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Abstract. This paper is concerned with a method of decreasing stress concentration due to a notch and a hole by
providing additional holes in the region of the principal notch or hole. A singular integral equation method that
is useful for this optimization problem is discussed. To formulate the problem the idea of the body force method
is applied using the Green’s function for a point force as a fundamental solution. Then, the interaction problem
between the principal notch and the additional holes is expressed as a system of singular integral equations with
a Cauchy-type singular kemnel, where densities of the body force distribution in the - and y-directions are to be
unknown functions. In solving the integral equations, eight kinds of fundamental density functions are applied; then,
the continuously varying unknown functions of body force densities are approximated by a linear combination of
products of the fundamental density functions and polynomials. In the searching process of the optimum conditions,
the direction search of Hooke and Jeeves is employed. The calculation shows that the present method gives the
stress distribution along the boundary of a hole very accurately with a short CPU time. The optimum position and
the optimum size of the auxiliary hole are also determined efficiently with high accuracy.

1. Introduction

It is desirable in many designs to reduce weight and minimize stress concentration due to
notches and holes. One way to achieve this is by providing additional holes as stress-relieving
holes in the region of the principal notch and hole [1, 2]. Recently, several investigators have
applied various numerical methods to optimize the geometrical shape of machine components
[3-7]. In general, optimization can be achieved through gradual change of the respective
geometrical shapes and comparison of the maximum local stresses. Usually, the magnitude
and the position of the maximum stress varies slightly with a change in the respective geo-
metrical conditions; thus, it is necessary to calculate very accurate stress distributions along
the boundary of the components. However, it is very difficult to accurately obtain the smooth
stress distribution by applying most numerical methods and eventually few reliable results are
available in the optimum geometry.

In previous papers, the numerical solutions of the singular integral equation of the body
force method in crack problems have been discussed [8—11]. In those papers unknown func-
tions of the body force densities have been approximated by the products of fundamental
density functions and polynomials. It was found that this new method gives results with
better accuracy in shorter CPU time compared to the conventional body force method using
step-functions [8—-11].

In this paper a singular integral equation method in the analysis of interaction problems
between notches and holes is discussed. To formulate the problem the body force method is
applied, where the Green’s functions for point forces are used as the fundamental solution. It
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Fig. 1. Two stress-relieving holes and semi-elliptical notch in a semi-infinite plate.
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Fig. 2. Two stress-relieving holes and elliptical hole in an infinite plate.

will be shown that the present method is very useful for analyzing optimization problems for
an additional hole, and that the solution will be given with higher accuracy compared with that
of other methods. In this paper optimum conditions will be considered for several problems

shown in Figs. 1-3.
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Fig. 3. Four stress-relieving holes and elliptical hole in an infinite plate.
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2. Singular integral equations of the body force method

In the solutions of the conventional body force method [12-14] stress concentration problems
are reduced to determining the densities of the body force, that is, the continuously embedded
point forces along the prospective boundary. In the conventional method the unknown function
of the body force densities is approximated by the product of the fundamental density functions
and the step-functions. The method has been widely applied to various notch and crack
problems. However, an accurate stress distribution is difficult to calculate along the boundaries
because of the step-functions used.

In this paper first the singular integral equation technique of using the body force method
in the interaction between a notch and additional holes is shown and considered. Here, a
semi-infinite plate with a semi-elliptical notch (z = ay cos 6;, y = b, sin 6,) and additional
stress-relieving elliptical holes [z = £(d + a; cos 6;), y = [+ b sin 0; (a; = b;)] is taken
as an example to explain the numerical solution (see Fig. 1). The problem can be formulated
in terms of singular integral equations by using a Green’s function, that is, the stress field at
an arbitrary point (z, y) when point forces act symmetrically on the two points (+£, ) in the
semi-infinite plate. The formulation is based on the principle of superposition. The integral
equation is expressed by (1), where the body force densities distributed along the prospective
boundaries in the z-, y-directions p3(¢x), py(¢x) (k = 1, 2) are to be unknown functions
(k = 1:for additional hole, k = 2: for principal notch). Here, ¢ is the angle that specifies the
points where the body forces are distributed.

2
~H{3(80) cos o+ 5y(6) sin B} + 3 [ KEZ(0n, 8p3(64) ds
k=1""Fk

2
+3° [ KEH@e, 0)p}(0) ds = % cos? b, (12
k=1""F

2
—3{=p3(8:) sin 8;0 + p}(6;) cos Bio} + > /F K7 ($x, 6:)p3(¢1) ds
k=17 k
2
+Z./I" I(:;y(¢k, Gi)PZ(ﬁbk) ds = ¢ sin ; cos by, (1b)
=1tk

(for additional notch i = 1:0 € 8; < 27),
(for principal notch i = 2:0 < 63 < %x),

where
—d{ = ay sin ¢pdey, dn = by cos ¢rdey,
ds = \/alzc sin? ¢ + by cos? ¢rdoy tan O = (ax/bx) tan 6;. )]

;9 is the angle between the z-axis and the normal direction at the point (z, y) on the ellipse.
E%__:l means the summation of integrating the body force density on the prospective boundary
of the additional elliptical holes and the semi-elliptical notch.
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Equations (1) are virtually the boundary conditions at the imaginary boundary T'; (i = 1, 2);
that is, o, = 0 and 7,,; = 0. The first terms of (1) represent the stress due to the body force
distributed on the © boundary. The © boundary means the imaginary boundary composed
of the internal points that are infinitesimally apart from the initial boundary [12]. Taking
K2 (%, 8;) for example, the notation means the normal stress o, induced at the point when
the body force with unit density in the z-direction is acting at the infinitesimal arc length on
the kth elliptical boundary. These kemnels include the singular terms having the singularity
of the form 1/ sin{(6; — ¢;)/2} in the case i = k [17]. In this case §; = ¢;, the integration
should be interpreted as the meaning of Cauchy’s principle values.

3. Numerical solution of the conventional body force method

First, the conventional body force method will be explained through the numerical solution of
the singular integral equation (1). The unknown functions in (1) p3(¢x), py(¢) are defined
by the following equations,

p5(dr) = S = Lena(en) = poldr)na(de),

P;(¢k) = d(fs = —%ny(ﬁbk) = py(¢k)ny(¢k)v

where dF, dF;, are the components of the resultant of the body force in the z-, y-directions
acting on the infinitesimal arc length ds, respectively. Here, n;(¢x), n,(fx) are the z, y
components [= (cos o, sin k)] of the normal unit vector respectively at the point (z, yx ).
They are expressed by the following equations

3)

br cos ¢ ag sin ¢
nz(¢k) = - s ny(¢k) = - 3
\/ a? sin? ¢y + b2 cos? ¢y, \/ a? sin? ¢y, + b% cos? f

Q)

where p,(¢r), py(¢x) are the body force density of the unit projected length in the z-,
y-directions [15, 16],

F dr,
mmh%ﬁ ) = ~ 5 5)

Using the expression of (3), the singular integral equations (1) become the following equa-
tions

2
~3{p=(6;) cos® bi0 + py(¢i) sin® 6,0} + Z/r KET(k, 6:)po($)bk cos ¢x dy
k=1""k

2
+Y° /r KXY (r, 0:)py(#1) ak sin ¢ dgp = —0™ cos® b, (6a)
k=1 k
2
~L{—p(8) + py(6)} sin Bip cos Big+ Y /F KE2(n, 6:)pa(d)be cos dx dd
k=1 K

2
+>° /F KEY(dr, 0:)py(81) ar sin ¢y dy = 0™ sinby cos i,
k=1 k
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(for additional notch 7 = 1:0 < 6; < 27),
(for principal notch ¢ = 2:0 < #; < %w) (6b)

It should be noted that n,($x), ny(Px) are regarded as a kind of fundamental density
function to approximate p}(¢x), py(#x) very accurately. They are the exact densities of the
body forces for the problem of an isolated elliptical hole in an infinite plate under tension
[12, 13]. In the conventional body force method, then, the unknown weighting functions
pz(®%), py(¢r) have been approximated by the stepped functions, while in this paper, the
numerical solution described in the following sections will be used.

4. Definition of new fundamental density functions

The fundamental density functions for the body forces in the z-directional w;(¢x) and the
ones in the y-direction wy(¢y) are defined by the following expression [15-17]

wzl(¢n) = nx(¢n)/ cos ¢m
wx2(¢n) = nz(¢ﬁ.) tan ¢Ka

w3 ($x) = 1a($x), (72)
Wea(Pr) = No(Px) sin Gy,
wy1(¢r€) = ny(¢n)/ Sin ¢m
wy2(¢n) = ny(¢n)7 (7b)

wy3(¢,¢) - ny(¢n) cot ¢,
wy4(¢n) = ny(¢n) Ccos ¢n'

The fundamental density functions defined by (7) are shown in Fig. 4 for the circular bound-

ary.
The unknown functions of the body force densities for additional holes p3(#1), 5 (¢1) can

be expressed by a linear combination of the fundamental density functions defined by (7) and
the weight functions p,1( %), pz2(Pk), ..., pya(¢k) as shown in the following equations

Pi(91) = pz1(P1)wz1(d1) + pz2(d1)wea(d1) + po3(d1)wz3(d1)
+pz4(P1)wza( 1),

Pi(61) = py1(1)wy1(#1) + py2(B1)wy2(d1) + py3(d1)wys(61)
+pya(P1)wya(d1)-

Using (8), p}(¢x), py(px) which are defined in 0 < ¢ < 27 can be expressed by the weight
functions pz1(¢k), pz2(Pk), .- -, pya(¢x). These weight functions are symmetric with respect
to the axes ¢ = 0, %w, T, %w.

On the other hand, from the symmetry of the problem the unknown functions of the body
force densities for principle notch p3(#2), p;($2) which are defined in 0 < ¢ < 1w can be
simply expressed by the following equations

Pa(92) = pu3(d2)wss(¢2),
py(92) = pya(d2)wya(42).

®)

©)
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Fig. 4. Fundamental density functions for circular boundaries.

5. Numerical solution of the singular integral equations

Using the expressions in (8) and (9), the singular integral equation (1) is reduced to the
following equations (10) instead of (6).

— 1{pz1(81)/ cos 61 + ps2(61) tan 81 + po3(61) + pza(61) sin 61} cos® 6yg
+ {py1(61)/ sin 61 + py2(61) + py3 cot (61) + pya(1) cos 61} sin® 1]

+/ K52 (1, 01){pz1(¢1)/ cos ¢1 + pra(1) tan($1) + pos(é1)
+ poa(@1) sin @1}by cos ¢y dgy + /OZW K3¥ (91, 01){py1(#1)/ sin @1 + py2(¢1)
+ Py3(¢1) cot(d1) + pya(d1) cos ¢1}ar sin ¢y dg

/ K (62, 61)pz3(¢2)ba cos ¢ dgy

+ /i KEY($2, 01)pya(¢2)as sin ¢; dgy

[e 0]

—0® cos? 6y (for additional hole s = 1:0 < 8; < 27),
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—1{pz1(61)/ cos 85 + pza(B1) tan 8y + ps3(81) + pea(6:) sin 61}
+ {py1(61)/ sinb; + py2(61) + py3 cot(61) + pya(fy) cos 8 }] sinfyp cos fo

+ /02" KEF(¢1,01){pz1(¢1)/ cospy + pra(é1) tan(¢1) + pr3(¢1)

2n
+ poa(1) siné by cos ¢ deby + /0 KT (1, 00){py1(¢1)/ sindy
+ py2(1) + pya(d1) cot(d1) + pya( 1) cos dy}ay sindy dy

1/2n F
n ]0 KE2 (2, 0)pa3($2)b2 cos ¢y de

1/2n
+ /0 KE¥(42,01)py2($2)a2 sin ¢ dy

= o™ cosfygsinfyp (for additional hole i = 1: 0 < 8 < 27),
—1[pz3(62) cos? b + pya(62) sin® 6]

b [ KEE 51,0 pa(60) cosdr + paaln) tan(r) + pus()

2n
+ poa(b1) singy }by cos gy depy + /0 KEY(41,0:){py1(¢1)/ singy
+ py2(91) + pya(é1) cot(p1) + pya(b1) cos ¢ }ay sin ¢y dgy

1/2n
+ _/0 KE2($2,02)p23(¢2)b2 cos ¢ dgy

1/2n
+ /0 Kf,f (@2, 02)py2(2)az sin dy do
= —o®cos? @y (for principalnotchi = 22 0 < &, € %?r),
- % [—pz3(82) + py2(62)] sinfag cos g

2,
+ /0 KE3(¢1,02){pz1(1)/ cos by + pza(¢1) tan(ey) + pus(1)

2x
T paa(by) sin s }by cos by dby + /0 KE¥(1,62){py1(¢1)/ siny
+ py2(91) + pya(d1) cot{d1) + pya(b1) cos p1 }ay sin ¢y dgy

1/2x
+ /0 KE2(¢2,602)pua(62)bs cos ¢ Ay

1/2x
+ /0 K (¢, 02)pya($2)az sin ¢ Ay

= o™ cos by sinfyy (for principal notchi = 2: 0 < 4, < —;-fr) (10)
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In the present analysis, polynomials have been used to approximate the unknown functions
as continuous function. Now, from the symmetry of the problem the following expression can
be applied.

Mi/4 M1/4
pai($1) = D aintn(d1), po2(d1) = Y binta(d1),
n=1 n=1
M1/4 M1/4
pa:3(¢l) = Z clntn(¢])a pz4(¢l) = Z dlntn(¢l),
n=1 n=1
M1/4 M1/4 (In
pui($1) = D entn(d1), pya(d1) = D fintn(d1),
n=1 n=1
M1/4 M1/a
Py3(¢1) = Z glntn(¢l)a py4(¢1) = Z hlntn(ﬁbl)’
n=1 n=1
M2 M2
pa3($2) = D conun($2), py2(d2) = D fontun(42), (12)
n=1 n=1
tn(¢1) = COS{Z(TL - 1)¢1}7 (13)
un($2) = (57 — 42207V, (14)

where M1 is the number of the collocation points for each additional hole in the range
0 € ¢1 < 27, and M2 is the number of the collocation points for the principal hole in the
range 0 < ¢ < 3.

Using the approximation method mentioned above, we obtain the following system of
linear equations for the determination of the coefficients a1, b1y, ..., f2n. The number of
unknown coefficients is 2(M 1 + M?2). The convenient sets of the collocation points (M =
1 ~ M1+ M?2) are given by (15).

2T
01=—M—1(M—0.5) M=1~M1,

T
2-M2

(15)

6, = (M-M1-05) M=M1+1~ M1+ M2.
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M1/4
> (a1n4in + binBin + €1nCin + d1nDin

n=1
+elnE1n + flnFln + glnGln + hlnHln)

M2
+ Z(CZnCZn + fanFay) = =0 cos? 6.

n=1
M1/4
Z (alnIln + banln + c1nKin + dinLin
n=1

+ern M1y, + flann + glnoln + hlnPIn)

M2
+ Z(CZnK2n + fonNon) = 032° cos 8y sin by.

n=1
Al = (01)005 010/ cosf + / K (¢1,01)tn(01)b1 déy,

By, = ——2-tn(01)COS 910t31101+/ I(F”(¢1,01)tn(</>1)b1 sin ¢ d¢q,

Cin = —%tn(t‘)l)cosz f10 +[) KFx(¢1,01)tn(¢1)bl cos ¢ doy,

Hin = —3t.(61)sin® f1gcos 6y + / KE¥(¢1,01)tn(1)by sin(dy) cos(ér) déy,

27
Con = /0 KF(¢2, 81 )un(2)b2 cos ¢ dd,

1
Now = / " KEY (2,01 Yun(2)b2 sin 3 c0s ¢ dd,
for additional hole: M =1~ M1 (0 6, < 27).

2
A = / KF2(61,00)t(¢1)b1 dby,
Bin = / KFZ(61,02)tn(h1 )b sin b1 déh1,
Cin = /0 KF2(1,85)tn($1)b1 cos ¢y doy,

27
H, = [) Kf#(¢l,02)un(¢2)b1 sin ¢1 CcoS ¢1 d¢la

2r
Copn = —%un(ez) cos? 020+/0 I(f,f(¢2,02)un(¢2)b2 cos ¢y doy,

155

(16)

(17a)
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Fig. 5. Example of determination of optimum conditions at the first stage of searching process (b; /a1 = b2/a; = 1
in Fig. 1).

lﬂ’
Naw = —Lun(8) sin® b0 cos 6, + /0 " KEY (b, 02)un(dha)bs sin by cos by da,

for principal notch: M = M1~ M1+ M2(0< 6, < %n) (17b)

The stresses at an arbitrary point are represented by a linear combination of the coefficients
@1n, bin,- .. fon and the influence coefficients corresponding to Ay, Bin,-.., Nan-

The numerical solution is used to determine the stress concentration factors and the stress
distribution along the boundaries. In the searching process of the optimum conditions, the
direct search method of Hooke and Jeeves is employed [18]. Figure 5 shows an example at
the first stage of the searching process in the problem of Fig. 2. After finishing the first stage
of the search, the one step length of the parameters in each iteration as shown in Fig. 5 is
decreased and the next stage of the search is started.

6. Numerical results and discussion

6.1. RESULTS OF THE SOLUTION OF SINGULAR INTEGRAL EQUATIONS

Table 1 shows the convergence of the unknown functions pz1(¢x ), pz2(Pk), P23(Pk ), Pra(Dk ),
py1(Pk )y Pya(Pr), py3(@k), pya(ox) along the prospective boundary of the additional hole
with increasing number of collocation points. Here, the interaction problem between the
semicircular notch and two additional circular holes is taken as an example. The present
results have converged to 4 digits when M1 = 12. Figure 6a shows the variation of the weight
functions in comparison with the results of the conventional body force method, where only
two unknown functions p., p, are approximated by using the step-functions when M1 = 12,
24. Figure 6b shows the variation of the body force densities in comparison with the results
of the conventional body force method when M1 = 24. In the present results eight unknown
functions of the body force densities, p-1(Px ), Pz2(Pk )y P23(Pk)s P2a(Pk)s Py1(Pk ), Py2(Pk),
py3(Pk)s pya(Pr) seem to approximate the actual continuous density distributions very well
because the present results of M = 8 and M = 12 coincide with each other to five digit
accuracy. On the other hand, two unknown functions p,, p, do not converge with increasing
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Table 1. Convergency of unknown functions along the circular boundary in Fig. 1 (bi/ar = b2/az = 1,
a1/p=0.30, d/p=3.03, 1/p =0.55)

g M1 | ps Pz P Py Py, Py Py Pys

12 0.0476 —0.3919 2.5574 —0.0663 | —0.1403 —0.7867 —0.3675 —0.0490
0° | 16 0.0465 —0.3886 2.5559 —0.0950 | —0.1499 —0.7770 —0.3666 —0.0462
20 0.0466 —0.3890 2.5561 —0.0911 | —0.1488 —0.7780 —0.3666 —0.0465
24 0.0466 —0.3889 25561 —0.0912 | —0.1489 —0.7779 —0.3666 —0.0465
12 0.0310 —0.3846 2.5990 —0.1138 | —0.1520 -0.8122 —0.3678 —0.0399
20° | 16 0.0315 —0.3835 2.6005 —0.1267 | —0.1468 —0.8134 —0.3685 —0.0382
20 0.0314 —0.3834 26005 —0.1262 [ —0.1479 —0.8129 -0.3683 —0.0383
24 0.0314 —0.3834 26005 —0.1261 | —0.1478 —0.8130 —0.3383 —0.0383
12 | —0.0020 —0.3734 27426 —0.2413 { —0.1081 —0.9278 —0.3798 —0.0125
40° | 16 | —0.0014 —03741 27411 —02323 | —0.1039 —0.9308 —0.3803 —0.0132
20 | —0.0014 —0.3740 27415 —02331 | —0.1030 —09313 —0.3803 —0.0131
24 | —0.0014 —03739 27415 —02332 | —0.1031 -09313 —0.3803 —0.0131
12 | =0.0237 —03733 29730 -0.3990 | 00700 —1.1481 —04131  0.0270
60° | 16 | —0.0247 —-03732 29722 -0.3998 | 0.0591 —1.1420 —0.4120  0.0263
20 | —0.0247 -03731 29718 —0.3987 | 0.0584 —1.1416 —04118  0.0262
24 | —0.0247 —0.3732 29717 -0.3986 | 00585 —1.1417 —04118  0.0262
12 | —0.0287 —0.3805 3.1618 —0.5092 | 02598 —1.3429 —0.4462  0.0574
80° | 16 | —0.0283 —0.3805 3.1788 —0.5385 | 02661 —1.3465 —04471  0.0601
20 | —0.0283 —0.3804 3.1811 —0.5424 | 02664 —1.3467 —0.4470  0.0603
24 | —0.0283 —03804 3.1813 —0.5428 | 02664 —1.3467 —0.4470  0.0603
12 | —0.0289 —0.3819 3.1901 —0.5248 [ 02904 —1.3727 —0.4514  0.0618
90° | 16 | -0.0279 —0.3820 3.2113 —0.5594 | 03021 —1.3796 —0.4529  0.0653
20 | —0.0278 —0.3819 32145 —0.5648 | 03035 —1.3804 —0.4529  0.0657
24 | —0.0278 —03819 3.2149 —0.5649 | 0.3036 —1.3805 —0.4529  0.0657

the collocation points as shown in Fig. 6a. The reason is that p, p, cannot represent density
distribution p(#%), py(#x) accurately enough, especially near 6, = 0, %w, T, %w because
of the characteristic of the fundamental density functions n,(¢x), ny(¢x) [15-17]).

To investigate the satisfaction of the boundary conditions (¢, = 0, 7, = 0), the stresses
on, O, Tnt along the additional hole boundary and the semicircular notch have been investi-
gated as shown in Table 2. The values of o,,, 7,; which should be 0 along the boundary are
less than 10~ even when M1 = 20 and M2 = 12. Therefore, in the present analysis, the
boundary requirements can be highly satisfied anywhere along the boundary.

Table 3 shows an example of results when the size and location of additional holes vary at the
final process in searching of optimum conditions. Here, the stresses at the points A (6, = 90°)
of the semicircular notch and (6; = 267.1° ~ 267.3°) and C (6; = 83.7° ~ 83.9°) of
the additional circular hole are shown. In Table 3 is found the effect of varying the defining
geometric parameters on the magnitude and the position of maximum stress is shown.

Figure 7 shows an example of stress distribution o, along the semi-circular notch and the
circular holes shown in Fig. 1 boundary. The solid line shows the stress distribution under
the optimum condition (a;/p = 0.30,d/p = 3.03, 1/p = 0.55). The broken line shows the
stress distribution for the semi-circular notch without holes (Fig. 7a) and for the circular hole
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Fig. 6. Variation of unknown functions in comparison with the conventional body force method: (a) Variation of
the weight functions; (b) Variation of the density functions.



Table 2. Convergency of the stresses along the circular boundary and semicircular boundary in Fig. 1

Singular integral equation method

(b1/a1 = b2far = 1,a1/p =0.30, d/p = 3.03, 1/p = 0.55)

/] Mljo, On Tnt M2|o: On Tht
12 |—09800 —9.0 x10™* —28x 107°[ 4 [0.0000 7.1x10~%> 3.1x10~*
0° |16 |—09778 73 x107° 34x107*| 8 |0.0000 14x1072 —6.6x 107>
20 |-09777 —=50%x 107% —3.6x 107°|12 |0.0000 82x10~* —1.8x 10~
24 |-09777 30x1077 36x107%|16 [0.0000 —1.7 x 10™* —2.0x 107
12 [-02741 78x107* 1.0x10~°[ 4 00692 -37x10~* —-58x 10~*
20° |16 |—02699 —1.5x 10~* —23 x 10~*| 8 |0.0716 0.0 0.0
20 |-02696 14x107° 26x107%|12 |0.0735 —=7.0x10"% —14x 1077
24 |—02696 —6.6x 1077 —1.4x107%|16 [0.0738 88x10~° 14x107?
12 | 09332 95x 107 63x107*| 4 J08744 20x10~* 22x10"*
40° |16 | 09310 16x107* 13x107*| 8 [0.8799 0.0 0.0
20 | 09312 —16x 1075 —14x107°|12 |0.8810 23x10~° 22x10~°
24 | 09312 —98x 1077 —9.6x107%[16 [0.8812 55x107" 46x 107!
12 | 21001 —2.1x 1077 —58x 10~*| 4 [2.0071 -20x10~* -1.1x10™*
60° |16 | 2.1108 —12x 107* —42x107°| 8 (20123 0.0 0.0
20 | 21108 12x107° 49x107%|12 |2.0132 =3.7x 107" —19x%x 107"
24 | 21108 23x107° 11x107%|16 |2.0133 -19x10~" 1.7x 10!
12 | 27149 —1.1x 107> =22x107°| 4 [2.8079 4.6x10~° 76x10~°
80° |16 | 27115 43x107° 94x1077| 8 |28126 0.0 0.0
20 | 27112 -45x107% —25x1077|12 28134 3.7x107" 59x10°!!
24 | 27111 =13 x107% —1.1x1077|16 {28135 6.1x10"® —25%x 10"
12 | 26878 21x107° —-36x 107 4 [29208 7.7x10~* 63x10~’
90° {16 | 26826 25x107* —~33x107°| 8 [29249 16x1077 18x10~"
20 | 26820 26x107% —28x 107512 129257 —1.5x10~7 95x107°
24 | 26819 25x107% —22x1077{16 |2.9258 —1.8x 10~ 1.1x107"
12 | 29224 —73x 107> —42x 10~
267.2° 16 | 29234 —80x 10™* —19x 1073
20 | 29235 —7.8%x107° —3.1x 107°
24 | 29236 —73x 1075 —3.6 x 1077

Table 3. Example of determination of optimum conditions at
the final stage of searching process (b1/a1 = b2/a2 = 1in

Fig. 2)

ai/p

d/p

l/p

OtA

gtB &

aic &

0.30

3.03

0.55

2.9258

2.9235

267.2°

2.7275

83.9°

0.29
0.31

3.03
3.03

0.55
0.55

2.9361
2.9150

2.8657
2.9853

267.2°
267.3°

2.7122
2.7431

83.7°
83.8°

0.30
0.30

3.02
3.04

0.55
0.55

2.9260
2.9261

29188
29278

267.2°
267.2°

2.7266
2.7286

83.8°
83.8°

0.30
0.30

3.03
3.03

0.54
0.56

2.9249
2.9266

2.9521
2.8970

267.3°
267.1°

2.7263
2.7291

83.7°
83.7°

b2/az=1
a1 /o =0.30

d/p=3.03
2/p=0.55

159



160 N.-A. Noda and T. Matsuo

3.0

20+

0.0

(a) (b)

Fig. 7. Example of stress distribution o, along the boundary in Fig. 1 (b1/a1 = b2/a2 = 1, a1/p = 0.30,
d/p = 3.03,1/p = 0.55): (a) Principal semi-circular notch (- - - -: Stress distribution without holes); (b) Additional
circular hole (- - - -: Stress distribution without notch).

Table 4. Optimum conditions of two additional holes in Fig. 1

bafplaifp dfp I/p |6ta o8 6 aic b o0

1 0.30 3.03 0.55]2.926 2.924 267.2° 2.728 84.0°3.065
1.5 |0.70 3.60 1.30|3.076 2.890 263.4° 3.066 84.0°|3.545
2 1.25 3.77 2.80(3.405 3.312 258.0° 3.405 87.6°|3.951
4 2.30 5.40 4.45|3.494 3.054 253.0° 3.502 86.1°(5.220

az
940™0tA| dewsP=(22)? /b2

without notch (Fig. 7b). Through the present method, the stress distribution and the optimum
conditions can be obtained very accurately.

6.2. OPTIMUM CONDITION FOR ADDITIONAL STRESS-RELIEVING HOLES

Table 4 shows the optimum condition of two additional circular holes for the several aspect
ratios a/b of principal semi-elliptical notch. Here, the stresses at the points A (6, = 90°) of
the semicircular notch and the points B (6; = 253.0° ~ 267.2°) and C' (6, = 84.0° ~ 87.6°)
of additional circular holes are shown.

Table 5 shows the optimum condition of two additional elliptical holes for the several
aspect ratios of principle and additional ellipse. Here, the stresses at the points A (6, = 90°)
of the principle elliptical hole and B (6; = 81.7° ~ 86.0°) of the additional elliptical hole are
also shown. According to Shibahara-Taniguchi’s results [7], it was decided that a1 = 0.85a2,
d = 2.17a2 and the maximum stress is 2.417 for the circular holes (b1/al = b2/a2 = 1);
however, their results were found to have a few percent errors through the comparison with
the present results.
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Table 5. Optimum conditions of two additional holes in Fig. 2

bafar | bifar bifaz dfar |o:wa 13- B a0 om[ o
1 1 0.82 2.02 {2417 2411 81.7°|3.000 - A 8 /N6, —
0.85) (2.17)|(2.462) (2.462) AN AR

2 1 225 383|259 2.596 48.0°(5.000 - \\‘/ \ \ﬂ -
2 2 1.72 3.05 | 3.800 3.799 86.0°|5.000

( ): Shibahara-Taniguchi [7] - L d la a1 -

- 3
cto'utA‘d*@

Table 6. Optimum conditions of two additional holes in Fig. 3

bafplarfp dfp l/p |ova oB B oic 01 |ow

1 0.40 295 0.54|2.749 2.001 269.3° 2.747 82.5°(3.000
1.5 |0.81 3.95 1.14(2.904 2.526 269.5° 2.906 83.0°(3.449
2 1.28 520 1.71[2.988 2.712 269.8° 2.989 84.0°(3.828
4 2.55 5.85 3.48|3.342 3.020 220.0° 3.341 82.1°|5.000

%t0™0tA] gewP=(22)% /b,

Table 6 shows the optimum condition of four additional circular holes for the several
aspect ratios of a principle elliptical hole. Here, the stresses at the points A (6, = 90°) of the
principle elliptical hole and B (6, = 82.1° ~ 84.0°) of the additional elliptical hole are also
shown.

7. Conclusion

In this paper, a singular integral equation method in optimizing size and location of stress-
relieving holes is discussed. The conclusions are summarized as follows:

(1) The intersection problems between principle notch and additional stress-relieving holes
were formulated in terms of singular integral equations with Cauchy-type singularities. To
formulate the problem, the body force method was applied, where the Green’s function for a
point force and a force doublet were used as the fundamental solutions.

(2) Numerical solutions of the singular integral equations were considered. In the present
analysis, the unknown functions of the body force densities were approximated by a linear
combination of products of fundamental density functions and weight functions. To satisfy the
boundary condition along the elliptical hole under general loading, eight kinds of fundamental
density functions of the body force in the z- and y-directions were applied. The boundary
condition was found to be highly satisfied by the present method for several problems.

(3) In the conventional body force method, it was found that the values of two types of
body force densities do not converge with increasing collocation points. The reason is that
two types of body forces cannot represent real density distribution enough near the apex of an
elliptical boundary.

(4) The optimum conditions for stress-relieving holes are obtained accurately through the
present method and they are shown in tables for the following problems:

(A) A semi-elliptical notch and two additional circular holes in a semi-infinite plate
(B) An elliptical hole and two additional elliptical holes in an infinite plate
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(C) An elliptical hole and four additional circular holes in an infinite plate.

Appendix A
The kernel of (1) is expressed as follows:
KE2(¢x,0;) = oF"(¢x,6:)
= ol%(¢x, ;) cos® 6; + o ["(¢x, 0;) sin® 8
27£,$(¢k, 6;) sin8; cos 6;
KEY($%,0:) = of¥(éx,6:)
= of'¥(¢,0;) cos? 6; + oF'¥(¢y,0;) sin® 6
2T£,y(¢k, 6;) sinb; cos 6;,

(A-1)
K7 (dr:8:) = 7315 (¢%,0:)
= (—of"(fx.0:) + 05””(¢k, 6;) siné; cos 8;
27‘5}”(%, 8;)(cos? 6; — sin? 6;),
K (6r,0:) = o (8%, 6:)
= (—oFY(¢r,0:) + oF¥($x, 6;)) sinb; cos ;
2rEY (¢, 8;)(cos? §; — sin’ 6;),
where
oFo(pr,0;) = oFV (¢r, 0;) + oF=2(Px, 0:), a2
oF¥ (e, 0:) = o7V (¢4, 6:) + 0TV (1, 00),
Fzl _ A 2 2 22
%= = 2__: 2m(k + 1)y(A% + m2)2[“(A +m*) + (347 — m7)),
F:L'l 2 2 A2 _ 2 )
szr(wl) (AT AT+ ) 4 (=47 = Smal, (A-3)
7..Facl __i m [K(A2+m2)+(3A2—m2)]
= 2 on(s o+ Dy(AZ + m)? !
ofv! = f: i [K(A? + m?) + (=547 — m?)]
T 2 I+ Dy(A2+ m)? :
ofvl = = [K(A2 + m?) + (- A% + 3m?)), (A-4)

Z 2 (K + 1)y(A2 + m?)?

A

2
= Z Ty A ) £ (AT 3m)
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2
A
Fo2 _ 344 2 _4n)A% + (3n* — 4n?
7= L e g g A (O AT Gt = 4n)
+{A* — (10n? — 4n — 8) A% — (11n* — 3603 + 24n?)}],
2
A
Fz2 _ 4 2 4 A2 4 3
U = Y ST T A A+ @ )
+{-A* — (6n? — 12n + 8)A? — (5n* 4 2003 — 24n?)}],
2
1
Fz2 _ _ 4_ 20342 — (1S — 2t
Tzy ; 2r(k + 1)y(A? + n2)3 [s{~(n+2)4" - 2n (n” —2n7)}
+{~(3n — 2)A* — (2n® — 24n? 4+ 24n) A% + (n° — 10n* 4 8n3)}],
2 -1 4 342 5 4
Fy2 _ —
o Y = ]Z=:1 P 1)y(A2+712)3[n{(3n+2)A + 6n°A° 4+ (3n° — 2n")}
+{—(7n — 6)A* — (2n® — 24n? + 24n)A? + (5n° — 14n* 4 8n3)}],
2
1
Fy2 _ _ _ 4 342 _ (.5 4
v ; 2m(r + 1)y(A? + n?)? Is{=(n = 47~ 20747~ (" + 200} (A-6)
+{(n — 2)A* — (2n® — 24n? 4 24n)A? — (3n° + 6n* — 8n3)}],
2
-A
Fy2 _ 4 2 _ An) A2 4 _ 4.3
Tog ]}; (s + Dy(AZ T n2)3[m{A + (2n n)A® + (n* —4n”)}
+{—A* 4+ (2n + 4n — 8) A% + (3n* — 28n3 + 24n?)}],
where

A=SIBGo), 4= BTGy
me T Mt (A-7)
Yi Yi

= & — 2+ (= )% 2= (6 — 2i)? + (e 9

3—-v .
—— (plane strain)
k=< 1+v , (A-8)

3 — 4v (plane stress)

z; =d+ aycosby T2 = a3 c0s 0,

y1 =1+ arsiné; y2 = bysinb,
(A-9)

(€1=d+01008¢1 (§2=a200s¢2

m = I+ by sin ¢ T = by sin ¢,
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Appendix B

It can be shown that the kernels o77!(¢y, 6;), ¥'¥!( ¢y, 6;) have the singularity of the form
1 / {sm(() ~ ¢:)/2}. Then, the following method of evaluation of integrals is applied. Here,
CEZ($1,61), po1(¢1) is taken as an example.

2m
I=¢ KE2(61,61)ps1(61)b1dd,

f—eo
= / P (¢1,01)po1($r1)b161 +][ P (61,01)po1(b21)b1 doy

_50

2
+/ KEZ($1,01)pz1(¢z1)b1 déy
= I -|-Iz+]3. (B-1)

The first and third integral can be easily evaluated by the numerical integration procedure.
The second integral can be expressed as follows by letting ¢y = 61 + ¢

L = ][ KF"' (61 + €,61)pz1(01 + €)by de
—ep

Il

][ ( - + e+ c3e+ 646 + - ) by de. (B-2)
—€p

The first term integral in the right-hand side in (B-2), interpreted as meaning Cauchy’s principle
value, should be zero. Neglecting the terms of a higher order than £2, we find

12 = 26260b1. (B-3)

Then the singular integrals are calculated by determining of the coefficients ¢, in (B-1).
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