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Abstract. In this study, the stress intensity factors for any number of interface cracks are calculated for various
spacings, elastic constants and number of cracks and the interaction effect of interface cracks is discussed. The
problem is formulated as a system of singular integral equations on the basis of the body force method. In the
numerical analysis, the unknown functions of the body force densities which satisfy the boundary conditions
are expressed by the products of fundamental density functions and power series. Here, the fundamental density
functions are chosen to express the stress field due to a single interface crack exactly. The accuracy of the present
analysis is verified by comparing the present results with the results obtained by other researchers and examining
the compliance with boundary conditions. The calculation shows that the present method gives rapidly converging
numerical results for those problems as well as ordinary crack problems in homogeneous materials. The interaction
effect of interface cracks appears in a similar way to ordinary collinear cracks having the same geometrical condition
and the maximum stress intensity factor is shown to be linearly related to the reciprocal of number of interface
cracks.

Key words: interface crack, stress intensity factor, interaction effect, bonded materials, singular integral equation,
body force method.

1. Introduction

In recent years, composite materials and adhesive or bonded joints are being used in wide range
of engineering field. The fracture of composites and bonded dissimilar materials is induced
mainly from the interfacial region because the angular corner of bonded materials induces
singular stress and crack initiation at the interface. Particularly flaws or cracks lying along
the interface reduce the strength of the structure significantly. Hence, problem of interface
cracks in dissimilar materials is very important from the view point of interface strength and
stress analysis of interface cracks have been treated in many papers (Williams, 1959; Erdogan,
1963; Erdogan, 1965; England, 1965; Rice and Sih, 1965; Yuuki and Cho, 1989; Nisitani et
al., 1993; Erdogan and Gupta, 1971; Comninou, 1977). In the interface crack problem, it is
well known that oscillatory stress singularity and overlapping of crack surfaces appear near
the interface crack tip and these are quite different from ordinary cracks in homogeneous
material. Therefore, in comparison with the ordinary crack problems, it is difficult to analyze
accurately the interface crack problems and there are not enough the data of stress intensity
factors for interface cracks.

In the previous papers (Noda and Oda, 1992; Noda and Oda, 1993), the numerical solutions
of singular integral equation of the body force method have been already discussed in ordinary
crack problems. Then, the numerical method, in which unknown functions are approximated
by the products of fundamental density functions and polynomials, has been found to give the
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Figure 1. Interaction problem of interface cracks.

results of high accuracy with short CPU time. In addition, the problems of two bonded elastic
layers containing a crack perpendicular to and crossing the interface have been treated and the
accurate stress intensity factors have been presented (Noda et al., 1989; Noda et al., 1992). In
this paper, the method is applied to the analysis of the interaction problem of interface cracks.
The calculation is carried out for this problem under various spacings, elastic constants and
number of cracks with examining the compliance with boundary conditions. The accurate
stress intensity factors to evaluate the interface strength of dissimilar materials are presented
in tables and interaction effect of interface cracks is discussed in comparison with the problem
of ordinary collinear cracks.

2. Numerical solution of interface cracks

Consider an interaction problem of interface cracks in dissimilar materials as shown in
Figure 1. The elastic constants are given as shear modulus and Poisson’s ratios for the upper
(material 1) and the lower (material 2) half-planes, that is, (G1; �1) and (G2; �2). The remote
stresses �1x;1 and �1x;2 in x-direction are defined in (1) so as to hold the condition of continuity
of strains along the interface, "1x;1 = "1x;2 (Rice and Sih 1965; Isida and Noguchi, 1983)

�1x;2 =
1

1 + �2

�
G2

G1
(1 + �1)�

1

x;1 +

�
3� �2 �

G2

G1
(3� �1)
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�1y

�
(1)

�m =

(
(3� �m)=(1 + �m) (Plane stress)

3� 4�m (Plane strain)
�m : Poisson0s ratio (m = 1; 2); (2)

where the subscripts m = 1 and 2 refer to material 1 and 2, respectively.
The stress distribution along the interface near a crack tip is expressed by Erdogan (Erdogan,

1963; Erdogan, 1965) and Erdogan and Gupta (1971) as follows,

�y + �xy =
K1 + iK2p
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" = (1=2�) lnf(G2�1 +G1)=(G1�2 +G2)g; (4)

where K1 and K2 are stress intensity factors of an interface crack defined by Yuuki and Cho
(1989). The problem can be formulated in terms of singular integral equations by using the
stress fields on the interface when two kinds of standard set of force doublets, tension type and
shear type, act on a point of interface in dissimilar materials (Nisitani et al., 1993; Saimoto,
1993). The integral equations, which are virtually the boundary condition of jth crack, are
expressed as follows,
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dxj
+ =

Z aj

�aj
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(�j � xj)2 d�j +
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2G1(1 + �)

(1� �2)(�1 + 1)
=

2G2(1� �)

(1� �2)(�2 + 1)
(6)

� =
G2(�1 + 1)�G1(�2 + 1)
G2(�1 + 1) +G1(�2 + 1)

; � =
G2(�1 � 1)�G1(�2 � 1)
G2(�1 + 1) +G1(�2 + 1)

; (7)

where the densities of body force doublets, tension type P1j(�j) and shear type P2j(�j),
distributed on the interface are unknown functions and xj ; �j are the coordinate in which the
center of jth crack is taken as the origin (Figure 1). The densities P1j(�j) and P2j(�j) are
related to the crack opening displacement as shown in later. Equations (5) are virtually the
boundary conditions on the interface crack; there are �y = 0 and �xy = 0. The function
hy(�k; xj) is stress �y induced at the point xj when the body force doublet with unit density
is acting at the imaginary crack site except the jth interface crack. The notation N is the total
number of interface cracks, and

R
= denotes a finite-part integral proposed by Hadamard (1923)

and (Noda and Oda, 1993). For reference, the singular integral equation formulated by means
of the continuously distributed dislocation method is shown as follows (Comninou, 1977).
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Z aj

�aj

Byj(�j)

�j � xj
d�j +

NX
k=1
k 6=j

Z ak

�ak

Hy(�k; xj)Byk(�k) d�k = �
�

C
�1y ;

��Byj(xj) +�
Z aj

�aj

Bxj(�j)

�j � xj
d�j +

NX
k=1
k 6=j

Z ak

�ak

Hxy(�k; xj)Bxk(�k) d�k = �
�

C
�1xy ; (8)

frac4126.tex; 5/09/1997; 12:01; v.7; p.3



120 Nao-Aki Noda and Kazuhiro OdaZ aj

�aj

Bxj(�j) d�j = 0;
Z aj

�aj

Byj(�j) d�j = 0: (9)

Here Bxj(�j); Byj(�j) are densities of edge dislocation. The notation�
R

stands for the Cauchy
principle value.

In the numerical solution of equations (5), the unknown functions P1j(�j) and P2j(�j) are
approximated by the product of the fundamental density functions w1j(�j); w2j(�j) and the
weight functions F1j(�j); F2j(�j).

P1j(�j) + iP2j(�j) = fw1j(�j) + iw2j(�j)gfF1j(�j) + iF2j(�j)g: (10)

Here, the fundamental density functions are chosen to express the stress field due to a single
interface crack exactly. The fundamental density function is derived from the crack opening
displacement of the interface crack and expressed as follows (Rice and Sih, 1965; Nisitani et
al., 1993):
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m=1

�
�m � 1
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j

 
aj � �j

aj + �j

!i"
: (11)

By using the fundamental density function, the crack opening displacements V1j(�j) and
V2j(�j) are shown as following equation:

V1j(�j) + iV2j(�j) =
2X

m=1

�
�m � 1

Gm(1 + �m)
w1j(�j) + i

1
Gm

w2j(�j)

�
fF1j(�j) + iF2j(�j)g

V1j(�j) = uy(�j ;+0)� uy(�j;�0); V2j(�j) = ux(�j ;+0)� ux(�j;�0); (12)

where ux and uy denote the displacement in x- and y- directions, respectively.
In this numerical analysis, the weight functions F1j(�j); F2j(�j) are approximated by the

following power series.

F1j(�j) =
MX
n=1

bn�
n�1
j ; F2j(�j) =

MX
n=1

cn�
n�1
j : (13)

A set of collocation points on jth imaginary crack site is chosen as follows (Noda and Oda,
1992; Kaya and Erdogan, 1987):

xj = aj cosfn�=(M + 1)g; (n = 1; : : : ;M); (14)

where M is the number of collocation points on jth crack.
By using the numerical method mentioned above, we obtain the 2(M � N) algebraic

equations for determining the coefficients bn and cn. The stress intensity factor of jth interface
crack can be directly calculated from the value of weight function at the crack tip.

K1 + iK2 = fF1j(aj) + iF2j(aj)g
p
�aj(1 + 2i"): (15)
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Figure 2. Interaction between two interface cracks with the same length.

Table 1. Convergency of the present result of interface crack [K1+iK2 =
(F1+iF2)�

1
p
�a(1+2i"). Plane stress, � = G1=G2 = 0:1; �1 = �2 =

0:3 in Figure 2]

� M F1;A F2;A F1;B F2;B

4 1.04938 0.00428 1.02881 0.00224
6 1.04946 0.00431 1.02885 0.00222
8 1.04946 0.00431 1.02885 0.00220

0.5 10 1.04946 0.00430 1.02886 0.00218
11 1.04946 0.00430 1.02886 0.00217
12 1.04946 0.00429 1.02886 0.00216
13 1.04946 0.00429 1.02886 0.00214

4 1.22703 0.03631 1.08158 0.01137
6 1.23281 0.03938 1.08300 0.01087
8 1.23351 0.03985 1.08319 0.01100

0. 8 10 1.23360 0.03992 1.08321 0.01098
11 1.23361 0.03992 1.08322 0.01097
12 1.23361 0.03993 1.08322 0.01096
13 1.23362 0.03993 1.08322 0.01095

3. Numerical results and discussion

First, the interaction problem of two interface cracks with the same length 2a subjected to
uniform tension �1y in the y-direction is analyzed as shown in Figure 2. The stresses �1x;1 and
�1x;2 at infinity have the relation defined by (1). It is treated under plane stress condition and
�1 = �2 = 0:3. The stress intensity factors obtained by the present analysis are written by the
following dimensionless expressions:

K1;A + iK2;A = (F1;A + iF2;A)�
1

y

p
�a(1 + 2i"); (16)

where the subscript A refers to the interface crack tip A.
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Table 2. Compliance with the boundary conditions
near the interface crack tip (rA: Distance from crack
tip A in Figure 2)

� = G1=G2 = 0:1; � = a=d = 0:8;M = 14

rA=a �y=�
1

y �xy=�
1

y

0.01 �3.4998E-05 7.1568E-05
0.02 �1.4064E-06 3.6386E-06
0.03 2.3276E-06 �7.2903E-06
0.04 2.1751E-06 �8.2153E-06
0.05 1.4159E-06 �6.6027E-06
0.06 7.5789E-07 �4.4652E-06
0.07 3.0787E-07 �2.4732E-06
0.08 8.9595E-08 �8.3326E-07
0.09 �3.1892E-08 3.8552E-07
0.10 �2.5696E-08 1.2284E-06

To verify the accuracy of the present numerical method, we examine the convergency
of the present results and the compliance with the boundary conditions. Table 1 shows the
convergency of the results with increasing the collocation number M when � = a=d = 0:5
and 0.8, where 2d is the distance between midpoint of both cracks. The present results have
the convergency in almost 5 digits when M = 12. Table 2 shows the values of �y=�1y and
�xy=�

1

y near the crack tip when � = 0:8. These values which should be zero along the crack
surface are less than 10�5 even whenM = 14. Therefore it is found that the present numerical
method is useful to analyze the interface crack problem as well as ordinary crack problem in
homogeneous material.

In Table 3, dimensionless stress intensity factors obtained by the present method are shown
when the values of � = G1=G2 and � = a=d are changed systematically. The parenthesized
value in Table 3 is the results of Saimoto (1993) and the asterisked value is the exact solution
for the two collinear cracks with the same length in homogeneous material given by Erdogan
(1962). As shown in Table 3, present results are in good agreement with the results of Saimoto
and especially with Erdogan’s exact solution when � = 1:0.

Next, Table 4 shows the result of three interface cracks with the same length as illustrated
in Figure 3. The parenthesized value in Table 4 is the exact solution for the three collinear
cracks with the same length in homogeneous material given by Sih (1964). The present results
are in close agreement with the exact solution in wide range of � when � = 1:0. Table 5
shows the dimensionless stress intensity factors for two interface cracks with the same length
when the values of Poisson’s ratio �1 and �2 are changed. From Table 5, it is indicated that
the effect of Poisson’s ratio on F1-value of interface crack is small.

From Tables 3, 4 and 5, F1-values are found to be almost constant in a wide range of the
ratio � = G1=G2 = 0:001 � 1:0 and Poisson’s ratio �1; �2 = 0 � 0:4. Then, it seems that
F1-value of several interface cracks defined by equation (3) can be approximately estimated
from the results of collinear cracks in homogeneous material.

Finally, the stress intensity factors for any number of interface cracks with the same
length are analyzed as illustrated in Figure 4. Tables 6 and 7 show the maximum values of
stress intensity factors, F1;max and F2;max, when the values of the number of interface cracks
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Figure 3. Interaction between three interface cracks with the same length.

Figure 4. Row of interface cracks with the same length (When the number of cracks is an even number).

N;� = a=d and � = G1=G2 are changed systematically. As shown in these tables, it is found
that the values of F1;max increase with increasing of the number of cracks N ; on the other
hand, the values of F2 max converge when N = 2 � 5. In this analysis, F1;max appears at the
middle crack and F2 max occurs at the outermost interface crack. Figure 5 shows F1;max�1=N
relations when � = G1=G2 = 0:1 and � = a=d = 1=3; 1=2; 2=3. From this figure, the values
of F1;max are found to be nearly linear with 1=N for fixed value of � = a=d. In Tables 6, 7
and Figure 5, the limiting values for N ! 1 are extrapolated from the values for N = 9
and N = 10 by using the linearity between F1 max and 1=N . These results are similar to the
problem of collinear cracks (Isida and Igawa, 1993).
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Table 5. F1 and F2 for two interface cracks when Poisson’s ratio
is changed (Plane stress, � = G1=G2 = 0:001; � = a=d = 0:8 in
Figure 2)

�1 �2 F1;A F2;A F1;B F2;B

0.0 1.2444 0.0792 1.0883 0.0217
0.1 1.2444 0.0792 1.0883 0.0217

0.0 0.2 1.2444 0.0792 1.0883 0.0217
0.3 1.2444 0.0792 1.0883 0.0217
0.4 1.2444 0.0792 1.0883 0.0217

0.0 1.2411 0.0686 1.0868 0.0188
0.1 1.2411 0.0686 1.0868 0.0188

0.1 0.2 1.2411 0.0686 1.0868 0.0188
0.3 1.2411 0.0686 1.0868 0.0188
0.4 1.2411 0.0686 1.0868 0.0188

0.0 1.2384 0.0590 1.0854 0.0161
0.1 1.2384 0.0590 1.0854 0.0161

0.2 0.2 1.2384 0.0590 1.0854 0.0161
0.3 1.2384 0.0590 1.0854 0.0161
0.4 1.2384 0.0590 1.0854 0.0161

0.0 1.2360 0.0502 1.0843 0.0137
0.1 1.2360 0.0502 1.0843 0.0137

0.3 0.2 1.2360 0.0502 1.0843 0.0137
0.3 1.2360 0.0502 1.0843 0.0137
0.4 1.2360 0.0502 1.0843 0.0137

0.0 1.2340 0.0420 1.0834 0.0115
0.1 1.2340 0.0420 1.0834 0.0115

0.4 0.2 1.2340 0.0420 1.0834 0.0115
0.3 1.2340 0.0420 1.0834 0.0115
0.4 1.2340 0.0420 1.0834 0.0115

Table 6. Maximum SIFs for any number of interface cracks with the same length 2a (Plane
stress, � = G1=G2 = 0:1; �1 = �2 = 0:3 in Figure 4)

N

-
a=d

F1;max F2;max

1/3 1/2 2/3 1/3 1/2 2/3
2 1.018 1.049 1.116 0.001 0.004 0.015
3 1.031 1.079 1.172 0.001 0.005 0.017
4 1.036 1.091 1.200 0.001 0.005 0.018
5 1.039 1.100 1.220 0.001 0.005 0.018
6 1.041 1.105 1.232 0.001 0.005 0.019
7 1.043 1.109 1.241 0.001 0.005 0.019
8 1.044 1.112 1.248 0.001 0.005 0.019
9 1.045 1.114 1.253 0.001 0.005 0.019

10 1.045 1.116 1.258 0.001 0.005 0.019
1 1.051 1.132 1.296 0.001 0.005 0.019
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Table 7. Maximum SIFs for any number of interface cracks with the same length 2a (Plane
stress, � = G1=G2 = 0:01; �1 = �2 = 0:3 in Figure 4)

N

-
a=d

F1;max F2;max

1/3 1/2 2/3 1/3 1/2 2/3
2 1.018 1.050 1.117 0.001 0.005 0.018
3 1.032 1.080 1.175 0.001 0.006 0.021
4 1.036 1.092 1.203 0.001 0.006 0.022
5 1.040 1.101 1.223 0.001 0.006 0.023
6 1.042 1.107 1.235 0.001 0.006 0.023
7 1.043 1.111 1.245 0.001 0.006 0.023
8 1.045 1.114 1.252 0.001 0.006 0.023
9 1.046 1.116 1.257 0.001 0.006 0.023

10 1.046 1.118 1.262 0.001 0.006 0.023
1 1.052 1.134 1.301 0.001 0.006 0.023

Figure 5. An example of F1;max � 1=N relations (Plane stress, � = G1=G2 = 0:1; �1 = �2 = 0:3).

4. Conclusions

In this paper, the stress intensity factors for any number of interface cracks were calculated very
accurately by using the singular integral equations of the body force method and the interaction
effects of interface cracks were considered. The conclusions can be made as follows.

(1) Singular integral equations of the body force method were shown in comparison with
the ones of the continuously distributed dislocation method. In the numerical solution, the
unknown functions were approximated by the fundamental density functions and power series.
Here, the fundamental density functions were chosen to express the stress field due to a single
interface crack exactly. It was found that the method gave rapidly converging numerical results
and highly satisfied boundary conditions.

(2) The dimensionless stress intensity factors defined by equation (1) for any number of
interface cracks were shown in tables for various spacing � = a=d and elastic parameters
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128 Nao-Aki Noda and Kazuhiro Oda

� = G1=G2. The results of two and three interface cracks with the same length were in close
agreement with the exact solution in homogeneuous material when G1 = G2.

(3) F1-values were found to be almost constant in a wide range of the ratio of elastic
constants � = G1=G2 = 0:001 � 1:0 and Poisson’s ratio �1; �2 = 0 � 0:4. Then, it is
possible that F1-value of several interface cracks can be approximately estimated from the
results of collinear cracks in homogeneous material.

(4) The maximum stress intensity factors F1;max for any number of interface cracks were
found to be nearly linear with 1=N (N : number of interface cracks) for fixed value of � = a=d.
From these results, it was found that the interaction effect of interface cracks appeared in a
similar way to ordinary collinear cracks having the same geometrical condition.
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