	1.722	1.607	1.754	1.645
0.500	1.242	1.241	1.321	1.314	1.376	1.358	1.418	1.388	1.450	1.410	1.475	1.427	1.543	1.469	1.611	1.509	1.625	1.537
1.000		1.160		1.200		1.222		1.236		1.246		1.253		1.270		1.285	1.326	1.295
2.000		1.102		1.121		1.130		1.136		1.140		1.142		1.148		1.153		1.156
10.000		1.029		1.031		1.031		1.032		1.032		1.032		1.032		1.033		1.033
20.000		1.015		1.016		1.016		1.016		1.016		1.016		1.016		1.017		1.017

 $\sigma_n = P/dh$; P = magnitude of external load; d = width of minimum section; h = plate thickness

Table 6 K_1 of 60° V-shaped double notched flat bar under in-plane bending

	t/d	= 0.01	t/d =	= 0.02	t/d =	0.03	t/d =	0.04	t/d =	0.05	t/d =	= 0.06	t/d =	= 0.10	t/d =	= 0.20	t/d =	= 0.50
ρ/d	K,	K _{iN}	K	K _{in}	K,	K _{iN}	К,	K _{in}	K,	Kin	K,	K _{in}	K,	K _{uN}	K,	K _{in}	K,	K _{in}
0.001	7.600	7.532	9.992	9.767	11.592	11.193	12.722	12.212	13.676	12.986		13.597		15.147		16.752		18.007
0.002	5.578	5.543	7.252	7.110	8.371	8.107	9.197	8.818	9.828	9.356		9.780		10.849		11.947		12.796
0.005	3.800	3.793	4.834	4.763	5.525	5.378	6.034	5.814	6.422	6.142		6.399		7.042		7.691		8.183
0.010	2.909	2.915	3.626	3.590	4.101	4.011	4.449	4.307	4.714	4.529		4.701		5.129		5.553		5.869
0.020	2.301	2.313	2.776	2.764	3.097	3.051	3.328	3.249	3.505	3.395	3.646	3.508	4.009	3.784	4.366	4.052	4.547	4.246
0.030	2.036	2.051	2.410	2.407	2.657	2.627	2.840	2.783	2.978	2.896	3.087	2.983	3.365	3.193	3.638	3.393	3.773	3.536
0.040	1.881	1.897	2.194	2.195	2.401	2.379	2.550	2.505	2.666	2.600	2.757	2.672	2.985	2.843	3.206	3.003	3.316	3.116
0.050	1.777	1.793	2.049	2.052	2.229	2.211	2.358	2.319	2.455	2.398	2.534	2.460	2.729	2.605	2.914	2.740	3.005	2.833
0.060	1.701	1.717	1.942	1.947	2.102	2.087	2.216	2.183	2.302	2.252	2.369	2.304	2.542	2.431	2.701	2.547	2.777	2.626
0.800	1.596	1.612	1.796	1.800	1.927	1.914	2.021	1.992	2.091	2.047	2.146	2.089	2.282	2.189	2.405	2.279	2.460	2.339
0.100	1.526	1.540	1.697	1.702	1.809	1.798	1.888	1.862	1.948	1.909	1.994	1.944	2.107	2.025	2.208	2.099	2.247	2.147
0.200	1.353	1.364	1.456	1.460	1.521	1.514	1.565	1.548	1.598	1.573	1.624	1.591	1.684	1.632	1.732	1.667	1.745	1.690
0.300	1.278	1.287	1.351	1.355	1.396	1.391	1.427	1.414	1.449	1.429	1.466	1.441	1.503	1.467	1.530	1.488	1.535	1.502
0.400	1.233	1.240	1.290	1.293	1.324	1.319	1.347	1.336	1.363	1.347	1.375	1.355	1.401	1.373	1.415	1.388	1.416	1.397
0.500	1.203	1.209	1.250	1.251	1.277	1.271	1.295	1.284	1.307	1.292	1.316	1.298	1.334	1.311	1.341	1.322	1.338	1.329
1.000		1.130		1.150		1.158		1.163		1.166		1.168		1.173		1.177	1.178	1.179
2.000		1.077		1.085		1.088		1.089		1.090		1.091		1.092		1.093		1.094
10.000		1.019		1.019		1.019		1.019		1.020		1.020		1.020		1.020		1.020
20.000		1.010		1.010		1.010		1.010		1.010		1.010		1.010		1.010		1.010

Table 7	K_1 of 60°	V-shaped	double	notched	flat	bar unc	ier	transverse	bendin	ıg
---------	--------------	----------	--------	---------	------	---------	-----	------------	--------	----

	t/d	= 0.01	t/d =	= 0.02	t/d =	= 0.03	t/d =	≈ 0.04	t/d	= 0.05	t/d =	= 0.06	t/d	= 0.10	t/d	= 0.20	t/d	= 0.50
ρ/d	K,	K _{tN}	Κ, ,	K _{tN}	K,	K _{in}	Kt	K _{in}	K,	K _{tN}	K,	K _{in}	K,	K _{tN}	K,	K _{tN}	K,	K _{in}
0.001	3.563	3.426	4.469	4.344	5.068	4.998	5.523	5.511	5.889	5.933	6.195	6.291	7.066	7.327	8.191	8.686		10.093
0.002	2.791	2.713	3.498	3.339	3.900 2.868	3.817	4.315	4.170	4.592	4.4/1	4.820	4.720	3.435	3 758	6.240 A AA3	0.309		1.322
0.005	1.754	1.762	2.072	2.044	2.276	2.241	2.453	2.393	2.602	2.516	2.728	2.619	3.077	2.911	3.471	3.274		3.626
0.020	1.512	1.536	1.723	1.731	1.876	1.865	1.996	1.968	2.095	2.051	2.179	2.119	2.417	2.309	2.702	2.539	2.947	2.752
0.030	1.409	1.436	1.570	1.592	1.690	1.698	1.785	1.779	1.864	1.844	1.931	1.897	2.124	2.041	2.359	2.212	2.545	2.367
0.040	1.348	1.376	1.482	1.509	1.581	1.599	1.660	1.666	1.726	1.720	1.782	1.763	1.947	1.881	2.152	2.018	2.306	2.138
0.050	1.308	1.335	1.426	1.452	1.511	1.530	1.579	1.589	1.635	1.634	1.683	1.672	1.826	1.772	2.007	1.885	2.143	1.983
0.060	1.278	1.304	1.384	1.410	1.460	1.479	1.519	1.531	1.567	1.571	1.609	1.604	1.735	1.691	1.897	1.788	2.022	1.870
0.080	1.255	1.281	1.352	1.377	1.421	1.440	1.474	1.486	1.518	1.522	1.555	1.551	1.665	1.628	1.808	1.712	1.926	1.782
0.100	1.209	1.232	1.287	1.309	1.341	1.359	1.383	1.394	1.417	1.422	1.446	1.443	1.530	1.499	1.637	1.558	1.720	1.605
0.200	1.140	1.159	1.189	1.206	1.222	1.235	1.246	1.254	1.265	1.269	1.281	1.280	1.326	1.307	1.385	1.333	1.427	1.352
0.300	1.111	1.126	1.147	1.160	1.169	1.179	1.186	1.192	1.198	1.201	1.209	1.208	1.238	1.224	1.275	1.239	1.302	1.249
0.400	1.093	1.105	1.122	1.131	1.140	1.146	1.152	1.155	1.161	1.161	1.168	1.166	1.188	1.176	1.213	1.186	1.230	1.193
0.500	1.0081	1.091	1.107	1.112	1.121	1.123	1.131	1.130	1.138	1.134	1.143	1.138	1.158	1.146	1.173	1.152	1.182	1.157
1.000		1.056		1.065		1.069		1.072		1.073		1.074		1.077		1.079	1.089	1.080
2.000		1.032		1.036		1.037		1.038		1.038		1.038		1.039		1.039		1.040
10.000		1.007		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008
20.000		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004

 $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

Table 8 K_t of U-shaped double notched flat bar under transverse bending

	t/d =	= 0.01	t/d =	= 0.02	t/d =	= 0.03	t/d =	= 0.04	t/d =	= 0.05	t/d =	= 0.06	t/d =	= 0.10	t/d =	= 0.20	t/d =	= 0.50
ρ/d	K,	K _{in}	K ₁	K _{tN}		K _{in}	К,	K _{tN}	Κ,	K _{in}	K,	K _{in}	К,	K _{tN}	K,	K _{in}	K_{t}	K _{in}
0.001	3.849	3.426	5.118	4.344	6.047	4.998	6.791	5.511	7.413	5.933	7.947	6.291	9.531	7.327	11.694	8.686		10.093
0.002	2.910	2.713	3.778	3.359	4.421	3.817	4.938	4.176	5.372	4.471	5.745	4.720	6.851	5.437	8.363	6.369		7.322
0.005	2.125	2.081	2.629	2.485	3.011	2.769	3.321	2.991	3.584	3.172	3.810	3.324	4.486	3.758	5.413	4.312		4.864
0.010	1.756	1.762	2.086	2.044	2.333	2.241	2.537	2.393	2.710	2.516	2.860	2.619	3.312	2.911	3.936	3.274		3.626
0.020	1.512	1.536	1.728	1.731	1.888	1.865	2.018	1.968	2.129	2.051	2.225	2.119	2.519	2.309	2.932	2.539	3.357	2.752
0.030	1.408	1.436	1.569	1.592	1.689	1.698	1.787	1.779	1.870	1.844	1.942	1.897	2.166	2.041	2.486	2.212	2.823	2.367
0.040	1.348	1.376	1.478	1.509	1.576	1.599	1.654	1.666	1.721	1.720	1.779	1.763	1.959	1.881	2.220	2.018	2.499	2.138
0.050	1.307	1.335	1.425	1.452	1.509	1.530	1.576	1.589	1.631	1.634	1.680	1.672	1.828	1.772	2.043	1.885	2.278	1.983
0.060	1.277	1.304	1.384	1.410	1.460	1.479	1.519	1.531	1.569	1.571	1.611	1.604	1.745	1.691	1.921	1.788	2.116	1.870
0.080	1.255	1.281	1.352	1.377	1.421	1.440	1.475	1.486	1.519	1.522	1.557	1.551	1.672	1.628	1.836	1.712	1.994	1.782
0.100	1.208	1.232	1.287	1.309	1.342	1.359	1.384	1.394	1.418	1.422	1.448	1.443	1.535	1.499	1.653	1.558	1.767	1.605
0.200	1.140	1.159	1.189	1.206	1.222	1.235	1.246	1.254	1.265	1.269	1.281	1.280	1.327	1.307	1.390	1.333	1.447	1.352
0.300	1.111	1.126	1.147	1.160	1.169	1.179	1.186	1.192	1.198	1.201	1.208	1.208	1.237	1.224	1.275	1.239	1.311	1.249
0.400	1.093	1.105	1.122	1.131	1.140	1.146	1.152	1.155	1.161	1.161	1.168	1.166	1.187	1.176	1.209	1.186	1.231	1.193
0.500	1.081	1.091	1.107	1.112	1.121	1.123	1.131	1.130	1.138	1.134	1.143	1.138	1.156	1.146	1.168	1.152	1.179	1.157
1.000		1.056		1.065		1.069		1.072		1.073		1.074		1.077		1.079	1.089	1.080
2.000		1.032		1.036		1.037		1.038		1.038		1.038		1.039		1.039		1.040
10.000		1.007		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008
20.000		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004

N.-A. Noda et al.

Table 9 K_t of 60° V-shaped single notched flat bar under pure tension (no bending moment at the minimum section)

	t/d =	= 0.01	t/d =	= 0.02	t/d	= 0.03	t/d =	= 0.04	t/d =	• 0.05	t/d =	= 0.06	t/d =	0.10	t/d	= 0.20	t/d =	= 0.50
p/d	K,	K _{tN}	K,	K _{in}	Kı	K _{uN}	K,	K _{tN}	K,	K _{in}	K,	K _{tN}	K,	K _{in}	К,	K _{tN}	K,	K _{in}
0.001	7.433	7.121	9.563	8.841	10.87	5 9.812	10.445	10.445	12.432	10.894	12.927	11.229	14.031	12.009		12.717		13.206
0.002	5.456	5.244	6.941	6.434	7.85	4 7.100	7.532	7.532	8.934	7.836	9.277	8.062	10.035	8.584		9.052		9.373
0.005	3.717	3.589	4.626	4.305	5.18	3 4.698	5.563	4.950	5.838	5.125	6.044	5.254	6.493	5.548		5.806		5.979
0.010	2.845	2.759	3.471	3.237	3.84	7 3.492	4.102	3.652	4.285	3.762	4.421	3.843	4.712	4.024		4.179		4.281
0.020	2.250	2.185	2.661	2.484	2.91	1 2.644	3.078	2.740	3.196	2.805	3.283	2.852	3.460	2.956	3.537	3.042	3.532	3.097
0.030	1.991	1.933	2.312	2.157	2.50	3 2.270	2.633	2.340	2.725	2.386	2.791	2.419	2.926	2.490	2.982	2.548	2.976	2.585
0.040	1.840	1.785	2.106	1.962	2.26	5 2.051	2.371	2.103	2.447	2.139	2.502	2.164	2.611	2.218	2.656	2.261	2.653	2.287
0.050	1.738	1.684	1.969	1.831	2.10	5 1.903	2.196	1.945	2.259	1.973	2.306	1.993	2.398	2.035	2.435	2.069	2.437	2.089
0.060	1.664	1.611	1.869	1.734	1.98	9 1.794	2.069	1.830	2.125	1.852	2.164	1.868	2.240	1.903	2.272	1.930	2.280	1.946
0.080	1.607	1.554	1.789	1.660	1.89	5 1.711	1.967	1.741	2.017	1.760	2.052	1.774	2.119	1.802	2.144	1.825	2.158	1.838
0.100	1.492	1.438	1.630	1.512	1.71	1 1.546	1.765	1.565	1.801	1.578	1.827	1.586	1.874	1.604	1.890	1.618	1.902	1.627
0.200	1.323	1.269	1.404	1.301	1.45	0 1.315	1.478	1.322	1.497	1.327	1.509	1.330	1.528	1.337	1.531	1.342	1.539	1.345
0.300	1.250	1.197	1.310	1.216	1.34	1 1.223	1.360	1.227	1.372	1.230	1.379	1.232	1.385	1.235	1.384	1.238	1.391	1.239
0.400	1.206	1.157	1.254	1.169	1.27	8 1.174	1.291	1.176	1.299	1.178	1.303	1.179	1.303	1.181	1.301	1.183	1.306	1.184
0.500	1.176	1.131	1.214	1.139	1.23	3 1.143	1.243	1.144	1.248	1.145	1.251	1.146	1.249	1.148	1.246	1.149	1.249	1.149
1.000		1.072		1.075		1.076		1.076		1.077		1.077		1.077		1.078	1.129	1.078
2.000		1.038		1.039		1.040		1.040		1.040		1.040		1.040		1.040		1.040
10.000		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008
20.000		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004

 $\sigma_n = P/dh$; P = magnitude of external load; d = width of minimum section; h = plate thickness

Table 10 K_1 of 60° V-shaped single notched flat bar under in-plane bending

	t/d	= 0.01	t/d	= 0.02	t/d =	• 0.03	t/d =	= 0.04	t/d =	• 0.05	t/d =	= 0.06	<i>t/d</i> :	= 0.10	t/d =	= 0.20	t/d	= 0.50
ρ/d	K,	K _{in}	K,	K _{in}	К,	K _{in}	K,	K _{in}	K,	K _{tN}	K,	K _{tN}	K,	K _{in}	K,	K _{in}	K,	K_{iN}
0.001	7.528	7.494	9.813	9.676	11.300	11.051	12.374	12.025	13.187	12.758		13.332		14.775		16.244		17.373
0.002	5.526	5.517	7.122	7.047	8.161	8.008	8.911	8.687	9.477	9.197		9.595		10.591		11.595		12.359
0.005	3.765	3.777	4.747	4.725	5.386	5.318	5.846	5.735	6.193	6.046		6.288		6.887		7.483		7.928
0.010	2.882	2.905	3.561	3.565	3.997	3.972	4.311	4.256	4.545	4.467		4.630		5.031		5.423		5.711
0.020	2.279	2.307	2.705	2.750	2.988	3.029	3.187	3.219	3.336	3.360	3.453	3.467	3.733	3.729	3.949	3.980	3.998	4.160
0.030	2.017	2.047	2.347	2.398	2.561	2.612	2.715	2.764	2.829	2.873	2.918	2.957	3.128	3.158	3.286	3.348	3.315	3.482
0.040	1.863	1.894	2.136	2.189	2.313	2.370	2.436	2.492	2.530	2.585	2.602	2.655	2.771	2.820	2.893	2.974	2.910	3.082
0.050	1.760	1.791	1.995	2.048	2.148	2.204	2.253	2.311	2.330	2.388	2.391	2.449	2.531	2.591	2.628	2.721	2.636	2.811
0.060	1.685	1.716	1.892	1.944	2.025	2.083	2.117	2.178	2.184	2.246	2.235	2.298	2.359	2.423	2.435	2.536	2.436	2.613
0.080	1.628	1.658	1.813	1.864	1.933	1.989	2.015	2.074	2.075	2.136	2.120	2.182	2.223	2.292	2.289	2.393	2.282	2.461
0.100	1.511	1.541	1.654	1.703	1.746	1.800	1.807	1.865	1.852	1.912	1.886	1.947	1.959	2.029	1.998	2.104	1.981	2.153
0.200	1.340	1.367	1.419	1.465	1.469	1.521	1.500	1.557	1.522	1.583	1.538	1.602	1.570	1.645	1.581	1.683	1.565	1.708
0.300	1.266	1.290	1.316	1.361	1.349	1.400	1.368	1.424	1.380	1.441	1.389	1.454	1.403	1.482	1.404	1.506	1.396	1.521
0.400	1.221	1.244	1.258	1.300	1.281	1.329	1.293	1.346	1.301	1.359	1.305	1.368	1.310	1.388	1.306	1.404	1.301	1.415
0.500	1.191	1.213	1.220	1.258	1.238	1.281	1.247	1.294	1.251	1.304	1.254	1.311	1.254	1.326	1.245	1.338	1.241	1.346
1.000		1.135		1.156		1.166		1.172		1.175		1.178		1.183		1.188	1.127	1.191
2.000		1.081		1.089		1.093		1.095		1.096		1.097		1.099		1.100		1.101
10.000		1.020		1.021		1.021		1.021		1.021		1.021		1.021		1.021		1.021
20.000		1.010		1.011		1.011		1.011		1.011		1.011		1.011		1.011		1.011

Table 11 K_1 of 60° V-sh	aped single notched	l flat bar und	ler transverse	bending
----------------------------	---------------------	----------------	----------------	---------

	t/d = 0.01		t/d =	t/d = 0.02		t/d = 0.03		t/d = 0.04		t/d = 0.05		t/d = 0.06		t/d = 0.10		t/d = 0.20		t/d = 0.50	
p/d	K,	Kun	K,	K _{tN}	К,	K _{in}	K,	K _{uN}	K,	K _{in}	К,	K _{in}	K,	K _{in}	K,	K _{tN}	К,	K _{iN}	
0.001	3.562	3.426	4.467	4.344	5.066	4.998	5.520	5.511	5.886	5.933	6.193	6.291	7.069	7.327	8.214	8.686	9.460	10.093	
0.002	2.790	2.713	3.497	3.359	3.964	3.817	4.313	4.176	4.590	4.471	4.819	4.720	5.458	5.437	6.257	6.369	7.073	7.322	
0.005	2.110	2.081	2.539	2.485	2.867	2.769	3.119	2.991	3.320	3.172	3.485	3.324	3.933	3.758	4.455	4.312	4.921	4.864	
0.010	1.753	1.762	2.071	2.044	2.275	2.241	2.452	2.393	2.601	2.516	2.727	2.619	3.078	2.911	3.481	3.274	3.799	3.626	
0.020	1.512	1.536	1.724	1.731	1.877	1.865	1.998	1.968	2.097	2.051	2.181	2.119	2.418	2.309	2.707	2.539	2.963	2.752	
0.030	1.408	1.436	1.571	1.592	1.691	1.698	1.787	1.779	1.865	1.844	1.932	1.897	2.125	2.041	2.363	2.212	2.560	2.367	
0.040	1.348	1.376	1.482	1.509	1.582	1.599	1.662	1.666	1.727	1.720	1.784	1.763	1.948	1.881	2.156	2.018	2.321	2.138	
0.050	1.307	1.335	1.426	1.452	1.512	1.530	1.580	1.589	1.636	1.634	1.684	1.672	1.827	1.772	2.011	1.885	2.158	1.983	
0.060	1.277	1.304	1.385	1.410	1.461	1.479	1.520	1.531	1.569	1.571	1.610	1.604	1.736	1.691	1.901	1.788	2.036	1.870	
0.080	1.255	1.281	1.353	1.377	1.422	1.440	1.475	1.486	1.519	1.522	1.557	1.551	1.666	1.628	1.813	1.712	1.939	1.782	
0.100	1.208	1.232	1.288	1.309	1.342	1.359	1.384	1.394	1.418	1.422	1.447	1.443	1.532	1.499	1.641	1.558	1.732	1.605	
0.200	1.140	1.159	1.190	1.206	1.222	1.235	1.246	1.254	1.266	1.269	1.282	1.280	1.329	1.307	1.389	1.333	1.438	1.352	
0.300	1.110	1.126	1.147	1.160	1.170	1.179	1.186	1.192	1.199	1.201	1.210	1.208	1.241	1.224	1.281	1.239	1.313	1.249	
0.400	1.093	1.105	1.123	1.131	1.140	1.146	1.153	1.155	1.162	1.161	1.170	1.166	1.191	1.176	1.218	1.186	1.241	1.193	
0.500	1.081	1.091	1.107	1.112	1.122	1.123	1.132	1.130	1.140	1.134	1.145	1.138	1.161	1.146	1.179	1.152	1.194	1.157	
1.000		1.056		1.065		1.069		1.072		1.073		1.074		1.077		1.079	1.100	1.080	
2.000		1.032		1.036		1.037		1.038		1.038		1.038		1.039		1.039		1.040	
10.000		1.007		1.008		1.008		1.008		1.008		1.008		1.008		1.008		1.008	
20.000		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004		1.004	

 $\sigma_n = 6M/dh^2$; M = magnitude of external bending moment; d = width of minimum section; h = plate thickness

Table 12 K_{t} of U-shaped single-notched flat bar under transverse bending

	t/d = 0.01		t/d = 0.02		t/d = 0.03		t/d = 0.04		t/d = 0.05		t/d = 0.06		t/d = 0.10		t/d = 0.20		t/d = 0.50	
ρ/d	К,	K _{iN}	K,	K _{in}	K,	K _{in}	K,	K _{in}	К,	K _{iN}	K,	K _{tN}	K,	K _{in}	K,	K _{in}	K,	K _{tN}
0.001 0.002 0.005 0.010 0.020 0.030 0.040 0.050 0.060 0.060 0.080 0.100 0.200	3.847 2.909 2.124 1.755 1.512 1.408 1.347 1.307 1.277 1.254 1.208 1.140	3.426 2.713 2.081 1.762 1.536 1.436 1.376 1.335 1.304 1.281 1.232 1.59	5.114 3.775 2.627 2.084 1.728 1.569 1.479 1.425 1.385 1.353 1.288 1.190	4.344 3.359 2.485 2.044 1.731 1.592 1.509 1.452 1.410 1.377 1.309 1.206	6.042 4.417 3.008 2.331 1.888 1.691 1.578 1.510 1.461 1.422 1.342 1.222	4.998 3.817 2.769 2.241 1.865 1.698 1.599 1.530 1.479 1.440 1.359 1.235	6.785 4.934 3.318 2.535 2.019 1.788 1.656 1.577 1.520 1.476 1.385 1.247	5.511 4.176 2.991 2.393 1.968 1.779 1.666 1.589 1.531 1.486 1.394 1.254	7.408 5.368 3.581 2.708 2.130 1.871 1.723 1.633 1.570 1.521 1.419 1.266	5.933 4.471 3.172 2.516 2.051 1.844 1.720 1.634 1.571 1.522 1.422 1.422 1.269	7.943 5.741 3.808 2.858 2.226 1.944 1.781 1.681 1.612 1.559 1.449 1.282	6.291 4.720 3.324 2.619 2.119 1.897 1.763 1.672 1.604 1.551 1.443 1.280	9.538 6.856 4.490 3.314 2.521 2.167 1.960 1.829 1.746 1.673 1.537 1.330	7.327 5.437 3.758 2.911 2.309 2.041 1.881 1.772 1.691 1.628 1.499 1.307	11.755 8.406 5.442 3.957 2.936 2.490 2.223 2.046 1.924 1.840 1.657 1.395	8.686 6.369 4.312 3.274 2.539 2.212 2.018 1.885 1.788 1.712 1.558 1.333	14.221 10.119 6.490 4.665 3.367 2.834 2.511 2.290 2.129 2.006 1.777 1.457	10.093 7.322 4.864 3.626 2.752 2.367 2.138 1.983 1.870 1.782 1.605 1.352
$\begin{array}{c} 0.200\\ 0.300\\ 0.400\\ 0.500\\ 1.000\\ 2.000\\ 10.000\\ 20.000 \end{array}$	1.140 1.110 1.092 1.080	1.139 1.126 1.105 1.091 1.056 1.032 1.007 1.004	1.190 1.147 1.123 1.107	$\begin{array}{c} 1.200\\ 1.160\\ 1.131\\ 1.112\\ 1.065\\ 1.036\\ 1.008\\ 1.004 \end{array}$	1.222 1.170 1.140 1.122	1.233 1.179 1.146 1.123 1.069 1.037 1.008 1.004	1.1247 1.186 1.153 1.132	1.192 1.192 1.155 1.130 1.072 1.038 1.008 1.004	1.200 1.199 1.162 1.139	1.209 1.201 1.161 1.134 1.073 1.038 1.008 1.004	1.202 1.210 1.169 1.145	1.208 1.166 1.138 1.074 1.038 1.008 1.004	1.330 1.240 1.189 1.159	1.307 1.224 1.176 1.146 1.077 1.039 1.008 1.004	1.280 1.215 1.174	1.333 1.239 1.186 1.152 1.079 1.039 1.008 1.004	1.322 1.242 1.190 1.100	1.332 1.249 1.193 1.157 1.080 1.040 1.008 1.004

REFERENCES

- 1 Schijve, J. Int J. Fatigue 1986, 8, 95
- 2 Neuber, H. Kerbspannungslehre Springer-Verlag, 1957
- 3 Murakami, Y., Noda, N.-A. and Nisitani, H. Trans. Jpn Soc. Mech. Eng. 1982, 48, 800 (in Japanese)
- 4 Nisitani, H. and Noda, N.-A. Trans. Jpn Soc. Mech. Eng. 1984, 50, 1592 (in Japanese)
- 5 Nisitani, H. and Noda, N.-A. Eng. Fract. Mech. 1984, 20, 743
- 6 Nisitani, H. and Noda, N.-A. Trans. Jpn Soc. Mech. Eng. 1985, 51, 54 (in Japanese)
- 7 Nisitani, H. and Noda, N.-A. Trans. Jpn Soc. Mech. Eng. 1985, 51, 775 (in Japanese)
- 8 Noda, N.-A., Nisitani, H., Fukasako, I. and Harada, S. Trans. Jpn Soc. Mech. Eng. 1985, 51, 1467 (in Japanese)
- 9 Nisitani, H., Noda, N.-A., Fukasako, I. and Harada, S. Trans. Jpn Soc. Mech. Eng. 1985, 51, 1804 (in Japanese).
- Noda, N.-A., Nisitani, H. and Fukasako, I. Trans. Jpn Soc. Mech. Eng. 1985, 52, 1066 (in Japanese)
 Murakami, Y., Noda, N.-A. and Nisitani, H. Int. J. Solids
- 11 Murakami, Y., Noda, N.-A. and Nisitani, H. Int. J. Solids Struct. 1986, 22, 1986, 39
- 12 Nisitani, H. and Noda, N.-A. Eng. Fract. Mech. 1986, 23, 1051
- 13 Noda N.-A. and Nisitani, H. Eng. Fract. Mech. 1987, 28, 223
- 14 Noda, N.-A., Tsubaki, M. and Nisitani, H. Trans. Jpn Soc. Mech. Eng. 1988, 54, 518 (in Japanese)
- 15 Noda, N.-A., Tsubaki, M. and Nisitani, H. Eng. Fract. Mech. 1988, **31**, 119
- Nisitani, H. Stress Analysis of Notched Problems Ed. G.C. Sih), Leyden, 1974, pp. 1-68
- Nisitani, H. Trans. Jpn Soc. Mech. Eng. 1968, 34, 371 (in Japanese) [Bull. Jpn Soc. Mech. Eng. 1968, 11, 947]
 Noda, N.-A., Nisitani, H., Harada, S. and Takase, Y. Int.
- 18 Noda, N.-A., Nisitani, H., Harada, S. and Takase, Y. Int. J. Fatigue 1995, 17, in press

NOMENCLATURE

а	Radius or half-width of minimum section
	(width of minimum section for nat
D	Out with single notch)
D ,	Cylindrical diameter
d	Diameter or width of minimum section
h	Plate thickness
K _t	Stress concentration factor (SCF) based
	on minimum section
K _{td}	SCF of deep notch
K _{tE}	SCF of semi-elliptical notch in semi-
	infinite plate
K _{tH}	SCF of elliptical hole in infinite plate =
	$1 + 2\sqrt{t/\rho}$
K_{tN}	SCF of Neuber formula
$K_{\rm ts}$	SCF of shallow notch
K _{tv}	SCF of 60° V-shaped notch in semi-
	infinite plate
М	Magnitude of external bending moment
Р	Magnitude of external load
Т	Magnitude of external torsional moment
t	depth of notch
E	Relative notch radius = $2\rho/D$
ν	$=\sqrt{\rho/t}$
λ	Relative notch depth = $2t/D$
ν	Poisson's ratio $(=0.3)$
ρ	Root radius of notch
$\sigma_{\rm max}$	Maximum stress at root of notch
σ_{n}	Nominal stress for minimum section
Ĕ	$=\sqrt{t/\rho}$
3	r.

APPENDIX

Approximate formulae obtained by applying the leastsquare method to the exact values of K_t/K_{tN} are expressed as follows.

Problem (a):

$$\begin{split} K_t/K_{tN} &= (0.9670 + 0.6823\epsilon - 4.5949\epsilon^2) \\ &+ (1.3638 - 24.7892\epsilon + 158.378\epsilon^2)\lambda \\ &+ (-6.8877 + 211.763\epsilon - 1356.21\epsilon^2)\lambda^2 \\ &+ (21.2643 - 810.957\epsilon + 5172.28\epsilon^2)\lambda^3 \\ &+ (-38.1300 + 1538.05\epsilon - 9776.43\epsilon^2)\lambda^4 \\ &+ (34.8030 - 1406.84\epsilon + 8890.48\epsilon^2)\lambda^5 \\ &+ (-12.3798 + 492.074\epsilon - 3083.73\epsilon^2)\lambda^6 \\ &\quad (0.03 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_t/K_{tN} &= (0.9907 - 0.0320\epsilon + 0.0268\epsilon^2) \\ &+ (0.3967 + 1.3381\epsilon - 0.8651\epsilon^2)\lambda \\ &+ (1.3055 - 12.2708\epsilon + 6.6980\epsilon^2)\lambda^2 \\ &+ (-9.2572 + 40.3615\epsilon - 22.8963\epsilon^2)\lambda^3 \\ &+ (19.1186 - 73.1167\epsilon + 46.5492\epsilon^2)\lambda^4 \\ &+ (-17.9846 + 69.0592\epsilon - 48.0002\epsilon^2)\lambda^5 \\ &+ (6.4306 - 25.3391\epsilon + 18.4873\epsilon^2)\lambda^6 \\ &(0.1 < \epsilon \leq 1.0, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

Problem (b):

$$\begin{split} K_{t}/K_{tN} &= (0.9859 - 0.2658\epsilon + 1.5531\epsilon^2) \\ &+ (1.1593 - 5.2297\epsilon + 25.9976\epsilon^2)\lambda \\ &+ (-4.5477 + 35.1032\epsilon - 222.384\epsilon^2)\lambda^2 \\ &+ (8.8976 - 126.382\epsilon + 836.366\epsilon^2)\lambda^3 \\ &+ (-10.5167 + 245.239\epsilon - 1603.87\epsilon^2)\lambda^4 \\ &+ (7.5008 - 239.283\epsilon + 1531.55\epsilon^2)\lambda^5 \\ &+ (-2.4786 + 90.8033\epsilon - 569.122\epsilon^2)\lambda^6 \\ &\quad (0.03 \leq \epsilon \ 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_t/K_{tN} &= (0.9738 + 0.0003\epsilon + 0.0148\epsilon^2) \\ &+ (0.8799 + 0.2328\epsilon - 0.4536\epsilon^2)\lambda \\ &+ (-2.4147 - 9.7679\epsilon + 7.2604\epsilon^2)\lambda^2 \\ &+ (0.8960 + 42.2626\epsilon - 28.0362\epsilon^2)\lambda^3 \\ &+ (4.6763 - 76.4670\epsilon + 48.9434\epsilon^2)\lambda^4 \\ &+ (-6.6692 + 64.4563\epsilon - 40.9527\epsilon^2)\lambda^5 \\ &+ (2.6578 - 20.7164\epsilon + 13.2229\epsilon^2)\lambda^6 \\ &(0.1 < \epsilon \leq 1.0, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

Problem (c):

$$\begin{split} K_{\rm t}/K_{\rm tN} &= (0.9886 - 0.9685\epsilon + 7.1182\epsilon^2) \\ &+ (1.5851 - 7.7911\epsilon - 8.7180\epsilon^2)\lambda \\ &+ (-7.6809 + 65.0594\epsilon - 56.9974\epsilon^2)\lambda^2 \\ &+ (17.4340 - 179.344\epsilon + 82.7721\epsilon^2)\lambda^3 \\ &+ (-21.2671 + 242.037\epsilon + 88.1990\epsilon^2)\lambda^4 \\ &+ (13.8080 - 176.775\epsilon - 115.711\epsilon^2)\lambda^5 \\ &+ (-3.8676 + 57.7794\epsilon + 3.3695\epsilon^2)\lambda^6 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$K_{t}/K_{tN} = (0.9590 + 0.0460\epsilon - 0.0207\epsilon^{2}) + (0.7972 - 1.3067\epsilon + 0.8141\epsilon^{2})\lambda + (-1.6853 + 1.2552\epsilon - 1.2308\epsilon^{2})\lambda^{2} + (-0.6959 + 7.8264\epsilon - 2.7312\epsilon^{2})\lambda^{3} + (6.0103 - 21.7877\epsilon - 9.5555\epsilon^{2})\lambda^{4} + (-6.9476 + 21.2873\epsilon - 9.8461\epsilon^{2})\lambda^{5} + (2.5625 - 7.3206\epsilon - 3.4592\epsilon^{2})\lambda^{6} \\ (0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0)$$
(22)

$$\begin{split} K_{\rm t}/K_{\rm tN} &\approx (0.9863 - 0.1967\epsilon - 1.2261\epsilon^2) \\ &+ (0.7598 - 14.6944\epsilon + 85.2855\epsilon^2)\lambda \\ &+ (-3.3994 + 137.860\epsilon - 770.087\epsilon^2)\lambda^2 \\ &+ (11.8465 - 546.326\epsilon + 2964.65\epsilon^2)\lambda^3 \\ &+ (-24.6062 + 1074.41\epsilon - 5684.17\epsilon^2)\lambda^4 \\ &+ (24.9403 - 1013.22\epsilon + 5212.60\epsilon^2)\lambda^5 \\ &+ (-9.5266 + 361.756\epsilon - 1806.89\epsilon^2)\lambda^6 \\ &\quad (0.02 &\leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_t/K_{tN} &= (0.9973 - 0.0411\epsilon + 0.0290\epsilon^2) \\ &+ (0.0025 + 1.4755\epsilon - 0.9146\epsilon^2)\lambda \\ &+ (3.9929 - 13.7614\epsilon + 8.9229\epsilon^2)\lambda^2 \\ &+ (-18.6927 + 59.2470\epsilon - 42.7560\epsilon^2)\lambda^3 \\ &+ (38.2885 - 130.019\epsilon + 97.5542\epsilon^2)\lambda^4 \\ &+ (-36.9392 + 131.133\epsilon - 98.5547\epsilon^2)\lambda^5 \\ &+ (13.3503 - 48.0315\epsilon + 35.7172\epsilon^2)\lambda^6 \\ &(0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0) \end{split}$$

Problem (e):

$$K_t/K_{tN} = (0.9860 - 0.2543\epsilon + 1.3536\epsilon^2) + (0.8141 - 1.8146\epsilon + 7.7454\epsilon^2)\lambda + (-1.9019 - 2.7027\epsilon + 10.6611\epsilon^2)\lambda^2 + (0.8497 + 37.6317\epsilon - 206.130\epsilon^2)\lambda^3 + (1.4758 - 70.8874\epsilon + 404.947\epsilon^2)\lambda^4 + (-1.2098 + 38.0317\epsilon - 220.164\epsilon^2)\lambda^5 + (-0.0139 - 0.0054\epsilon + 1.5961\epsilon^2)\lambda^6 \\ (0.02 \le \epsilon \le 0.1, 0.02 \le \lambda \le 1.0)$$

$$K_{t}/K_{tN} = (0.9/35 \pm 0.0036\epsilon \pm 0.00/0\epsilon^{2}) + (0.7227 - 0.2412\epsilon \pm 0.0230\epsilon^{2})\lambda + (-1.8034 - 2.2175\epsilon \pm 1.3980\epsilon^{2})\lambda^{2} + (1.7308 \pm 7.0844\epsilon - 3.3948\epsilon^{2})\lambda^{3} + (-0.7339 - 6.8807\epsilon \pm 2.6137\epsilon^{2})\lambda^{4} + (0.1099 \pm 2.2525\epsilon - 0.6471\epsilon^{2})\lambda^{5} \\ (0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0) \quad (24)$$

Problem (f):

$$\begin{split} K_{\rm t}/K_{\rm tN} &= (0.9828 - 0.4343\epsilon + 3.5438\epsilon^2) \\ &+ (1.5236 - 25.7113\epsilon + 117.095\epsilon^2)\lambda \\ &+ (-11.1918 + 292.716\epsilon - 1555.67\epsilon^2)\lambda^2 \\ &+ (39.1363 - 1135.95\epsilon + 6288.58\epsilon^2)\lambda^3 \\ &+ (-70.1820 + 2101.26\epsilon - 11859.8\epsilon^2)\lambda^4 \\ &+ (62.0517 - 1869.87\epsilon + 10639.5\epsilon^2)\lambda^5 \\ &+ (-21.3202 + 637.976\epsilon - 3633.18\epsilon^2)\lambda^6 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_t/K_{tN} &= (0.9735 + 0.0227\epsilon - 0.0096\epsilon^2) \\ &+ (0.0685 - 0.0311\epsilon + 0.2248\epsilon^2)\lambda \\ &+ (3.3873 - 5.5445\epsilon + 1.4683\epsilon^2)\lambda^2 \\ &+ (-14.7925 + 25.3049\epsilon - 10.1166\epsilon^2)\lambda^3 \\ &+ (27.2560 - 51.9612\epsilon + 25.1774\epsilon^2)\lambda^4 \\ &+ (-23.9118 + 49.8997\epsilon - 26.5951\epsilon^2)\lambda^5 \\ &+ (8.0185 - 17.6893\epsilon + 9.8502\epsilon^2)\lambda^6 \\ &(0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0) \end{split}$$

Problem (g):

$$\begin{split} K_t/K_{tN} &= (0.9680 + 0.0515\epsilon + 0.2553\epsilon^2) \\ &+ (2.3534 - 54.8262\epsilon + 320.423\epsilon^2)\lambda \\ &+ (-10.0940 + 354.108\epsilon - 2209.81\epsilon^2)\lambda^2 \\ &+ (28.8853 - 1172.25\epsilon + 7508.45\epsilon^2)\lambda^3 \\ &+ (-48.6517 + 2057.86\epsilon - 13355.2\epsilon^2)\lambda^4 \\ &+ (42.4796 - 1814.50\epsilon - 11838.8\epsilon^2)\lambda^5 \\ &+ (-14.9403 + 629.540\epsilon - 4102.83\epsilon^2)\lambda^6 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$K_t/K_{tN} = (0.9743 + 0.0182\epsilon - 0.0059\epsilon^2) + (0.0164 + 0.2120\epsilon + 0.0315\epsilon^2)\lambda + (4.1307 - 8.7720\epsilon + 3.9795\epsilon^2)\lambda^2 + (-16.4250 + 33.6105\epsilon - 16.8787\epsilon^2)\lambda^3 + (29.2237 - 63.4641\epsilon + 34.8586\epsilon^2)\lambda^4 + (-25.7567 + 59.9965\epsilon - 34.9715\epsilon^2)\lambda^5 + (8.8363 - 21.6003\epsilon + 12.9858\epsilon^2)\lambda^6 \\ (0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0)$$
(26)

Problem (h):

$$\begin{split} K_t/K_{tN} &= (0.9753 - 0.0808\epsilon + 0.8503\epsilon^2) \\ &+ (3.2744 - 1.0955\epsilon + 18.3102\epsilon^2)\lambda \\ &+ (-25.0147 + 117.504\epsilon - 889.632\epsilon^2)\lambda^2 \\ &+ (114.575 - 1090.16\epsilon + 7294.12\epsilon^2)\lambda^3 \\ &+ (-360.114 + 4991.87\epsilon - 30783.5\epsilon^2)\lambda^4 \\ &+ (742.624 - 12423.4\epsilon + 72901.5\epsilon^2)\lambda^5 \\ &+ (-926.385 + 17077.4\epsilon - 97364.7\epsilon^2)\lambda^6 \\ &+ (625.865 - 12185.8\epsilon + 68280.4\epsilon^2)\lambda^7 \\ &+ (-174.799 + 3513.70\epsilon - 19457.1\epsilon^2)\lambda^8 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_{t}/K_{tN} &= (0.9689 + 0.0615\epsilon - 0.0182\epsilon^{2}) \\ &+ (3.4645 - 0.1304\epsilon - 1.3124\epsilon^{2})\lambda \\ &+ (-20.4714 - 31.1658\epsilon + 30.3838\epsilon^{2})\lambda^{2} \\ &+ (62.7912 + 244.218\epsilon - 198.562\epsilon^{2})\lambda^{3} \\ &+ (-112.386 - 850.864\epsilon + 649.313\epsilon^{2})\lambda^{4} \\ &+ (122.819 + 1610.82\epsilon - 1196.06\epsilon^{2})\lambda^{5} \\ &+ (-79.5397 - 1728.99\epsilon + 1269.66\epsilon^{2})\lambda^{6} \\ &+ (26.3044 + 992.562\epsilon - 726.854\epsilon^{2})\lambda^{7} \\ &+ (-2.9512 - 236.518\epsilon + 173.457\epsilon^{2})\lambda^{8} \\ &(0.1 < \epsilon \leq 1.0, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

Problem (i):

$$\begin{split} K_t/K_{tN} &= (0.9884 - 0.1496\epsilon + 0.7284\epsilon^2) \\ &+ (0.1119 - 8.8807\epsilon + 45.8158\epsilon^2)\lambda \\ &+ (6.2418 - 8.9062\epsilon - 0.1946\epsilon^2)\lambda^2 \\ &+ (-62.9087 + 490.511\epsilon - 2409.41\epsilon^2)\lambda^3 \\ &+ (260.447 - 2737.61\epsilon + 14255.7\epsilon^2)\lambda^4 \\ &+ (-581.518 + 7051.88\epsilon - 37105.4\epsilon^2)\lambda^5 \\ &+ (728.879 - 9545.72\epsilon + 49936.8\epsilon^2)\lambda^6 \\ &+ (-481.611 + 6563.61\epsilon - 33844.0\epsilon^2)\lambda^7 \\ &+ (130.370 - 1804.74\epsilon + 9120.10\epsilon^2)\lambda^8 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$\begin{split} K_t/K_{tN} &= (0.9825 - 0.0209\epsilon + 0.0181\epsilon^2) \\ &+ (-0.3565 - 0.1201\epsilon - 0.0287\epsilon^2)\lambda \\ &+ (6.6071 - 12.9009\epsilon + 7.7073\epsilon^2)\lambda^2 \\ &+ (-45.7747 + 90.3018\epsilon - 53.8534\epsilon^2)\lambda^3 \\ &+ (151.246 - 288.514\epsilon + 174.893\epsilon^2)\lambda^4 \\ &+ (-282.087 + 531.679\epsilon - 330.101\epsilon^2)\lambda^5 \\ &+ (305.651 - 580.612\epsilon + 368.422\epsilon^2)\lambda^6 \\ &+ (-180.007 + 349.955\epsilon - 225.865\epsilon^2)\lambda^7 \\ &+ (44.7389 - 90.0089\epsilon + 58.8076\epsilon^2)\lambda^8 \\ &(0.1 < \epsilon \leq 1.0, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

Problem (j):

$$\begin{split} K_t/K_{tN} &= (0.9824 - 0.4700\epsilon - 3.8286\epsilon^2) \\ &+ (1.5485 - 24.0474\epsilon + 103.497\epsilon^2)\lambda \\ &+ (-11.4932 + 274.566\epsilon - 1407.17\epsilon^2)\lambda^2 \\ &+ (40.8929 - 1061.63\epsilon + 5688.36\epsilon^2)\lambda^3 \\ &+ (-74.5581 + 1966.49\epsilon - 10782.0\epsilon^2)\lambda^4 \\ &+ (66.9231 - 1756.97\epsilon + 9746.39\epsilon^2)\lambda^5 \\ &+ (-23.2951 + 602.050\epsilon - 3352.85\epsilon^2)\lambda^6 \\ &\quad (0.02 \leq \epsilon \leq 0.1, \ 0.02 \leq \lambda \leq 1.0) \end{split}$$

$$K_{t}/K_{tN} = (0.9716 + 0.0298\epsilon - 0.0155\epsilon^{2}) + (0.1535 - 0.3239\epsilon + 0.4657\epsilon^{2})\lambda + (2.4193 - 1.9976\epsilon - 1.2530\epsilon^{2})\lambda^{2} + (-10.1592 + 9.2736\epsilon + 1.8193\epsilon^{2})\lambda^{3} + (17.2203 - 18.1439\epsilon + 0.5869\epsilon^{2})\lambda^{4} + (-13.8144 + 16.6886\epsilon - 3.0224\epsilon^{2})\lambda^{5} + (4.2090 - 5.5266\epsilon + 1.4187\epsilon^{2})\lambda^{6} \\ (0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0)$$
(29)

Problem (k):

$$K_{t}/K_{tN} = (0.9731 - 0.1654\epsilon + 1.7774\epsilon^{2}) + (2.1131 - 44.4614\epsilon + 246.835\epsilon^{2})\lambda + (-7.2436 + 231.854\epsilon - 1334.42\epsilon^{2})\lambda^{2} + (15.9011 - 608.022\epsilon + 3459.76\epsilon^{2})\lambda^{3} + (-21.5831 + 870.224\epsilon - 4828.75\epsilon^{2})\lambda^{4} + (16.6009 - 665.511\epsilon + 3593.54\epsilon^{2})\lambda^{5} + (-5.7622 + 216.102\epsilon - 1138.89\epsilon^{2})\lambda^{6} + (0.02 \le \epsilon \le 0.1, 0.02 \le \lambda \le 1.0)$$

$$K_{t}/K_{tN} = (0.9721 + 0.0274\epsilon - 0.0134\epsilon^{2}) + (0.1173 - 0.1578\epsilon + 0.3336\epsilon^{2})\lambda + (3.0372 - 4.6498\epsilon + 0.8133\epsilon^{2})\lambda^{2} + (-11.4229 + 16.0192\epsilon - 3.7807\epsilon^{2})\lambda^{3} + (18.6417 - 27.6880\epsilon + 8.9209\epsilon^{2})\lambda^{4} + (-15.2484 + 25.6479\epsilon - 10.7340\epsilon^{2})\lambda^{5} + (4.9031 - 9.1986\epsilon + 4.4601\epsilon^{2})\lambda^{6} \\ (0.1 < \epsilon \le 1.0, \ 0.02 \le \lambda \le 1.0)$$
(30)