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Variation of stress intensity factor and crack opening displacement 
of semi-elliptical surface crack 
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Abstract. In this paper a singular integral equation method is applied to calculate the stress intensity factor along 
crack front of a 3D surface crack. Stress field induced by body force doublet in a semi infinite body is used as a 
fundamental solution. Then the problem is formulated as an integral equation with a singularity of the form of r -3. 
In solving the integral equations, the unknown functions of body force densities are approximated by the product of 
a polynomial and a fundamental density function; that is, the exact density distribution to make an elliptical crack 
in an infinite body. The calculation shows that the present method gives the smooth variation of stress intensity 
factors along the crack front and crack opening displacement along the crack surface for various aspect ratios and 
Poisson's ratio. The present method gives rapidly converging numerical results and highly satisfactory boundary 
conditions throughout the crack boundary. 
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= major radius of a semi-elliptical crack 
= minor radius of a semi-elliptical crack 
= rectangular coordinate 
= (x, y, z) coordinate where body force is applied 
= (x/,+, y/z,) 
= (Ua, ,fib) 
= Young's modulus 
= Shear modulus 
= Poisson's ratio 
= (1 - 2u)/4(1 - u) 2 
= unknown density function of body force doublet 
= fundamental density function of body force 
= displacement in (x, y, z) direction 
= crack opening displacement uz(x, y, +0) - u~(x, y, -0)  
= crack opening displacement of an elliptical crack 
= eccentric angle of ellipse 
= stress intensity factor along the crack front 
= stress intensity factor of an elliptical crack 
= dimensionless stress intensity factor 
= dimensionless stress intensity factor 
= dimensionless crack opening displacement 

1. Introduction 

P r o b l e m s  o f  su r face  c racks  have  a t t rac ted  the  a t t en t ion  o f  a lo t  o f  r e sea rcher s  and  eng inee r s  

b e c a u s e  o f  the  i m p o r t a n c e  in d e s i g n  and  m a i n t e n a n c e  o f  va r ious  s t ructures .  A s  a resu l t  o f  

c o m p u t e r  d e v e l o p m e n t ,  a d v a n c e d  w o r k s  were  ca r r i ed  out  b y  us ing  finite e l e m e n t  m e t h o d  

[1 -10 ]  and  o the r  n u m e r i c a l  t echn iques .  N i s i t an i  and  M u r a k a m i  [11] first  a p p l i e d  the  b o d y  
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Figure 1. A semi-elliptical crack in a semi-infinite body. 

force method to 3D crack problems. Weaver [12], Hayashi-Abe [13], and Takakuda et al. [14] 
considered the numerical solution of singular integral equations. Murakami-Isida [15] and 
Isida-Noguchi [16, 17] improved the versatility and accuracy of the body force method. And 
recently Isida-Tsuru-Noguchi [18, 19] proposed a new method of 3D crack analysis based on 
the body force method. In spite of the above progress in the analytical aspects, considerable 
difference is observed among those previous results. 

In the previous papers, the numerical solutions of the singular integral equation of the 
body force method in 2D crack and notch problems have been discussed [20-25]. In those 
papers unknown functions of the body force densities have been approximated by the products 
of fundamental density functions and polynomials; it was found that the new method gives 
results of better accuracy with shorter CPU time compared with the conventional body force 
method using the step functions [26-28]. 

In this paper, numerical solution of the singular integral equation in the analysis of 3D 
crack problems is discussed based on our previous research. To formulate the problem the 
body force method is applied where the Green's functions for a force doublet is used as 
the fundamental solution. Then it will be shown that the present method is very useful for 
analyzing 3D crack problems and giving the smooth variation of stress intensity factor and 
crack opening displacement with higher accuracy compared with other methods. 

2. Numerica l  solut ion of  s ingular integral equation 

2.1. SINGULAR INTEGRAL EQUATION OF THE BODY FORCE METHOD 

Consider a semi-infinite body under uniform tension having a semi-elliptical crack as shown 
in Figure 1. Here, (~, % () is a (x~ y, z) coordinate where body force doublet is applied. Based 
on the body force method, the problem is reduced to determining the density of force doublet 
along the prospective boundary of the crack in the semi-infinite body without a crack. 
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5 - 20u + 24u 2 12(1 - u)(1 - 2u) 
K(~, ,7, x, y) = ,'~ + ~(~2+ y+,7)  2 

21 

6{3yr/- 2u(1 - 2u)(y + f])2) 
+ %5 , (la) 

~: = ~ / ( x  - ~) :  + (y - 7) 2, 

~: = X/(* - e)2 + (y + ,7)2, 

H = (1 - 2 u ) / 4 ( 1  - u) 2, 

S = { ( ~ , r / ) l ( ~ / a )  2 + (r//b) 2 ~< 1 , r / )  0} .  

The crack opening displacement can be defined by using the body force density f ( x ' ,  y') as 
shown in (lb) [20] 

uz(,',y') = ~z(x',v',+o)- ~z(X',V',-o) ) 
(1 - 2u)(1 + v) / 

= 7 ~ i  :-.5 f ( * " Y ' )  
(lb) 

Equation (1) is virtually the boundary condition at the imaginary boundary of a crack; that is, 
cyz = 0. The first term in left-hand side of (la) expresses the singular term and the notation 
f f  should be interpreted as a finite part integral [29]. In the second term K(~, r/, x, y) means 
the function that satisfies the boundary condition at the free surface. 

2.2. NUMERICAL SOLUTION OF THE PREVIOUS BODY FORCE METHOD 

In the conventional method, the crack region is divided into elements as shown in Figure 2 
and the unknown function of the body force densities has been approximated by the product 
of the fundamental density functions and the stepped functions as shown in the following 
expression 

f (J)({ ,  rl) = f j .  w(~, rl) , ] 

where / 

b ~  / 
w(~, rl) = - f f ~ / 1  - (~/a)  z - (~/b)  z 

(2a) 

E ( k ) ,  k = ~/~ - (b/a)~ (a > b) } 
62= b E ( U ) ,  k' = ~ / 1 -  (a/b) 2 (a < b) " 

(2b) 
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(a) x,~ (b) x,~ 

Figure 2. Approximation of weighting function using the step function at each element. (a) Nisitani-Murakami 
[11], Murakami-Isida [16-17] (b) Murakami-Isida [15]. 
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Figure 3. Approximation of weighting function using the linear function at each element (Isida-Tsum-Noguchi 
[18,191). 

Here, w(x, y) is a fundamental density function of a body force, which expresses the stress 
field due to an elliptical crack in an infinite body and leads to solutions with high accuracy. 
Here, the weight function fj is assumed as a stepped function having constant value at j th  
element as shown in (2) [11, 15-17]. However, the step function expressions of the body force 
densities give rise to singularities along the element boundaries, and they tend to deteriorate the 
accuracy and validity in sophisticated problems. Isida et al. [18, 19] have therefore proposed 
the method of approximation expressed by the following equation 

f(J)(G rl) = Fj(G rl)w(G ~l), (3) 

where Fj (~, rl) is a linear function of the coordinate as shown in Figure 3. 

pj(~, ,) = c S + dj,  + e~. (4) 

2.3. NUMERICAL SOLUTION OF THE PRESENT METHOD 

In the present analysis, polynomials have been used to approximate the unknown functions 
as a continuous function. First, we put 
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, '  = , / b  }" (5) 

Then, the integral equation (1) becomes 

b [ ~ F ( ~ ' , , ' ) ~ / 1  ~,2 
27r~ [ f f s  r 3 _ __ ~]12 d{ d~/ 

+ f jsl((~,rl, x,y)F(~',r/)~/1- ~'2-rf2d~drl ] = - 1  

_t_ . . . O ~ n _  1 ? ] t n - 1  

+ . - .  + c~2~('2Xlr/~-1 

(6) 

Here, F( ( ' ,  r/) is now approximated in terms of polynomials as follows 

F ( ~ ' ,  7]') = oz 0 q- 0~1~ ]' 

-t-o~n+ 1 ~ t2×l --~ o~n+2~/2x 1~ ' 

+Oq_2~t2"(n-l) q- Oq_l~t2"(n-1)?'] ! 

+ad'2"~ 
l 

/ ! 

i=0 

where 

I = 

G0(~' , , ' )  = 

+ctnr/n 

n 

k=O 

(~ + 1)(~ + 2) 
2 

1 , a 1 ( # , , ' )  = , ' , . .  

• . . , a n + l ( ~ ' , ? 7 1 )  = ~/2xl . . . , G l ( ~ ' , ~ ] t )  = ~t2-n 

f(~, r/) = F(~',rl')w(~',~?'), 
where 

W(~',  7] t) = bO'~x~ V/1 ~,2 _ 1],2 
//q, 

(7) 

Using the approximation method mentioned above, we obtain the following system of linear 
equations for the determination of the coefficients ai. The unknown coefficients ai [i = 
0, 1,2, . . .1 ,  1 = (1/2)(n + 1)(n + 2)] are then determined from (8) by selecting a set of 
collocation points. 
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b l 
2~a)c~oai(Ai + Bi) = -1, 

where 

Ai = g Gi({"rl') i l  _ {,2 _ r/2d~ d~ ' 

Bi = f [ K(~,rhx,Y)Gi({',r]')~l - ~,2_ ~,2d{d? ] 
J J S  - -  

(8) 

3. Numerical evaluation of hypersingular integrals 

In (8) the integral Bi can be evaluated numerically because of no singularities in the inte- 
gral. However, Ai cannot be evaluated by ordinary numerical procedures because they have 
hypersingularities of the form r -3 when x = { and y = r/; therefore, the following method is 
applied. First, we put 

Ai = fJ/s+& Gi(~" ~ ' )¢1  _~ ,2_  rf2ded~/ 

- / / &  Gi(e" rf)~/1 _ e , 2 _  rf2dedr/ 
r? 

= A l i -  d21, 

where 

S +  & = { ( ( , ' / ) [ U  + ¢2 .< 1}, 

S~ = {(~', r/)lg '2 I- 7.1,2 ~ 1,7"1" ~ O} 

(9) 

The regions of integral S and Sc are shown in Figure 4. The integral A2i can be evaluated 
easily because of no singularities. Next, in order to evaluate the integral A2i the following 
expressions will be used 

~'=~/a,  r]'=rl/b , x ' = x / a ,  y '=y/b ,  

x/1 - ~ , 2  _ 7 / 2  = v / 1  _ x n _ yl2 

x ! 
. / 1  - ~ , 2  _ v , 2  ( ( -  ~') - 

y! 

v / 1 _  x t 2 _  yt2 (?]1- y,) 

x/1 - x '2 - y ' 2 ( 4 1  - ~t2 _ ,rf2 -t- 4 ]2 - x/2 - y,2) 

12 / / ( l  - y )(~ + x ) ~,)2 
X ( X , 4 1  _ C a - -  ~ e--t~i 2 X,2 _ y,2)"  (~c/- 

x,2(. ,  + y') 

+ ( ~ '  J 1  - e '~ - ~'~ + e ' 7 1  - x '~ - v '2) 
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Figure 4. Domain of integral. 

v'2(~ ' + ~') } 
q- (y/~/1 - ~12 _ ~/12 -Jr- r / i f1  - x '2 - y/2) (E l -  X')(~' -- y') (10) 

( 1 -  x '2) ( , /+  y') ] 
+ ( y ' x / 1  - ~,2 _ rf2 + r / 'x/1 - x '2 - y,Z) " ( r / -  y,)2 l 

-~ SOO(~t yt) ~_ SlO(Xt y t ) .  (~t X') + S l l (Xt ,  yt) • (~]t yt) 

S ' x') 2 + 2o(~,'/, ~', y')" (e' - 
S t "-~ 21(~ ,?]I,x/,Y/) " (~' X/)(7]I yt) 

_}_ $22(~1 '/11 g ,  y t ) .  (f/, _ y t )2  

2n-2 
{,2n = Xt2n q_ 2r~X,2n-1. (~, _ Xt) q_ E {(i -k 1) .  { (2n-2- i ) .  x i } .  (~t _ OCt)2 

i=0 
= bo(xt) q- b l ( x t ) . ( ~ t -  Xt)-1- b2 (~ t ,x ' ) . (~  t -  Xt) 2, 

n-2 
r/n = ym q_ nym-1. (r/-- yt) -k E {(i q- 1 ) .  r / ( n - 2 - i ) ,  yi} . (r/-- y,)2 

i=0 

= ~o(y') + ~ , ( v ' ) ( ~ ' -  v') + ~ (~ ' ,v ' ) .  ( ~ ' -  v 'Y  

In (10), it should be noted that Soo(x', y'), Xl0(~', Y'), Sll( x', Y'), bo(x'), bl(X'), c0(y'), 
cl (y') are independent of  ( ,  7. By using a polar coordinate shown in Figure 5, (10) becomes  

x / l  -- ~t2 _ 7]t2 _~ AO -t- AI(O) • r + A2(r ,O)  . r 2, 

~,2n = BO i .~_ Bli(O) " 7  ̀~- B2i(r ,  0) .  7 "2, 

~]tn = C o i  -t- Cli(O) • r + C2i(r, 0) .  7`2, 
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Figure 5. Change of integral parameter from (~, r/) to (r, 0). 
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Figure 6. Numerical value of integral (b/a = 1). 

where 

Ao 
<(o) 

A2(r, O) 

&o(z', y'), 
#lo(X', Y')" cos 0 + S u ( x ' ,  y ' ) -  sin O, 
&o(G .', x', y')-cos 2 
+$21(~', V', z' ,  y ' ) -  cosO. sinO 
+$22(~', r/, z ' ,  y ' ) .  sin 2 O, 

(11) 
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Figure 7. Numerical value of integral (b/a = 1, v = 0.3). 

Bo = bo(x'), 
~ 1 ( 0 )  = b l ( x ' ) . c o s 0 ,  

~2(~',o) = b 2 ( ~ ' , x ' ) ,  cos ~ 0, 

Co = co(y'), 

C1(0) = c l (y ' ) . s inO,  

C2(r, O) = c2(~', y ' ) .  sin 2 0. 

Then, we can also obtain the expression 

Gi(~t t i t ) x / l _  ~ t 2 _  ~/t2 = Doi + Dli(O).r + D2i(%O).r 2, 

where 

Do~ = Ao • Bo • Co, 

DI~(O) = Ao" Bo" C1 + Ao . B1 • Co + At  • Bo.  Co, 
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Figure 8. Numerical value of integral (b/a = 1, u = 0.3). 

D2i ( r ,  O) = Ao"  B o .  C2 -k Ao • B2 • Co + A2 • Bo • Co + Ao • B1 • C1 + A1 • Bo • C1 

+ A1 .B1  • Co + A o . B 1  .C2 + AI  . B o .  C2 + A o .  B 2 .  C1 

-k A1 • B2 • Co + A2 • Bo • C1 + A2 • B~ • Co + A~ • B1 • C1 

+ A o . B 2  • Cs + A1 'B1  .C2 + A s . B o .  C 2 +  A1 . B s . C ~  

+ As  • B2 • Co + A2 • B1 • C1 + A j  • B2 • C2 + A2 • t31 • C2 

+ A2 • 132 " C1 '~ A2 • B2 • C2. 

By substituting (12) into (9) we obtain 

A l l  = do do [ ~ 2 -  + drdO 

f 2 r c f R ( O )  
+ .to ao [D2i(r, 0)] drdO 

= Aai + Abl, 

(12) 

(13) 
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Figure 9. Numerical value of integral (b/a = 1, v = 0.3). 

-1.0 

-1.5 

where 

1~(o)  = 
{ - ( ( x  .cosO/a 2) + (y.  sinO/b2)) 

(cos0/a)z + (sinO/b) z 

+~(cosO/a) 2 + (sinO/b) 2 - [ ( x - s i n 0  - y .cosO)/(a.b)] 2} 

Here, Abi has no singularities and can be evaluated easily in numerical integration. On the 
other hand, Abl has singularities; however, they are expressed simply in the form r -1 or r -2, 
so they can be evaluated in the Hadamard sense as shown in (10). 

jO 2~ [_ Dol ] Aai = L R(O) + Dli(O) . log(R(O)) dO. (14) 
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Figure 10. Boundary collocation points. 

4. Numerical results and discussion 

4.1. REPRESENTATION OF THE NUMERICAL RESULTS 

Numerical calculations have been carried out for changing n in (7). Numerical integrals have 
been performed using scientific subroutine library (FACOM SSL II DAQE etc.). In demon- 
strating the numerical results of stress intensity factor (SIF) Ki(fl) and crack opening dis- 
placement (COD) Uz (x', y'), the following three kinds of dimensionless factors Mi(fl), FT(fl) 
for SIE and MI(x', y') for COD, will be used 

Ki ( f l )  _ r((,zl ')]~,:cos~,¢:sin~, 

where 

~ v ' ~  sin 2 fl + c°s 2 

FI -- o.~V/- ~/(I(fl) F(~',Tl)lu=cos/3,v'=sin~~ sin2fl + a c°s2fl 

M I ( X  t , y t )  _ U z ( x l , y t )  _ F(xl ,  yt), 
u E( x', y') 

where 

U~E(x', y') = 4(1 - u 2) b ~  ~/1 - X '2 - y,2. 
E 

(15) 
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Figure 11. Compliance of boundary condition (n = 8, u = 0.3, b/a = 1). 

Here, MI(~) is defined as the multiple of the stress intensity factor of the elliptical crack 
with principal diameters 2a and 2b embedded in an infinite solid KI(/3), and is relevant to 
comparing the present results with previous ones. The other factor FI(/3), on the other hand, is 
expressed on the basis of the stress intensity factor of the plane strain internal crack of length 
2b, and is suitable for comparing the magnitudes of the stress intensity factors at different 
points on the crack front or the maximum one of differently shaped cracks. Also, MI(~ ~, r/) is 
defined as the multiple of the crack opening displacement of the elliptical crack with principal 
diameters 2a and 2b embedded in an infinite solid Uz~(~ ~, r/). 

4.2. C O N V E R G E N C Y  OF N U M E R I C A L  RESULTS 

In this analysis it is important to evaluate the numerical integrals accurately. As an example, 
Figure 6 shows the value of integral Ali in (9) when Gi(~ I, ~1) = 1, which is corresponding 
to the stress ~rz along the embedded elliptical crack in an infinite body expressed by the 
distribution of the exact body force density w(~, ~7). As shown in Figure 6, the stress coincides 
with the exact value crz = - 1  by 10 significant digits for most cases, and by 6 digits for the 
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Figure 12. Compliance of  boundary condition (n = 13, u = 0.3, b/a = 1). 

worst cases near the crack front. This indicates the validity of calculation of hypersingular 
integral and the high accuracy of the numerical integral procedure. 

Figures 7-9 show the values of integrals (Ai + Bi)b/(2~r~) in (8) when Gi(~', ~') = 
1, Gi(~', ~f) = ~,2, Gi(~', ~/') = ~1' for b/a = 1 and u = 0.3. In this analysis the boundary 
condition for crack surface az = - 1  will be satisfied by superposing the smooth functions 
as indicated in Figures 7-9. Here, the boundary conditions are considered at the intersection 
of the mesh whose interval is 0.02 as shown in Figure 10. On the line yP = 0 the integral 
Bi in (8) and A2i in (9) cannot be calculated; then, the boundary conditions are considered 
on the line y~ = 0.015 instead of y~ = 0. In solving the algebraic equation (6) the least 
square regression method is applied to minimize the residual of stresses at the collocation 
points. 

Figures 11-16 indicate the compliance of the boundary conditions along the prospective 
crack surface with varying n in (7). The boundary condition becomes highly satisfied with 
increasing n and when u = 0.3 and n = 18 the error is less than 3 × 10 .3 throughout the 
range ~/~ ) 0.015. The boundary condition is especially highly satisfied when u = 0 within 
the error 1 x 10 -3. 
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Figure 13. Compliance of boundary condition (n = 18, u = 0.3, b/a = 1). 

Table 8. Magnitude and position of maximum 
stress intensity factors FI m a x  and the accuracy 
of Murakami's formula (u = 0.3) 

b/a FImax /~ FI max* ~ (%) 
(a = 1.0) (deg) 

1.00 0.748 3 0.668 +2.7 
0.75 0.7598 90 0.6316 -2.9 
0.50 0.8835 90 0.6636 +2.0 
0.25 1.0234 90 0.6464 -0 .6  

Tables  1 4  show the c onve rge nc y  o f  d imens ionless  stress intensi ty factors  a long the crack 

f ront  wi th  increas ing parameter  n. For  u = 0.3 the present  results have  the conve rgency  in 

the 4 s ignif icant  digits for  mos t  cases when  n = 19 and in the 3 significant digits for  wors t  
cases in the range /3  = 0 ~-, 10 degree.  
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Figure 14. Compliance of boundary condition (n = 18, u = 0.3, b/a = 0.25). 

Table 9. Crack opening displacement MI (0, O) 

b/a 

II 

0.00 0.25 0.50 0.75 1.00 

0.00 1.4543 1.3439 1.2528 1.1944 1.1555 

0.30 1.4543 1.4201 1.3815 1.3504 1.3266 
0.45 1.4543 1.5045 

0.50 1.4543 1.5863 

4.3. VARIATION OF STRESS INTENSITY FACTOR AND CRACK OPENING DISPLACEMENT 

Tables 5-7 and Figures 17-19 show the variation of dimensionless stress intensity factors 
FI along the crack front. When Poisson's ratio u is not zero, it is well known that the stress 
intensity factor has the peak value close to the free surface except for the small value of b/a. 
For b/a = 1 and u = 0.3 maximum value/~Imax = 0.748 occurs at/3 = 3 degree. Figure 20 
shows the variation of dimensionless stress intensity factors MI(/3) along the crack front in 
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Figure 15. Compliance of boundary condition (n = 18, u = 0, b/a = 1). 

comparison with Isida [17, 19], Raju-Newmann [9, 10] and Yagawa et al. [7]. Isida's result is 
in close agreement with the present result except near the free surface. 

In Table 8 the accuracy of Murakami's formula (16) for arbitrary shaped crack using root 
of crack area [29] is shown. In this table Murakami's formula gives approximate maximum 
values of stress intensity factor of a semi-elliptical crack within 3 percent error. 

where/(Imax = 0.650 X O z ~ ,  } 

area = rcab/2 

(16) 

Figures 21-26 indicate variation of dimensionless crack opening displacement Mi(x', y'). 
Figure 27 shows crack opening displacement of semi-elliptical surface crack on the free 
surface Uz(x', 0) in comparison with an elliptical crack. In Table 9 the values of MI(0, 0) are 
tabulated for various aspect ratio and Poisson's ratio. One of the authors has carried out the 
research of crack identification from the data of strain measured around the crack [30, 31]. 
From Table 9 it seems possible to estimate the depth of a surface crack by measuring the 
surface displacement of the crack. 
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Figure 16. Compliance of boundary condition (n = 18, v = O, b/a = 0.25). 
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Figure 17. Variation of dimensionless stress intensity factors FI along crack front (v = 0). 
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Figure 18. Variation of dimensionless stress intensity factors FI along crack front (u = 0.3). - 
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Figure 19. Variation of dimensionless stress intensity factors FI along crack front (b/a = 1). 

5. Conc lus ion  

In this paper, a singular integral equation method useful for 3D crack problems is discussed. 
The conclusions are summarized as follows: 

(1) The 3D crack problems were formulated in terms of  singular integral equations 
with singularity of  the form r -3 on the basis of  the body force method, where the Green's  
function for a force doublet  was used as the fundamental solution. The unknown function of  
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Figure 20. Variation of dimensionless s~ss intensity factors MI along crack front in comparison with previous 
results (v = 0.3). 

Figure 21. Variation of crack opening displacement Mi(x', y') along crack surface (n = 18, v = 0.3, b/a = 1). 

the body force density was approximated by the product of  a fundamental density function 
and a weight function. Hypersingular integrals were evaluated exactly; then, the integral for 
embedded elliptical crack can be calculated within the error of  1 × 10 -1° in most cases. 
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Figure22. Variation o f c r a c k o p e n i n g  d i s p l a c e m e n t M i ( x ' ,  y ' )  a long crack surface (n  = 18, u = 0.3, b/a = 0.25).  
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Figure 23. Variation of  crack opening d isp lacement  Mi(x', y') along crack surface (n  = 18, u = O, b/a = 1). 
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Figure 24. Variation of crack opening displacement M~ (x', y') along crack surface (n = 18, u = O, b/a = 0.25). 

Figure 25. Variation of crack opening displacement Mi(x ~, y~) along crack surface (n = 25, u = 0.45, b/a = 
1.00). 
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Figure26. Variation ofcrackopening displacement M~(x', y ')  along crack surface (n = 25, u = 0.5, b/a = 1.00). 
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Figure 27. Crack opening displacement Uz (x, 0) on the free surface in comparison with an elliptical crack. 

(2) The present method gives rapidly converging numerical results; then the smooth 
variations of stress intensity factor along the crack front and crack opening displacement 
along the crack surface were obtained. The boundary condition was found to be satisfied 
within the error of 3 x 10 . 3  t h r o u g h o u t  the crack surface. 
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(3) The variations of stress intensity factor of semi-elliptical crack and crack opening 
displacement were tabulated or charted for the aspect ratio and Poisson's ratio. For semi- 
circular crack, it was found that the maximum stress intensity factor appears near the free 
surface with the eccentric angle ~b = 3 degree. It was found that the maximum stress intensity 
factor of semi-elliptical crack can be evaluated by using Murakami's approximate formula 
within the 3 percent error. 
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