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Abstract. This paper is concerned with a method of decreasing stress concentration due to a notch and a hole by 
providing additional holes in the region of the principal notch or hole. A singular integral equation method that 
is useful for this optimization problem is discussed. To formulate the problem the idea of the body force method 
is applied using the Green's function for a point force as a fundamental solution. Then, the interaction problem 
between the principal notch and the additional holes is expressed as a system of singular integral equations with 
a Cauchy-type singular kernel, where densities of the body force distribution in the x- and y-directions are to be 
unknown functions. In solving the integral equations, eight kinds of fundamental density functions are applied; then, 
the continuously varying unknown functions of body force densities are approximated by a linear combination of 
products of the fundamental density functions and polynomials. In the searching process of the optimum conditions, 
the direction search of Hooke and Jeeves is employed. The calculation shows that the present method gives the 
stress distribution along the boundary of a hole very accurately with a short CPU time. The optimum position and 
the optimum size of the auxiliary hole are also determined efficiently with high accuracy. 

1. Introduction 

It is desirable in many designs to reduce weight and minimize stress concentration due to 
notches and holes. One way to achieve this is by providing additional holes as stress-relieving 
holes in the region of the principal notch and hole [1, 2]. Recently, several investigators have 
applied various numerical methods to optimize the geometrical shape of machine components 
[3-7]. In general, optimization can be achieved through gradual change of the respective 
geometrical shapes and comparison of the maximum local stresses. Usually, the magnitude 
and the position of the maximum stress varies slightly with a change in the respective geo- 
metrical conditions; thus, it is necessary to calculate very accurate stress distributions along 
the boundary of the components. However, it is very difficult to accurately obtain the smooth 
stress distribution by applying most numerical methods and eventually few reliable results are 
available in the optimum geometry. 

In previous papers, the numerical solutions of the singular integral equation of the body 
force method in crack problems have been discussed [8-11]. In those papers unknown func- 
tions of the body force densities have been approximated by the products of fundamental 
density functions and polynomials. It was found that this new method gives results with 
better accuracy in shorter CPU time compared to the conventional body force method using 
step-functions [8-11 ]. 

In this paper a singular integral equation method in the analysis of interaction problems 
between notches and holes is discussed. To formulate the problem the body force method is 
applied, where the Green's functions for point forces are used as the fundamental solution. It 
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Fig. 1. Two stress-relieving holes and semi-elliptical notch in a semi-infinite plate. 
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Fig. 2. Two stress-relieving holes and elliptical hole in an infinite plate. 

will be shown that the present method is very useful for analyzing optimization problems for 
an additional hole, and that the solution will be given with higher accuracy compared with that 
of other methods. In this paper optimum conditions will be considered for several problems 
shown in Figs. 1-3. 
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Fig. 3. Four stress-relieving holes and elliptical hole in an infinite plate. 
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2. Singular integral equations of the body force method 

In the solutions of the conventional body force method [12-14] stress concentration problems 
are reduced to determining the densities of the body force, that is, the continuously embedded 
point forces along the prospective boundary. In the conventional method the unknown function 
of the body force densities is approximated by the product of the fundamental density functions 
and the step-functions. The method has been widely applied to various notch and crack 
problems. However, an accurate stress distribution is difficult to calculate along the boundaries 
because of the step-functions used. 

In this paper first the singular integral equation technique of using the body force method 
in the interaction between a notch and additional holes is shown and considered. Here, a 
semi-infinite plate with a semi-ellipticalnotch (z = a2 cos 02, y = b2 sin 02) and additional 
stress-relieving elliptical holes [z = +(d + al cos 01), y = 1 + b, sin Ol (ai = bl)] is taken 
as an example to explain the numerical solution (see Fig. 1). The problem can be formulated 
in terms of singular integral equations by using a Green's function, that is, the stress field at 
an arbitrary point (z , / / )  when point forces act symmetrically on the two points (:1:~, 7) in the 
semi-infinite plate. The formulation is based on the principle of superposition. The integral 
equation is expressed by (1), where the body force densities distributed along the prospective 
boundaries in the z-,//-directions p~(~bk), p~((bk) (k = 1, 2) are to be unknown functions 
(k = 1: for additional hole, k = 2: for principal notch). Here, ~bk is the angle that specifies the 
points where the body forces are distributed. 

2 , .  
-g{px(Oi) cos Oio+ pv( i) sin Oio} + Knn(4)k, Oi)pz(*k) ds 

"ff"-I J k 

2 fri ,.  0 * = -rr  ds cos'- 0 0, 
k = l  

(Ia) 

2 

-~{-p~:(Oi) sin 0io + py(Oi) cos Oio} + ~ ..Fz • • Ent ($k, Oi)Pz(fk)ds 
k = l  k 

2 

+ K~V(¢bk, Oi)py(qbk) ds = tr °° sin Oio cos Oio, 
= k 

(lb) 

(for additional notch i = 1:0 <~ Ol <~ 2rr), 
1 (for principal notch i = 2:0 ~< 02 ~< ~r),  

where 

- d {  = ak sin ~bkdthk, dr /=  bk cos ~kd~bk, 

ds = Ca  2 sin 2 ~k + bk cos 2 ~bkd~k tan OiO = (ak/bk) tan Oi. (2) 

Oio is the angle between the z-axis and the normal direction at the point (z, y) on the ellipse. 
2 ~k=l  means the summation of integrating the body force density on the prospective boundary 

of the additional elliptical holes and the semi-elliptical notch. 
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Equations (1) are virtually the boundary conditions at the imaginary boundary r l  (i = 1, 2 ); 
that is, an = 0 and r,~t = 0. The first terms of (1) represent the stress due to the body force 
distributed on the 0 boundary. The O boundary means the imaginary boundary composed 
of the internal points that are infinitesimally apart from the initial boundary [12]. Taking 
KFf(¢k, Oi) for example, the notation means the normal stress an induced at the point when 
the body force with unit density in the x-direction is acting at the infinitesimal arc length on 
the kth elliptical boundary. These kernels include the singular terms having the singularity 
of the form 1/sin{(0i - ¢i)/2} in the case i = k [17]. In this case Oi = ¢i, the integration 
should be interpreted as the meaning of Canchy's principle values. 

3. Numerical solution of the conventional body force method 

First, the conventional body force method will be explained through the numerical solution of 
the singular integral equation (I). The unknown functions in (I) P~(¢k), P~ (¢k) are defined 
by the following equations, 

, dF~ ~ , ,  , 

p ; ( ¢ k )  = , ,  , 
ds = --  d~ n y ( ~ ) k )  = p y ( ¢ k ) n y ( ¢ k ) ,  

(3) 

where dF~, dF, 7 are the components of the resultant of the body force in the x-, y-directions 
acting on the infinitesimal arc length ds, respectively. Here, n~(¢k), ny(¢k) are the x, y 
components [= (cos Oko, sin 0k0)] of the normal unit vector respectively at the point (xk, Yk). 
They are expressed by the following equations 

nx(¢k) = bk cos Ck ny(¢k) = ak sin Ck , (4) 

Ca~ sin 2 ¢k + b 2 cos 2 Ok' ~/a 2 sin 2 Ck + b 2 cos 2 0k 

where Px(¢k), Py(¢k) are the body force density of the unit projected length in the x-, 
y-directions [15, 16], 

P x ( ¢ k ) -  dF( dF n 
dr}' P y ( ¢ k ) - -  d~" (5) 

Using the expression of (3), the singular integral equations (1) become the following equa- 
tions 

2 

-½{Px(Oi) cos 20io + Py(¢i) sin 20io} + ~ fr .F. Enn ( ¢k, Oi )px( ¢k )bk cos Ck dCk 
k = l  k 

2 

+~-~ fr Kff~(Ck' Oi)py(¢k)ak sin ¢k dCk= --a ~ cos 20io, (6a) 
k = l  k 

2 fr K,. (¢k, Oi)p.(¢k)bk cos Ck dCk -½{-p~:(Oi) + py(Oi)} sin Oio cos Oio + ~ .rx 
k = l  k 

2 

+ff'~'~ fr K~Y((bk' Oi)Py(Ok) ak sin Ck dCk= a °° sin0i0 cos Oio, 
k = l  k 
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(for additional notch i = 1:0 ~< 01 ~< 27r), 
1 

(for principal notch i = 2:0 ~< 02 ~< $7r). (6b) 

It should be noted that nx(¢k), ny(¢k) are regarded as a kind of fundamental density 
function to approximate P~(¢k), P~(¢k) very accurately. They are the exact densities of the 
body forces for the problem of an isolated elliptical hole in an infinite plate under tension 
[12, 13]. In the conventional body force method, then, the unknown weighting functions 
Pz(¢k), Py(¢k) have been approximated by the stepped functions, while in this paper, the 
numerical solution described in the following sections will be used. 

4. Definition of  new fundamental  density functions 

The fundamental density functions for the body forces in the x-directional wx(¢k) and the 
ones in the y-direction wy(¢k) are defined by the following expression [15-17] 

Wxl(~) = nz(¢~)/cos ¢,~, 

w~2(¢~) = n~(¢~) tan ¢~, (7a) 

Wx3(¢n) = nx(¢n), 
w~4(¢,~) = n~(¢~) sin ¢,~, 

wul(¢,, ) = nu(¢,,)/sin ¢,~, 

wu2(¢'~) = nu(¢~)' (75) 
wy3(¢,~) = ny(¢,~) cot ¢,~, 

Wy4(¢, ) = ny(¢~) COS ¢, .  

The fundamental density functions defined by (7) are shown in Fig. 4 for the circular bound- 
ary. 

The unknown functions of the body force densities for additional holes p* (¢1), P~ (¢1) can 
be expressed by a linear combination of the fundamental density functions defined by (7) and 
the weight functions Pzl(¢k), P=2(¢k),..., Py4(¢k) as shown in the following equations 

P*(¢l) = pxl(¢l)Wxl(¢l) + px2(¢l)Wx2(¢l) + px3(¢l)Wx3(¢l) 
+Px4(¢l)Wx4(¢l), (8) 

P;(¢l )  = Pyl (¢l)Wyl (¢1) q- Py2(¢l)Wy2(¢l) q- Py3(¢l)Wy3(¢l) 
q-py4(¢l)Wy4(¢l). 

Using (8), P*(¢k), P~(¢k) which are defined in 0 ~< Ck ~< 2r can be expressed by the weight 
functions P~l (¢k), P~2(¢k),..., Py4(¢k). These weight functions are symmetric with respect 
to the axes Ck = 0, 21-rr, r ,  37r. 

On the other hand, from the symmetry of the problem the unknown functions of the body 
force densities for principle notch P*(¢2), p;(¢2) which are defined in 0 ~< Ck ~< ½7r can be 
simply expressed by the following equations 

P*(¢2) = Px3(¢2)Wx3(¢2), 
Py(¢2) = Py2(¢2)wy2(¢2). (9) 
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Fig. 4. Fundamental density functions for circular boundaries. 

5. Numerical solution of the singular integral equations 

Using the expressions in (8) and (9), the singular integral equation (1) is reduced to the 
following equations (10) instead of (6). 

- -  l[{pxl(O1)/ COS 01 + px2(O1) tan 01 + Px3(01) + px4(01) sin 01} COS 2 010 

+ {Pvl(01)/sin 01 + py2(01) + Py3 cot (01) + Py4(O1) COS 01} sin 2 010] 

~0 2~ ,-Fro 
+ ]('nn (¢1, 01){Pxl(¢l)/COS ¢1 + Px2(~I) tan(C1) + P=3(¢1) 

+ P=4(¢1) sin ¢1}bl cos ¢1 d¢l + K ~ ( ¢ I ,  01){Pyl(q~l)/sin q)l + Py2(q)1) 

+ Py3(¢I) cot(el)+ Py4(¢l) cos q~l}gl sin ¢i d¢l 
-171" 

f0 ;'fix + (¢2, 01)px3(¢2)b2 
17r 

[2 KFv(~2 + JO nn ',w, O1)fly2(~)2)a2 

= _ 0  -~ COS 2 010 

COS ~b 2 d¢2 

sin ¢2 dq)2 

(for additional hole i = 1:0 ~< 01 ~< 27r), 
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-½[{Pxl(O1)/cos 01 + px2(Ol) tan 01 + p~3(01)+px4(Ol) sin 01} 

+ {P~l (01)/sin 01 + Py2(01) "]- Py3 COt(01) + py4(01 ) COS 01 }] sin 01o cos 01o 

~0 
2~r Fx 

+ grit (¢1, O1){Pxl(¢l)/cos¢l + Px2(¢l)tan(¢l) + Px3(¢I) 

r2r F 
+ Pz4(¢1) sin¢l}bl cos¢1 d¢l + ]o K~{(¢1 ,01 ) {Pv1(¢1 ) / s in¢1  

+ Pv2(¢l) + Pv3(¢l)cot(el) + Py4(¢l)cos¢l}al sin¢l d¢l 
el/2~r ~'Fx 

+ JO I¢, nt (¢2, Ol)Pz3(¢2)b2 cos ¢2 d¢2 

rl/2r F 
+ ]0 KntY(¢2, 01)Py2(¢2)a2 sin ¢2 d¢2 

= a~cosOlosinOlo (for additionalhole i = l: 0 <~ 01 ~< 2~r), 

--½[Pm3(02) COS 2 020 + Py2(02)sin 2 020 ] 
2. 

fo KF'~z(¢I'OE){P~I(¢I)/cos¢l + p~2(¢l)tan(¢,) + Px3(¢I) + 

+ p~4(¢l)sin¢l}blcos¢ld¢l + K~(¢l ,02){ ,%l(¢l) /s in¢l  

+ Py2(q~l) + Py3(q~l)cot(~l) + Oy4(q~l)COS q~l }at sin¢l d¢l 
f l /2~r Fx 

+ Jo gn,~ (¢2, O2)Px3(C2)b2 cos ¢2 d¢2 

rl/21r 
+ JO K~(¢2,02)Py2(¢2)a2sin¢2d¢2 

= - a  ~ cos 2 020 (for principal notch i = 2." 0 ~< 02 <~ ½rr), 

_ 1[_px3(02 ) + py2(02)] sin 020 cos 020 
2~. 

fo + p 2(Cl)tan(, ) + + Px3(¢l) 

+ Px4(¢l) sin¢l}bl cos¢l d¢l + KFY(¢I, 02){Pyl(¢l)/sin¢l 

+ Py2(¢l) + Py3(¢l) cot(el) + Py4(¢l) cos ¢1 )al sin ¢1 d¢l 

+ fO1/27rI(Fnt~:(fb2, 02)Px3(C2)b2 cos ¢2 d¢2 

rl/2r F 
-]- JO I(ntY(¢2, 02)Py2(¢2)a2 sin ¢2 d¢2 

= a °~ cos 02o sin 020 (for principal notch i = 2:0 ~< 02 ~< ½r). (10) 
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In the present analysis, polynomials have been used to approximate the unknown functions 
as continuous function. Now, from the symmetry of the problem the following expression can 
be applied. 

Ml/4 
Pxl(q~l) = Z alntn(¢l), 

n = l  

M1/4 
Px3(¢l) = Z Clntn(q51)' 

n = l  

M1/4 
PY 1(¢1)= Z elntn(d/)l)' 

n = l  

M1/4 
Py3(¢l) = ~ glntn(¢l), 

n=l 

M1/4 
px2(¢~) = ~ b~ntn(¢l), 

n = l  

M1/4 
/9x4(~1) = Z dlntn(q}l), 

n=l 
M1/4 

Py2(~)l) = Z II~tn(¢l), 
n = l  

M1/4 
Py4(¢l) = Z hlntn(¢l), 

n = l  

(11) 

M2 
Px3(¢2) = ~ C2nUn(q52), 

n = l  

M2 
p~2(4~) = ~ f2.u.(¢2), 

n=l 
(12) 

tn(¢l)  = cos{2(n - 1)~1) , (13) 

un(¢2) = (J-r - ¢2) m - ° ,  2 (14) 

where M 1 is the number of the collocation points for each additional hole in the range 
0 ~< ¢1 ~< 27r, and M2 is the number of the collocation points for the principal hole in the 
range 0 ~< ¢2 ~< ½rr. 

Using the approximation method mentioned above, we obtain the following system of 
linear equations for the determination of the coefficients aln, bl,~,. . . ,  f2,~. The number of 
unknown coefficients is 2(M1 + M2). The convenient sets of the collocation points (M = 
1 ,.o M1 + M2) are given by (15). 

271" 
Ol = ~ - - i ( M - 0 . 5 )  M =  1 ~ M 1 ,  

71" 
0 2 -  2.M2 ( M - M 1 - 0 " 5 )  M = M I + I , , ~ M I + M 2 .  

(15) 



M1/4 
(al,~Al,~ + bl,~Bl,~ + cl,~Cln + dl,~Dl~ 

n=l 
+ e l n E l n  + flnFln + glnGln + hlnHln) 

M2 
+ ~--~(e2~C2,~ + fznFzn) = - a y  cos 2 0o. 

n----1 
MI/4 
Z (alnlln + blnJln + ClnKln + dlnLln 
n=l 

+elnMl~ + fl~Nl~ + gl~Ol~ + hl~Pl~) 
M2 

+ Z(c2nK2n + f2nN2n) = trx °° cos 0 0 sin 0o. 
n=l 
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(16) 

Aln = -ltn(01)cos2 

Bin = -½t.(O1)cos 2 

Cln = --Itn(O1)COS 2 

, , * * *  

Hln = -½tn(01)sin 2 

~0 2r Fx 
C2n = Knn (¢2, 

N2n 

~0 
2r Fx 

010 / COS 01 -1- Knn (¢1, 01)tn (01)bl d01, 

f[ 010 tan 01 + KFnX(¢l, Ol)tn(¢l)bl s in¢ l  d ¢ l ,  

f0 
27r Fx 

010 + Knn (q~l, 01) tn(¢l)bl  cos ¢1 d¢ l ,  

ff 010 cos 01 + KF~(¢l, 01)tn(¢l )bl sin(el) C0S(¢1) d¢l, 

O1 )Un(¢2)b2 COS ¢2 dq~2, 

0 ½~ KEY (¢Z, 01 )u,~(¢2)b2 sin ¢2 cos ¢2 d¢2, 

for additional hole: M = 1 ,,~ M1 (0 ~ 01 ~< 2~r). (17a) 

Aln 

Bln = 

Cln 

Hnl 

C2n 

j•0 27r Fx 
t(nn (¢1,02)tn(~bl)bl dq~l, 

fo 2'~ 02)tn (¢l)bl sin ¢z d¢l, KFnX ( ¢l , 

fO 21r Fx = Knn (~bl, 02)tn(¢l)bl cos q)l d¢ l ,  

= fn 2~ KffnY(¢l, Oz)un(C2)bl sin ¢1 cos ¢1 d¢l, 

1 ~021r Fx = --~Un(02) COS 2 020 -{- g ~  (¢2, 02)Un(¢2)b2 cos ¢2 d¢2, 
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Fig. 5. Example of determination of optimum conditions at the first stage of s earching process (b i / a I = b2 / a 2 = 1 
in Fig. 1). 

N 2 n  ~ fO ½1r KFv 2 --lun(02) sin 2 020 cos 02 + nt ((~ , 02)un((b2)b2 sin q~2 cos q~2 dq~2, 

1 for principal notch: M = M1 ,,~ M1 + M2 (0 ~< 02 ~< s~r). (17b) 

The stresses at an arbitrary point are represented by a linear combination of the coefficients 
aln, bl,~,.., f2,~ and the influence coefficients corresponding to Al,~, B i n , . . . ,  N2n. 

The numerical solution is used to determine the stress concentration factors and the stress 
distribution along the boundaries. In the searching process of the optimum conditions, the 
direct search method of Hooke and Jeeves is employed [18]. Figure 5 shows an example at 
the first stage of the searching process in the problem of Fig. 2. After finishing the first stage 
of the search, the one step length of the parameters in each iteration as shown in Fig. 5 is 
decreased and the next stage of the search is started. 

6. Numerical results and discussion 

6.1. RESULTS OF THE SOLUTION OF SINGULAR INTEGRAL EQUATIONS 

Table 1 shows the convergence of the unknown functions Pzl(¢k), Pz2(¢k), Pz3(¢k), Px4(¢k), 
Pul(¢k), Pu2(¢k), Pu3(¢k), Py4(¢k) along the prospective boundary of the additional hole 
with increasing number of collocation points. Here, the interaction problem between the 
semicircular notch and two additional circular holes is taken as an example. The present 
results have converged to 4 digits when M 1 = 12. Figure 6a shows the variation of the weight 
functions in comparison with the results of the conventional body force method, where only 
two unknown functions Px, Py are approximated by using the step-functions when M 1 = 12, 
24. Figure 6b shows the variation of the body force densities in comparison with the results 
of the conventional body force method when M 1 = 24. In the present results eight unknown 
functions of the body force densities, Pzl(¢k), Pz2(¢k), Px3(~bk), Px4(¢k), Pyl (¢k), Py2(¢k), 
Py3((bk), Py4(qhk) seem to approximate the actual continuous density distributions very well 
because the present results of M = 8 and M = 12 coincide with each other to five digit 
accuracy. On the other hand, two unknown functions p, ,  py do not converge with increasing 
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Table 1. Convergency of unknown functions along the circular boundary in Fig. 1 (bl/az = b2/a2 = 1, 
a l / p  = 0.30, d/p  = 3.03, l i p  = 0.55) 

0 M1 Pxl Px2 px~ px4 
12 0.0476 -0.3919 2.5574 -0.0663 

0 ° 16 0.0465 -0.3886 2.5559 -0.0950 

20 0.0466 -0.3890 2.5561 -0.0911 

24 0.0466 -0.3889 2.5561 -0.0912 

12 0.0310 -0.3846 2.5990 -0.1138 

20 ° 16 0.0315 -0.3835 2.6005 -0.1267 

20 0.0314 -0 .3834 2.6005 -0.1262 

24 0.0314 -0 .3834 2.6005 -0.1261 

12 -0 .0020 -0 .3734 2.7426 -0.2413 

40 ° 16 -0.0014 -0.3741 2.7411 -0.2323 

20 -0 .0014 -0.3740 2.7415 -0.2331 

24 -0 .0014 -0.3739 2.7415 -0.2332 

12 -0.0237 -0.3733 2.9730 -0.3990 

60 ° 16 -0.0247 -0.3732 2.9722 -0.3998 

20 -0.0247 -0.3731 2.9718 -0.3987 

24 -0.0247 -0.3732 2.9717 -0.3986 

12 -0.0287 -0.3805 3.1618 -0.5092 

80 ° 16 -0.0283 -0.3805 3.1788 -0.5385 

20 -0.0283 -0.3804 3.1811 -0.5424 

24 -0.0283 -0.3804 3.1813 -0.5428 

12 -0.0289 -0.3819 3.1901 -0.5248 

90 ° 16 -0.0279 -0.3820 3.2113 -0.5594 

20 -0.0278 -0.3819 3.2145 -0.5648 

24 -0.0278 -0.3819 3.2149 -0.5649 

Pyt Pu2 P~3 Py4 
-0.1403 -0.7867 -0.3675 -0 .0490 

-0.1499 -0.7770 -0 .3666 -0.0462 

-0.1488 -0.7780 -0 .3666 -0.0465 

-0.1489 -0.7779 -0 .3666 -0.0465 

-0.1520 -0.8122 -0.3678 -0.0399 

-0.1468 -0.8134 -0.3685 -0.0382 

-0.1479 -0.8129 -0.3683 -0.0383 

-0.1478 -0.8130 -0.3383 -0.0383 

-0.1081 -0.9278 -0.3798 -0.0125 

-0.1039 -0.9308 -0.3803 -0.0132 

-0.1030 -0.9313 -0.3803 -0.0131 

-0.1031 -0.9313 -0.3803 -0.0131 

0.0700 - 1.1481 -0.4131 0.0270 

0.0591 -1.1420 -0.4120 0.0263 

0.0584 -1.1416 -0.4118 0.0262 

0.0585 -1.1417 -0.4118 0.0262 

0.2598 -1.3429 -0.4462 0.0574 

0.2661 -1.3465 -0.4471 0.0601 

0.2664 -1.3467 -0.4470 0.0603 

0.2664 -1.3467 -0.4470 0.0603 

0.2904 -1.3727 -0 .4514 0.0618 

0.3021 -1.3796 -0.4529 0.0653 

0.3035 -1.3804 -0.4529 0.0657 

0.3036 -1.3805 -0.4529 0.0657 

the collocation points as shown in Fig. 6a. The reason is that p::, Pv cannot represent density 
distribution p~(0k), P~(~bk) accurately enough, especially near 01 = 0, la-, 7r, 37r because 
of the characteristic of the fundamental density functions nx(q~k), ny(q~k) [15-17]. 

To investigate the satisfaction of the boundary conditions (trn = 0, rnt = 0), the stresses 
crn, at,  rnt along the additional hole boundary and the semicircular notch have been investi- 
gated as shown in Table 2. The values of crn, rnt which should be 0 along the boundary are 
less than 10 -5 even when M1 = 20 and M2 = 12. Therefore, in the present analysis, the 
boundary requirements can be highly satisfied anywhere along the boundary. 

Table 3 shows an example of results when the size and location of additional holes vary at the 
final process in searching of optimum conditions. Here, the stresses at the points A (02 = 90 °) 
of the semicircular notch and ( 0 1  - "  267.1 ° -,~ 267.3 °) and C (01 = 83.7 ° "~ 83.9 °) of 
the additional circular hole are shown. In Table 3 is found the effect of varying the defining 
geometric parameters on the magnitude and the position of maximum stress is shown. 

Figure 7 shows an example of stress distribution at along the semi-circular notch and the 
circular holes shown in Fig. 1 boundary. The solid line shows the stress distribution under 
the optimum condition (al/p = 0.30, d/p = 3.03, 1/p = 0.55). The broken line shows the 
stress distribution for the semi-circular notch without holes (Fig. 7a) and for the circular hole 
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--(o 
A2 a l  

b2/a2-1 dlp-3.03 
a~/p =0.30 £/p-0.55 
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-~ i.o 

o 
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.D 

s 

~.0 

-3~0 

(b) 

unknown functions of present analysis 
P~E"pxlWxl+p~w~+pxaWx~+px4Wx4 
9~,'=py~w~x+py2wy2+p~w~3+py4wy4 

unknown functions of step-function 
p~=pxn==px3Wx3 
P~=PTn~py2wy2 

~, A C 
b2 ~ ._..~ 

8(~,g.) a11P =0.30 ~1P=0.55 

Fig. 6. Variation of unknown functions in comparison with the conventional body force method: (a) Variation of 
the weight functions; (b) Variation of the density functions. 
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Table 2. Convergency of  the stresses along the circular boundary and semicircular boundary in Fig. 1 

(bl/al = b2/a2 = 1, a l /  p = 0.30, dip = 3.03, 1/p = 0.55) 

0 M 1  at  a .  r . t  M 2  at  a .  r . t  

60 ° 

12 - 0 . 9 8 0 0  - 9 . 0  x l 0  - 4  - 2 . 8  × 10 - 3  4 0 .0000 7.1 × 10 -2 3.1 × 10 -4 

0 ° 16 - 0 . 9 7 7 8  7.3 x 10 -5 3.4 X 10 - 4  8 0.0000 1.4 × 10 -2 --6.6 × l0  -5 

20 --0.9777 --5.0 X 10 - 6  - 3 . 6  x 10 -5 12 0.0000 8.2 x 10 -4  - 1 . 8  × 10 -5 

24 - 0 . 9 7 7 7  3.0 x l0  -7 3.6 x 10 -6 16 0.0000 - 1 . 7  × 10 -4 - 2 . 0  × 10 -5 

I12 -0 .2741  7.8 × 10 -4 1.0 x 10 -3 4 0.0692 - 3 . 7  × 10 -4 - 5 . 8  x 10 -4  

20 ° 16 - 0 . 2 6 9 9  - 1 . 5  x 10 -4 - 2 . 3  x 10 - 4  8 0.0716 0.0 0.0 

2 0  --0.2696 1.4X 10 -5 2 .6X 10 -5 12 0.0735 - -7 .0X 10 - s  - - l A x  10 -7 

24 --0.2696 --6.6 X 10 -7 - 1 . 4  x 10 - 6  16 0.0738 8.8 × 10 -9 1.4 × 10 -8 

12 0.9332 9.5 x 10 -4 6.3 x 10 -4 4 0.8744 2.0 x 10 -4 2.2 × 10 -4 

40 ° 16 0.9310 1.6 x 10 -4 1.3 x l0 -4 8 0.8799 0.0 0.0 

20 0.9312 - 1 . 6  x l0  -5 - 1 . 4  x 10 -5 12 0.8810 2.3 x 10 -9 2.2 × 10 - 9  

24 0.9312 - 9 . 8  x 10 -7 - 9 . 6  x 10 -6  16 0.8812 5.5 x 10 -11 4.6 × l0 - u  

12 2.1091 - 2 . 1  x 10 -3 - 5 . 8  x 10 -4 4 2.0071 - 2 . 0  x 10 -4 - 1 . 1  × 10 -4 

16 2.1108 - 1 . 2  x 10 -4  - 4 . 2  x 10 -5 8 2.0123 0.0 0.0 

20 2.1108 1.2 x 10 -5 4.9 × 10 -6 12 2.0132 - 3 . 7  x 10 - l °  - 1 . 9  x 10 -1° 

24 2.1108 2.3 x 10 -5 1.1 x 10 -6  16 2.0133 - 1 . 9  x 10 -11 1.7 × 10 -11 

12 2.7149 - 1 . 1  × 10 -3 - 2 . 2  × 

80 ° 16 2.7115 4.3 x 10 -5 9.4 × 

20 2.7112 - 4 . 5  x 10 -6 - 2 . 5  × 

24 2.7111 - 1 . 3 x  10 -6 - 1 . 1  x 

12 2.6878 2.1 × 10 -3 - 3 . 6  × 

90 ° 16 2.6826 2.5 × 10 -4 - 3 . 3  x 

20 2.6820 2.6 x 10 -5 - 2 . 8  x 

24 2.6819 2.5 x 10 -6 - 2 . 2  x 

12 2.9224 - 7 . 3  x 10 -3 - 4 . 2  x 

267.2 ° 16 2.9234 - 8 . 0  x 10 -4 - 1 . 9  × 

20 2.9235 - 7 . 8  x 10 -5 - 3 . 1  x 

24 2.9236 - 7 . 3  x 10 -6 - 3 . 6  x 

10 -5 4 2.8079 4.6 × 10 -3 7.6 × 10 -5 

10 -7 8 2.8126 0.0 0.0 

l0  -7 12 2.8134 3.7 × 10 -1° 5.9 x 10 -11 

l0 -7 16 2.8135 6.1 x 10 -13 - 2 . 5  x 10 -13 

10 -4 4 2.9208 7.7 × 10 -4 6.3 × 10 -7 

10 -5 8 2.9249 1.6 × 10 -7 1.8 × 10 - l °  

10 -6 12 2.9257 --1.5 × 10 -7 9.5 × 10 -1° 

10 -7 16 2.9258 --1.8 × 10 -11 1.1 × 10 - l l  

10 -5 

10-5 

10 -6 

10 -7 

Table 3. Example  of  determination of  opt imum conditions at 
the final stage o f  searching process (bl/al = b2/a2 = 1 in 
Fig. 2) 

al/p d/p I/p O'tA atB el atc  O1 
0.30 3.03 0.55 

0.29 3.03 0.55 

0.31 3.03 0.55 

0.30 

0.30 

3.02 0.55 

3.04 0.55 

2.9258 2.9235 267.20 2.7275 83.9 ° 

2.9361 2.8657 267.2 ° 2.7122 83.7 ° 

2.9150 2.9853 267.3 ° 2.7431 83.8 ° 

2.9260 2.9188 267.2 ° 2.7266 83.8 ° 

2.9261 2.9278 267.2 ° 2.7286 83.8 ° 

0.30 3.03 0.54 2.9249 2.9521 267.3 ° 2.7263 83.7 o 

0.30 3.03 0.56! 2.9266 2.8970 267.1 ° 2.7291 83.7 ° 

..__ . ~  

t--.l ~ll 
a2 ~i 

bz/a2~l d/p-3.03 
a~/p =0.30 ~./p=0.55 
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3.0~, 
'°t I / t  

0 0 ~ , '  

(a) 0.0 

Fig. Z Example of stress distribution ¢rt along the boundary in Fig. 1 (bl/al = b2/a2 = 1, al/p = 0.30, 
d/p = 3.03, 1/p = 0.55): (a) Principal semi-circular notch ( . . . .  : Stress distribution without holes); (b) Additional 
circular hole ( . . . .  : Stress distribution without notch). 

Table 4. Optimum conditions of two additional holes in Fig. 1 

b2/p a,/p ,tip ZIP ~,A ~<B O, ,rtc 0, ~,0 
1 0.30 3.03 0.55 2.926 2.924 267.2* 2.728 84.0* 3.065 
1.5 0.70 3.60 1.30 3.076 2.890 263.4* 3.066 84.0 ° 3.545 
2 1.25 3.77 2.80 3.405 3.312 258.0* 3.405 87.6 ° 3.951 
4 2.30 5.40 4.45 3.494 3.054 253.00 3.502 86.10 5.220 

0 ~ ~ O~ 

0 2  

Oto=OtA[d.=,P=(a2)2/b2 " 

without notch (Fig. 7b). Through the present method, the stress distribution and the optimum 
conditions can be obtained very accurately. 

6.2. OPTIMUM CONDITION FOR ADDITIONAL STRESS=RELIEVING HOLES 

Table 4 shows the optimum condition of two additional circular holes for the several aspect 
ratios a/b of principal semi-elliptical notch. Here, the stresses at the points A (02 = 90 °) of 
the semicircular notch and the points B (Ot = 253.0 ° ,,~ 267.2 °) and C (01 = 84.0 ° ,'~ 87.6 °) 
of additional circular holes are shown. 

Table 5 shows the optimum condition of two additional elliptical holes for the several 
aspect ratios of principle and additional ellipse. Here, the stresses at the points A (02 = 90 °) 
of the principle elliptical hole and B (01 = 81.7 ° ,,~ 86.0 °) of the additional elliptical hole are 
also shown. According to Shibahara-Taniguchi's results [7], it was decided that a l  = 0.85a2, 
d = 2.17a2 and the maximum stress is 2.417 for the circular holes (bl /al  = b2/a2 = 1); 
however, their results were found to have a few percent errors through the comparison with 
the present results. 
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Table 5. Optimum conditions of two additional holes in Fig. 2 

b2/a2 bl/a! hi~a2 d/a2 O-tA ate 0| 
1 1 0.82 2,02 2.417 2.411 81.7 ° 

(0.85) (2.17) (2.462) (2.462) 
2 1 2.25 3.83 2.596 2.596 48.0 ° 
2 2 1.72 3.05 3.800 3.799 86.0 ° 
( ): Shibahara-Taniguchi [7] 

O't0 

3.000 

5.000 
5.000 

om 

°to=°tAId-= 

Table 6. Optimum conditions of two additional holes in Fig. 3 

b2/p al/p d/p l/p O-tA O-tB 01 O-tc 01 O-to 
1 0.40 2.95 0.54 2.749 2.001 269.3 ° 2.747 82.50 3.000 
1.5 0.81 3.95 1.14 2.904 2.526 269.5 ° 2.906 83.0 ° 3.449 
2 1.28 5.20 1.71 2.988 2.712 269.8 ° 2.989 84.0 ° 3.828 
4 2.55 5.85 3.48 3.342 3.020 220.0 ° 3.341 82.1 ° 5.000 

.¢.__ 
d 

" ~  A C 

a2 

°to*OtAId°=,P=(az)=/b2 

Table 6 shows the optimum condition of four additional circular holes for the several 
aspect ratios of a principle elliptical hole. Here, the stresses at the points A (02 = 90 °) of the 
principle elliptical hole and B (01 = 82.1 ° ,'~ 84.0 °) of the additional elliptical hole are also 
shown. 

7. Conclusion 

In this paper, a singular integral equation method in optimizing size and location of stress- 
relieving holes is discussed. The conclusions are summarized as follows: 

(1) The intersection problems between principle notch and additional stress-relieving holes 
were formulated in terms of singular integral equations with Cauchy-type singularities. To 
formulate the problem, the body force method was applied, where the Green's function for a 
point force and a force doublet were used as the fundamental solutions. 

(2) Numerical solutions of the singular integral equations were considered. In the present 
analysis, the unknown functions of the body force densities were approximated by a linear 
combination of products of fundamental density functions and weight functions. To satisfy the 
boundary condition along the elliptical hole under general loading, eight kinds of fundamental 
density functions of the body force in the x- and y-directions were applied. The boundary 
condition was found to be highly satisfied by the present method for several problems. 

(3) In the conventional body force method, it was found that the values of two types of 
body force densities do not converge with increasing collocation points. The reason is that 
two types of body forces cannot represent real density distribution enough near the apex of an 
elliptical boundary. 

(4) The optimum conditions for stress-relieving holes are obtained accurately through the 
present method and they are shown in tables for the following problems: 

(A) A semi-elliptical notch and two additional circular holes in a semi-infinite plate 
(B) An elliptical hole and two additional elliptical holes in an infinite plate 
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(C) An elliptical hole and four additional circular holes in an infinite plate. 

Appendix A 

The kernel of (1) is expressed as follows: 

"Fx Fx . .  (¢k, ai) = o .  (¢k, oi) 
Fx aFx(¢k, ai) sin 2 ai = O'x ( ¢ k , a i ) C O S 2  ai + 

+2r~x(¢k, ai) sinai cos 0i 

g ~ z ( ¢ k ,  od = ,,FY(¢k,n , O,.) 
-- aFY(¢k,  ai)COS2 Oi + trFY(ok, ai)sin2 ai 

+2rFy (¢k, ai) sin al cos ai, 

i ( ~ : ( ¢ k ,  Oi) F~ = ru t  (¢k, Oi) 
o "F~r-L Oi) sinaicosOi = ,(--aF~(cbk~ , .  ,Oi) + u t~k, 

+2rFx(¢k, Oi)(COS 2 Oi -- sin 2 ai), 

IfF~tY(¢k, Oi) = r~U(¢k, Oi) 
= (--aFu(¢k,  Oi) + trYU(¢k, Oi))sinOicosOi 

+ 2 r F Y ( ¢ k ,  Oi)(COS 2 ai - sin 2 0i), 

where 
~7FX(¢k, ai) = ~TFxl(¢k, ai) -'}- ~7Fx2(¢k, ai), 

5rFY(¢k, ai) = o'FYl(¢k,  ai) qt_ o-Fy2(¢k, ai), 

(A-l) 

(A-2) 

2 
Fxl 5rx = E 

j = l  

2 
Fxl = E O'y 

j = l  

2 

r21=E 
j = l  

A 
27r(a + 1)y(A 2 + m2) 2[t~(A2 + m2) + (3A2 - m2)]' 

- A  
27r(n + 1)y(A 2 + m2) 2 [t~(A2 + m2) + ( -A2 - 5m2)]' 

m 
2r(e; + 1)y(A 2 + m2) 2 [t~(A2 + m2)+ (3A2-  m2)]' 

(A-3) 

Fyl (7" x = 

Fyl ~y 

T xFy y l : 

2 

E 
j=l 

2 

E 
j--1 

2 

E j=l 

- m  
27r(a + 1)y(A 2 + m2) 2@(A2 + m2) + (-5A2 - m2)]' 

m 
27r(~ + 1)y(A 2 + m2) 2@(A2 + m2) + (-A2 + 3m2)]' 

A 
27r(t~ + 1)y(A 2 + m2) 2[t~(A2 + m2) + (-A2 + 3m2)]' 

(A-4) 



201Fx2 =

	

2r(~
+ 1) ( A2 +

n2)3
[n{3A4 + (6n2 - 4n)A2 + (3n4 - 4n3)}

3=1

+{A4 - (10n2 - 4n - 8)A2 -

2
o Fx2 =

	

A

	

(r{Ajcl
2r(n + 1)y(A2 + n2)3

2
Tyx2

-

	

2r(K + 1)y(A2 + n2)3
[K{-

+{-(3n - 2)A4 - (2n3 - 24n2

ax
y2

ay
y2 __

	

~(~ +

	

)y(A2 + n2 )3 [K{
-

-i

+{(n - 2)A4 - (2n3 - 24n2 +

2

	

_
ryy2

- E 2r(r. + 1)y(A2 + n2)3 [_

	

{

+{-A4 + (2n2 + 4n - 8)A2 +

where

Y

rlk - yi

	

7]k + yi

yi

	

yi

ri = V(Ck - xi)2 + (r7k - yi)2,

	

r2 =

+{-A4 - (6n2 - 12n + 8)A2 -

2
-1

	

[K{(32r(K+ 1)y(A2 + n2)3

+{-(7n - 6)A4 - (2n3 - 24n2

1 + v (plane strain)

3 - 4v (plane stress)

x 1 = d + al cos Bl

	

x2 = a2 cos 92

y2 = b2 sin 02yl = l + al sin 0l

(

(i = d +a, cos of
rh=l+blsinol

6 =
r/2 =

a2 cos 02
b2 sin 02
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11n4 - 36n3 + 24n2)}],

4 + (2n2 - 4n)A2 + (n4 + 4n3)}
(A-5)

(5n4 + 20n3 - 24n2)}],

(n + 2)A4 -
2n3A2 - (ns - 2n4)}

-}- 24n)A2 + (ns - lOn4 + 8n3)}],

n + 2)A4 + 6n3A2 + (3n5 - 2n4)}

+ 24n)A2 + (5n5 - 14n4 + 8n3)}],

(n
-
2)A4 - 2n3A2 - (n$ + 2n4)}

(A-6)

24n)A2 - (3n5 + 6n4 - 8n3)}],

4
+ (2n2 -

4n)A2
+

(n4
-
4n3)}

(3n4 - 28n3 + 24n2)}],

(A-7)

(~k - xi)2 + (r)k + yi)2,

(A-8)

(A-9)
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Appendix B 

It can be shown that the kerne l s  trFzl(qJk, Oi), tTFyl(¢k, Oi) have the singularity of the form 
1/{sin(Oi - @)/2) .  Then, the following method of evaluation of integrals is applied. Here, 

TFx Iinn (¢1,01), Pxt(¢l)  is taken as an example. 

I = o 27r KFnZ(¢I, O1)Pzl(¢l)bl d¢l 

= JO Knn (¢1 ,  Ol)Pxl(¢zl)bl¢l  -t- JO-eo Knn (¢1,  O1)Pxl(¢xl)bl d ¢ l  

~0 
27r .-Fx 

+ Iinn (¢1, O1)Pxl(¢zl)bl d¢l 
+eo 

= I1 + / 2 + / 3 .  (B-l) 

The first and third integral can be easily evaluated by the numerical integration procedure. 
The second integral can be expressed as follows by letting ¢1 = 01 + e 

h : j__rO I(ffX( Ol n t- e, Ol)Pxl(O 1 + e )b l  de  
~0 

) = -t'- C2 + e3E "-~ C462 + " ' "  bl de .  
~o 

(B-2) 

The first term integral in the right-hand side in (B-2), interpreted as meaning Cauchy's principle 
value, should be zero. Neglecting the terms of a higher order than e 2, we find 

/2 = 2c2e0bl. (B-3) 

Then the singular integrals are calculated by determining of the coefficients c2 in (B-I). 
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