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I N T E R A C T I O N  BETWEEN FILLET A N D  C R A C K  IN R O U N D  
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Department of Mechanical Engineering, Kyusyu Institute of Technology, Kitakyusyu 804, Japan 

Abstract--In this paper, the stress concentration problem of a fillet in round and fiat test specimens under 
tension is analyzed by the body force method. The stress field induced by a ring force acting in the radial 
and axial directions in an infinite body, and a point force in a semi-infinite plate are used as fundamental 
solutions to solve these problems. The stress concentration factors of a fillet in a stepped round bar and 
a stepped flat bar are systematically calculated under various geometrical conditions. Through comparison 
of the present results with previous research, it is found that Peterson's stress concentration charts based 
on photoelastic tests give underestimated stress concentration factors by about 13% for the worst cases. 
The stress distribution at the narrow section of the test specimen without a crack is investigated and the 
stress intensity factor of the test specimen with a fillet and a crack is systematically calculated. As a result, 
the geometrical condition that the interaction between the fillet and crack disappears is discussed. 

1. I N T R O D U C T I O N  

THE STRESS concent ra t ion  analysis a round  a fillet is one of the most  impor tan t  problems in the 
design of high performance structures where both  light weight and high strength are desirable. In 
addit ion,  round  and  fiat test specimens with fillets as shown in Fig. 1, have been used in order to 
investigate the mechanical  properties of materials.  According to Sa in t -Venan t ' s  principle, it seems 
that  a fillet has a negligible effect on the stresses at distances which have the same dimensions  of 
the diameter  or the width of the nar row section of the specimen. However,  taking as an example 
of a fatigue experiment,  the analysis of the stress dis t r ibut ion at the nar row section and the analysis 
of the interact ion effect among  cracks and fillets are required for s tudying the fatigue mechanism 
in detail .There are few studies on the stress concent ra t ion  of fillets [1-7] and the stress concent ra t ion  
charts in Peterson 's  h a n d b o o k  [8] have been widely used in design and research: however, there has 
been little discussion abou t  their accuracy. 

t t 
y,'q 

x,~ 

(a) (b) 

Fig. 1. Round and flat test specimens with fillet and crack. 
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In this paper, the problems of stress concentration in a stepped round and flat bar with a fillet 
under tension are analyzed using the body force method and the results are compared with previous 
research. In addition, the interaction effect among cracks and fillets in the round and the flat test 
specimens under tension, as shown in Fig. 1, is also analyzed using the body force method. First, 
the stress distribution at the narrow section of the test specimen without a crack [c = 0 in Fig. 1] 
is investigated; and next, the stress intensity factor of the test specimen with crack is analyzed. The 
fundamental solution the stress field induced by a ring force acting in the radial and axial directions 
in an infinite body [9, 10] is used for the analysis of round test specimens; a point force in a 
semi-infinite plate [11, 12] is used for the analysis of flat test specimens. 

2. METHOD OF ANALYSIS 

In the body force method, the stress field induced by a point force and a force doublet (a pair 
of point forces) in an infinite body have been used as fundamental solutions to solve problems [13]. 
The solution is obtained by superimposing the fundamental solutions in order to satisfy the given 
boundary conditions. Figure 2 shows imaginary boundaries where body forces are distributed in 
the  analysis of a round test specimen. The body force implies a continuously embedded point force. 
The given boundary conditions are satisfied by applying the body force and the body force doublet 
along the prospective sites of stress-free boundaries for the edge and crack, respectively. In this 
analysis, the body force doublet is symmetrically distributed along the section FA, F'A', E'A', in 
addition to the section EA which should become a circumferential crack in order to make the shear 
stress z,z at the boundary r -- d/2 small in advance. Similarly, the body forces are distributed along 
the boundaries BAB' and BA'B' in order to make the shear stress at the boundary r = D/2 small 
in advance. The method of analysis is reduced to determine the density of body force and body 
force doublets to satisfy the boundary conditions. In this analysis the boundaries are divided into 
small intervals; then, unknown functions of the body force densities are approximated by the 
fundamental density and stepped functions. The influence coefficients, stresses induced at 
the midpoint of the ith interval due to the unit distribution of body force at the j th  interval 
are written as follows [9, 10]. Here, (p, ~, () is a cylindrical coordinate (r, O, Z) where a ring 
force acts, and ds is the infinitesimal arc length where body forces are distributed 
[ds= ~/(dp) 2 + (d()2]. 
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Fig. 2. Analysis method for round test specimens. 



Stress concentration analysis around a fillet 387 

( .  

l 

of,J = f, a d( 

a~'J = ;i at7 IF,-, d( 

tTP'J -- f a r* let= ds i - - J j  I 

a~:J = f aC le:= t ds 
dJ 

(1 - v )  2 4 x / c  2 _ (p  _ d / 2 )  2 d p  (j: o n  c r a c k )  
' l - - ~ v  

t ( j :  o n  s u r f a c e  r = d/2 or  r = D/2) 

t , ( j :  o n  f i l let)  

(1) 

where SJ stands for integration of the j th interval. The integration in eq. (1) is performed numerically 
using Gauss' formula, When i =j ,  eq. (1) becomes singular; then, the numerical integrals are 
applied for the two end parts excluding 2E0 from the mid-part of the j th interval. For the mid-part 
2E0, integration is carried out directly. As an example, the direct integration for crack part is 
expressed as follows 

-¢0+ri (1 - v) 2 4x/c: _ (P _ d/2) 2 dp Aa~ °B = aF*°*B IFoB_, 1 --~'-~V 
-- C O + r i 

1 4 c 2 - ( d / 2 - r i ) 2  { 2 + I 1  d /2 - r i  c 2 
= ~  - eo ~c2----(d/2-r,)  : -  {c2-(d/E-r~)2}  2 

1 8ri 3 } 
where ~ is interpreted in the Hadamard sense by retaining the finite part of the divergent integral 
and r; is the r-coordinate of the midpoint of the ith interval. The notation a e;. is the stress due 
to a ring force doublet [9] and the notations at,', a~ are the stresses due to a ring force acting in 
r- and z-directions [10] in which: 
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The boundary conditions at the midpoint of the ith interval are expressed by using the influence 
coefficients as follows. 

n I n I + n 2 

pOSj(TfOaJ-..k ~., (p,yaP=,Y-.I.-pzj~r~-'Y)-{.-a~=O (i :  o n  crack) 
j = l  j = n l + l  

nl nl + n 2 ] 
~ ~pDBi P'DBjt~ r ~ "~ ~ (Prj(TPr rj "q- Pzj o ' P " J )  = 0 ) j = l  j = n l + |  

n I n I + n 2 

T, + T, j + P=j j )  = 0 
j = l  j = n l + l  

(i: on surface r = d/2 or r = d/2) 

n I n I + n 2 
- --pDB, poBjo. " + ~ (Prja~;J + Pzj aP,; ~ ) + ,r? COS 2 ~'i = 0 

j = l  j = l  

(i: on fillet), 
n I n I + n 2 

floaj T~tDBj'[- E (PrYZPn[ j't" PzJ TpnJ) ''[- tT~ s in  2 ~b, c o s  Oe = 0 
j = l  j = l  

(4) 

where a 7  is the nominal stress for the cylindrical diameter D, ~k i is the angle between the r-axis 
and the outerward normal at the mid-point of the ith division and nl, n2 are division number of  
crack and other section, respectively. For an example, the first equation in eq. (4) corresponds to 
a~ = 0 at the crack surface. Once the body force densities are determined by solving the (nl + 2n2) 
linear simultaneous eqs (4), the stresses at an arbitrary point can be obtained by using the densities 
and the influence coefficient. 

Figure 3 shows the analysis method for the flat test specimen under tension [Fig. l(b)]. 
Consider two kinds of  semi-infinite plates [Fig. 3(b) and (c)]: one is defined in the range 
- D / 2  < x < oo, the other in the range - ~  < x < D/2. The edges x = +_D/2 correspond to the 
stress free edges of  the wide section of  the plate. The stress fields of a point force in a semi-infinite 
plate, a Green function, can be obtained in closed form. The boundary conditions for fillets, edge 
and crack in the range of x < 0 are satisfied by using the Green function of  the semi-infinite plate 
shown in Fig. 3(b). On the other hand, the boundary conditions in the range of x > 0 are satisfied 
by using the Green function of the semi-infinite plate shown in Fig. 3(c). As a result, the analysis 
method is reduced to determining the densities of the body force distribution in the semi-infinite 
plates shown in Fig. 3 [11, 12]. The mathematical formation for the fiat test specimen can be made 
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Fig. 3. Analysis method for flat test specimens. 
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Fig. 4. SCF of stepped round bar with fillet (p = h). 

in a similar manner to the round test specimen. The detail for the numerical procedure may be 
found in refs [13, 14]. 

The position of the maximum stress, which varies depending on the dimension of the fillet, 
cannot be known beforehand. Therefore, the fillet is divided into short intervals compared with 
other boundaries; the division number of  the fillet is about 90 for most cases. At the midpoint of 
each interval, where the boundary conditions are satisfied, the normal stress in the tangential 
direction a, is also calculated; then the magnitude and the position of the maximum stresses are 
determined. 

In the following discussion, the stress concentration factor (K,) defined below will be used. 

Kt  __ O'tmax O'n -- 4P 
O" n ~zd 2 

P 

where P is the magnitude of  external tensile load. 

(round bar) 

(flat bar) (5) 

Table 1. K, and Kt/Kto of a stepped round bar with fillet 

h/p K~ K t/Kt I~o 
2 = 2h/D 0.5 1 2 4 8 0.5 1 2 4 8 

r p,,~ 1 

P~ 
K = C~tmax 4P 
t ~n ' on= 

k I 

0.0 1.824 2.164 2.640 3.304 4.23 1.000 1.000 1.000 1.000 1.000 
0.1 1.680 1.997 2.448 3.079 3.96 0.921 0.923 0.927 0.932 0.936 
0.2 1.533 1.826 2.243 2.827 3.65 0.840 0.843 0.850 0.856 0.863 
0.3 1.395 1.656 2.572 2.572 3.32 0.765 0.765 0.771 0.778 0.784 
0.4 1.275 1.494 1.831 2.1314 2.99 0.699 0.690 0.694 0.700 0.707 
0.5 1.181 1.353 1.634 2.057 2.66 0.647 0.625 0.619 0.623 0.629 
0.6 1.118 1.236 1.454 1.806 2.32 0.613 0.571 0.551 0.547 0.549 
0.7 1.076 1.150 1.296 1.564 1.99 0.590 0.531 0.491 0.473 0.470 
0.8 1.044 1.092 1.171 1.340 1.64 0.572 0.505 0.444 0.406 0.388 
0.9 1.013 1.039 1.080 1.151 1.30 0.555 0.480 0.409 0.348 0.307 
1.0 1.000 1.000 1.000 1.000 1.00 0.548 0.462 0.379 0.303 0.236 
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Fig. 5. SCF of  stepped round bar with fillet. 

The error due to the finiteness of  the division number N is nearly proportional to 1/N, the 
value of  the stress concentration factor corresponding to N ~  ~ is obtained by extrapolation of  
the two values of K, corresponding to the two values of N. Poisson's ratio in the case of  an 
axisymmetric body is assumed to be 0.3. 

Table 2. The position of maximum stress for stepped round 
bar with a fillet (degree) 

h/p 
~. = 2 h / D  0.5 1 2 4 8 

0.0 10 13 15 18 22 
0.1 10 13 15 18 22 
0.2 10 13 15 18 22 
0.3 9 13 15 18 22 
0.4 8 12 15 18 22 
0.5 6 10 13 18 21 
0.6 4 8 11 16 19 
0.7 3 5 9 13 17 
0.8 2 3 5 9 14 
0.9 0 2 3 5 8 
1.0 0 0 0 0 0 

I 1 
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Table 3. K, and Kt/K,o of  a stepped flat bar with fillet 

hlp K, K,/K,I~.o 
2 = 2h/D 0.5 1 2 4 8 0.5 1 2 4 8 

0.0 1.824 2.164 2.640 3.304 4.23 1.000 1.000 1.000 1.000 1.000 
0.1 1.727 2.050 2.504 3.136 4.01 0.947 0.947 0.948 0.949 0.948 
0.2 1.621 1.927 2.356 2.953 3.78 0.889 0.890 0.892 0.893 0.894 
0.3 1.510 1.796 2.197 2.756 3.53 0.828 0.830 0.832 0.834 0.835 
0.4 1.396 1.657 2.028 2.546 3.26 0.765 0.766 0.768 0.770 0.771 
0.5 1.286 1.514 1.849 2.231 2.97 0.705 0.700 0.700 0.702 0.702 
0.6 1.188 1.371 1.661 2.079 2.67 0.651 0.634 0.629 0.629 0.631 
0.7 1.116 1.237 1.465 1.818 2.32 0.612 0.572 0.555 0.550 0.548 
0.8 1.070 1.134 1.281 1.532 1.93 0.587 0.524 0.484 0.464 0.456 
0.9 1.028 1.061 1.110 1.238 1.47 0.564 0.490 0.420 0.375 0.348 
1.0 1.000 1.000 1.000 1.000 1.00 0.548 0.462 0.379 0.303 0.236 

P~ 
Otmax P 

Kt= o n ' On- d 

[ I 

3. RESULTS A N D  DISCUSSION 

3.1. Case of stepped round bar with fillets under tension [ f~o o ,  c = 0 /n Fig. l(a)] 

Figure 4 shows the stress concentration factor (SCF) of a stepped round bar when p = h with 
varying 2 = 2hid under tension. In Fig. 4, the value from Peterson's handbook [8] is plotted for 
comparison with the present analysis. Through this comparison, it is found that the result of  
Peterson has about 13% error for the worst cases. 

Table 1 shows the SCFs of  a stepped round bar with various hip values under tension. The 
results of Table 1 are plotted in Fig. 5, where the ordinate represents the value of  SCF, and the 
abscissa represents the relative step height 2 = 2hiD. It is found that as 2 ~0 ,  the SCF approaches 
the value of  the stepped semi-infinite plate K,0. On the other hand, as 2 ~ 1, the SCF approaches 
the value of  K, = 1. The position of the maximum normal stress produced at the fillet ¢0 is shown 
in Table 2. In comparison with the results of stepped fiat bar shown in Tables 3 and 4, it is found 
that when 2hid < 0.2 the angles ¢0 coincide with each other. On the other hand, when 2hiD > 0.3 
the angle ~k0 of  a round bar is less than that of a fiat bar. 

In Fig. 6, the relation between the ratio of SCFs K,/K,o and 2 = 2hid is shown. The ratio 
Kt/K,o is found to be almost determined within 3% for the worst cases when hip >~ 0.5 and 
2h/D <~ 0.4. Figure 7 shows the stress distribution at the narrow section of the stepped round bar 
when 2 = 0.5 and hip = 4.2 and 1. In Fig. 7, the stress az is almost constant with a variation of  
1%, at a distance of  d/2 from the fillet when h/p <~ 2. 

Table 4. The position of  max imum stress for a stepped flat 
bar with a fillet (degree) 

h/p 
2 = 2h/D 0.5 1 2 4 8 

0.0 10 13 15 18 22 
0.1 10 13 15 18 22 
0.2 10 13 15 18 22 
0.3 10 13 15 18 22 
0.4 10 13 15 18 22 
0.5 9 13 15 18 22 
0.6 7 11 15 18 22 
0.7 5 8 13 17 22 
0.8 2 5 9 15 20 
0.9 1 3 5 8 15 
1.0 0 0 0 0 0 
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Fig. 6. K,/Kto of stepped round bar with fillet (K,0 = Ktl;.~0). 

3.2. Case of stepped flat bar with fillets under tension [ ~ o o ,  c = 0 in Fig. l(b)] 

Figure 8 shows the SCF of  a stepped fiat bar when p = h under tension. In Fig. 8, the results 
of  Frocht 's photoelastic test [1] and the value from Peterson's handbook [8] are plotted from 
comparison with the present analysis. Through this comparison, it is found that the results of  both 
Frocht and Peterson have about 10% error for the worst cases. 

Table 3 shows the SCF of  a stepped flat bar with various h/p under tension. The results of  
Table 3 are plotted in Fig. 9 where the ordinate represents the SCF values, and the abscissa 
represents 2 = 2h/D. The positions of  the maximum normal stresses that are produced at the fillet 
are shown in Table 4. 

In Fig. 10, the relations between the K,/Kto ratios are found to be almost determined when 
hip >11 0.5 and 2h/D << 0.5. Utilizing this fact, we can estimate the SCF of  a stepped fiat bar by using 
the SCF of a stepped semi-infinite plate. 

Figure 11 shows the stress distribution at the narrow section of the stepped fiat bar when 
2 = 0.5 and h/p = 4.2 and 1. In Fig. 11, the stress tr~. is almost constant with a variation of  1% 
at a distance of  d/2 from the fillet when hip ~ 2. 

3.3. Case of round test specimen with fillets under tension [c = 0 /n Fig. l(a)] 

In Table 5, the SCF values of  round test specimens with fillets under tension are shown. The 
SCFs when the length d = 4p are shown for comparison with the SCFs when f = ~ .  Through this 
comparison, it is found that the SCF of a round test specimen when E ~> 4p can be estimated by 
the SCF of a stepped round bar (E = ~ ) ,  except for the case when h/p ~> 2 or 2h/D ~ 0.1. 

Figure 12 shows the stress distribution at the narrow section of round test specimen for 
E/d = 0.25, 0.5 and 1 when 2 = 0.5 and h/p = 4. In comparison with Fig. 10, a longer distance is 
needed to obtain a uniform stress distribution when E is finite. This is probably because the two 
fillets located symmetrically for r-axis affect the stress distribution at the narrow section. It is found 
that the variation of stress distribution at the center of the test specimen is less than 1% when 
E/d >~ 1. 

3.4. Case of flat test specimen with fillets under tension [c = 0 in Fig. l(b)] 

In Table 6, the SCFs of rectangular notches with fillets in a flat bar under tension are shown. 
The SCFs when the length f = 4p are shown for comparison with the SCFs when { = oo. As 
2h/D ~0, the SCF increases and approaches the value of the rectangular notch in the semi-infinite 
plate. Through this comparison, it is found that the SCF of rectangular notches when f ~> 4p can 
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Fig. 8. SCF of stepped fiat bar with fillet (p = h). 
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I I I I I 
0.2 0.4 0.6 0.8 1.0 

k=2h/D 

Fig. 10. K,/Km of stepped fiat bar with fillet (K,o = K, Ix~0). 

be es t imated  by the S C F  of  a s tepped fiat ba r  (d = ~ ) ,  except  for the case when h/p 1/> 2 or  
2h/D <~ 0.1. 

F igure  13 shows the stress d i s t r ibu t ion  at  the na r row  section o f  a flat test specimen for 
did = 0.25, 0.5 and  1 when 2 = 0.5 and  hip = 4. In  c ompa r i son  with Fig. l l ,  a longer  d is tance  is 
needed to ob ta in  a un i fo rm stress d i s t r ibu t ion  when d is finite. The  var ia t ion  o f  stress d i s t r ibu t ion  
at  the center  o f  the test specimen is less than  1% when did ~ 1. 

3.5. Case of round test specimen having a circumferential crack under tension [Fig. l (a ) ]  

Table  7 shows the stress intensi ty  fac tor  F~(SIF) o f  r o u n d  test specimens having c i rcumferent ia l  
cracks  at  the center.  The  stress intensi ty  fac tor  when f = oo [9] and  the relat ive er ror  (in parentheses  
in Table  7) are also shown in Table  7 for  compar i son .  The  SIFs  for  f /d  = 1 are in good  agreement  

Table 5. SCFs of round test specimen with fillet when d = 4p (values when d = oo are 
given in parentheses) 

h/p 
2 = 2hiD 0.5 1 2 

0.0 1.879 (1.824) 2.278 (2.164) 2,869 (2.640) 
0.1 1.676 (1.680) 1.990 (1.997) 2,466 (2.448) 
0.2 1.531 (1.533) 1.823 (1.826) 2,227 (2.243) 
0.3 1.392 (1.395) 1.654 (1.656) 2.031 (2.035) 
0.4 1.272 (1.275) 1.494 (1.494) 1.830 (1.831) 
0.5 1.181 (1.181) 1.353 (1.353) 1.634 (1.634) 
0.6 1.118 (1.118) 1.236 (I .236) 1.454 (1.454) 
0.7 1.076 (1.076) 1.150 (1.150) 1.296 (1.296) 
0.8 1.044 (1.044) 1.092 (1.092) 1.171 (1.171) 
0.9 1.013 (1.013) 1.039 (1.039) 1.080 (1.080) 
1.0 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 

E=4p, 2 :40 

°tmax 
Kt= p n 

On= ~d 2 
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Table 6. SCFs ofttat  test specimen with fillet when d = 4p (values when f = oo are given 
in parentheses) 

h/p 
= 2h/D 0.5 1 2 

0.0 1.879 (1.824) 2.278 (2.164) 2.869 (2.640) 
0.1 1.724 (1.727) 2.054 (2.050) 2.571 (2.504) 
0.2 1.622 (1.621) 1.923 (1.927) 2.355 (2.356) 
0.3 1.511 (1.510) 1.796 (1.796) 2.188 (2.197) 
0.4 1.397 (1.396) 1.658 (1.657) 2.028 (2.028) 
0.5 1.287 (1.286) 1.515 (1.514) 1.850 (1.849) 
0.6 1.189 (1.188) 1.371 (1.371) 1.661 (1.661) 
0.7 1.117 (1.116) 1.238 (1.237) 1.465 (1.465) 
0.8 1.072 (1.070) 1.134 (1.134) 1.281 (1.281) 
0.9 1.029 (1.028) 1.061 (1.061) 1.110 (1.110) 
1.o 1.ooo l.OOO 1.ooo 

| 

t Kt= Otmax 
p °n 

P 
On- d 

with those for f = oo, within 0.4%. Thus, the interaction between fillet and crack may be negligible 
if d/d ~ 1. 

Next, we try to estimate approximately the SIFs of  test specimens having a crack, as shown 
in Fig. l(a), when the interaction between fillet and crack cannot be neglected. Table 8 shows SIFs 
of  round test specimens having circumferential cracks which are calculated approximately from the 
distribution az(r) without a crack, as shown in Fig. 12. 

F* = a: (2,.) Fl b= ~. (6) 

In Table 8, it is found that F* is in good agreement with the results of Table 7, unless 2c/d is 
large. 

3.6. Case of flat test specimen with double cracks under tension [Fig. l(b)] 

Table 9 shows the SIF Fj of  flat test specimens with cracks at the center. The stress 
intensity factor of E =  oo [15] and relative error (in parentheses in Table 9) are shown in 
Table 9 for comparison. The SIFs for f /d = 1 are in good agreement with the SIFs for { = oo 
within 1.0%. Thus, the interaction between the fillets and cracks may be negligible if 
~/d >~ 1. 

Table 10 shows the SIFs of flat test specimen with cracks which are calculated 
approximately from the stresses distribution without crack a).(x), as shown in Fig. 13. In Table 
10, it is seen that F* is in good agreement with the results of Table 9, unless 2c/d is large. 

Table 8. Estimated value of  SIFs from the stress distri- 
bution without a crack (exact values are given in parenthe- 

ses) 

2c(=  2c/d) 0.05 0.2 0.5 

FI [/= ~ [ 16] 1.150 1.261 1.940 

did = I. 145 1.299 1.934 
0.25 (1.135) (1.282) (1.966) 

1.I 13 1.235 1.963 
0.5 (1.117) (1.242) (1.943) 

1.147 1.257 1.942 
1.0 (1.147) (1.260) (1.947) 
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Table 10. Estimated value of SIFs from the stress distri- 
bution without crack (exact values are given in parentheses) 

) .c(=c/d) 0.05 0.2 0.5 

/=11/=®[9 ] 1.118 1.111 1.169 

/ / d  = 1.202 1.220 I. 165 
0.25 (1.195) (1.202) (1.216) 

1.096 1.117 1.163 
0.5 (1.090) (1.110) (1.171) 

1.107 1.107 1.169 
1.0 (1.107) (1.102) (1.165) 

4. CONCLUSION 

In this paper, the stress concentration problems of fillets in stepped round and flat bars 
under tension, and the interaction among cracks and fillets in round and flat test specimens under 
tension, were analyzed by the body force method. The conclusions can be summarized as follows: 

(1) Through comparison of the present results for stepped round and fiat bars having fillets 
with previous research, it was found that Peterson's stress concentration charts based on 
photoelastic tests give underestimated stress concentration factors by about 13% for the worst 
cases. The stress concentration factors were illustrated in charts (Figs 4-6 and 8-10) so they can 
be used easily in design or research. 

(2) The SCFs of stepped fiat bars with fillets were found to be almost determined by the results 
of shoulder fillets in a stepped semi-infinite plate (Fig. 10). 

(3) The stress distributions at the narrow cross-section of stepped round and fiat bars are almost 
constant, with a variation of 1%, at the distance d/2 from the fillet when h/p ~ 2 (Figs 7 and 11). 

(4) The SCFs of test specimens, as shown in Fig. 1, were systematically calculated. It was 
found that the interaction between crack and fillet may be negligible when//d/1> 1 (Figs 12 and 
13). The SIFs can be estimated approximately from the stress distribution without crack unless the 
crack depth is large. 
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A P P E N D I X  
The stress intensity factor of a round bar with a crack emanating from a circumferential notch [Fig. AI]. 
This problem is important especially in relation to the research of  a non-propagating fatigue crack in metals. Table 

A 1 shows the SIFs F~ of  round test specimens, with cracks and semi-circular notches, under tension. The SIFs of  semi-infinite 
plates (2 --*0) having a crack emanating from semi-elliptical notches [16] and the SIF of  a circumferential crack without 
a notch (c/h--*oo) in a round bar [9] are also shown in Table AI.  In Table AI,  it is found that Ft/Fll~= o is virtually 
determined by ). alone and almost independent of  c/h. Therefore, it is found that the SIF of a round specimen [Fig. AI] 
can be calculated from the SIF of  a semi-infinite plate, as shown in the following equation: 

ftl,.,i,.>. = Ftl,./~.~-o,(FjF, l;-o).  (7) 

The SIFs of cracks emanating from notches of  different shapes are also calculated. As a result, it is found that the method 
of  estimation of  SIFs by eq. (7) can be applied to cracks emanating from various shaped notches. 

t P  

c h 

. . 1  

4 d b 

Fig. A1. A cylindrical bar having circumferential notch with a crack. 
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