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Abstract. In this study, the stress intensity factors for any number of interface cracks are calculated for various
spacings, elastic constants and number of cracks and the interaction effect of interface cracks is discussed. The
problem is formulated as a system of singular integral equations on the basis of the body force method. In the
numerical analysis, the unknown functions of the body force densities which satisfy the boundary conditions
are expressed by the products of fundamental density functions and power series. Here, the fundamental density
functions are chosen to express the stress field due to a single interface crack exactly. The accuracy of the present
analysisis verified by comparing the present results with the results obtained by other researchers and examining
the compliance with boundary conditions. The calculation shows that the present method gives rapidly converging
numerical resultsfor those problems aswell asordinary crack problemsin homogeneous materials. Theinteraction
effect of interface cracksappearsinasimilar way to ordinary collinear crackshaving the same geometrical condition
and the maximum stress intensity factor is shown to be linearly related to the reciprocal of number of interface
cracks.

Key words: interface crack, stressintensity factor, interaction effect, bonded materials, singular integral equation,
body force method.

1. Introduction

In recent years, composite materialsand adhesive or bondedjointsare being used in widerange
of engineering field. The fracture of composites and bonded dissimilar materials is induced
mainly from the interfacial region because the angular corner of bonded materials induces
singular stress and crack initiation at the interface. Particularly flaws or cracks lying along
the interface reduce the strength of the structure significantly. Hence, problem of interface
cracksin dissimilar materials is very important from the view point of interface strength and
stressanalysisof interface cracks have been treated in many papers (Williams, 1959; Erdogan,
1963; Erdogan, 1965; England, 1965; Rice and Sih, 1965; Yuuki and Cho, 1989; Nisitani et
a., 1993; Erdogan and Gupta, 1971; Comninou, 1977). In the interface crack problem, it is
well known that oscillatory stress singularity and overlapping of crack surfaces appear near
the interface crack tip and these are quite different from ordinary cracks in homogeneous
material. Therefore, in comparison with the ordinary crack problems, it is difficult to analyze
accurately the interface crack problems and there are not enough the data of stress intensity
factorsfor interface cracks.

In the previous papers (Nodaand Oda, 1992; Nodaand Oda, 1993), the numerical solutions
of singular integral equation of the body force method have been aready discussed in ordinary
crack problems. Then, the numerical method, in which unknown functions are approximated
by the products of fundamental density functions and polynomials, has been found to givethe
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Figure 1. Interaction problem of interface cracks.

results of high accuracy with short CPU time. In addition, the problems of two bonded elastic
layers containing a crack perpendicular to and crossing the interface have been treated and the
accurate stress intensity factors have been presented (Noda et a., 1989; Nodaet al., 1992). In
this paper, the method is applied to the analysis of the interaction problem of interface cracks.
The calculation is carried out for this problem under various spacings, elastic constants and
number of cracks with examining the compliance with boundary conditions. The accurate
stress intensity factors to evaluate the interface strength of dissimilar materials are presented
intables and interaction effect of interface cracksis discussed in comparison with the problem
of ordinary collinear cracks.

2. Numerical solution of interface cracks

Consider an interaction problem of interface cracks in dissimilar materials as shown in
Figure 1. The elastic constants are given as shear modulus and Poisson’s ratios for the upper
(material 1) and the lower (material 2) half-planes, that is, (G1, v1) and (G2, v2). The remote
stresses o7 and 075 in z-direction are defined in (1) so asto hold the condition of continuity
of strai nsalong the interface, £o1 = €5 (Rice and Sih 1965; Isida and Noguchi, 1983)
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o { 3= vm)/(Ltvn)  (Panestress) o sonisratio =12, (@)

3—4u, (Plane strain)
where the subscripts m = 1 and 2 refer to material 1 and 2, respectively.

Thestressdistribution along theinterface near acrack tipisexpressed by Erdogan (Erdogan,
1963; Erdogan, 1965) and Erdogan and Gupta (1971) asfollows,
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e = (1/2n) In{(G2r1 + G1)/(G1k2 + G2) }, (4)

where K3 and K> are stress intensity factors of an interface crack defined by Yuuki and Cho
(1989). The problem can be formulated in terms of singular integral equations by using the
stressfields on the interface when two kinds of standard set of force doublets, tension type and
shear type, act on a point of interface in dissimilar materials (Nisitani et al., 1993; Saimoto,
1993). The integral eguations, which are virtually the boundary condition of jth crack, are
expressed as follows,
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where the densities of body force doublets, tension type Py;(¢;) and shear type %;(¢;),
distributed on the interface are unknown functions and =, ¢; are the coordinate in which the
center of jth crack is taken as the origin (Figure 1). The densities Py;(¢;) and %;(¢;) are
related to the crack opening displacement as shown in later. Equations (5) are virtually the
boundary conditions on the interface crack; there are o, = 0 and 7, = 0. The function
hy (&, ;) isstress o, induced at the point x; when the body force doublet with unit density
isacting at the imaginary crack site except the jth interface crack. The notation IV isthe total
number of interface cracks, and f denotes afinite-part integral proposed by Hadamard (1923)
and (Nodaand Oda, 1993). For reference, the singular integral equation formulated by means
of the continuously distributed dislocation method is shown as follows (Comninou, 1977).
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Here B,;(&;), By;(§;) aredensities of edge dislocation. The notation §- stands for the Cauchy
principle value.

In the numerical solution of equations (5), the unknown functions P (¢£;) and P,;(¢;) are
approximated by the product of the fundamental density functions wy;(&;), w2;(§;) and the
weight functions F1;(&;), F2;(&5)-

Prj(&5) + P (&) = {wa; (&) + dwa; (&) HEF, (&) + 1F2;(€5) }- (10)

Here, the fundamental density functions are chosen to express the stress field due to a single
interface crack exactly. The fundamental density function is derived from the crack opening
displacement of the interface crack and expressed as follows (Rice and Sih, 1965; Nisitani et
al., 1993):

2 1 2

o — 1+ Kk, §
3 {r 3(85) + 1wz (&) } Z 4cosh7r6\/7<a +§j> ' (11)

m=1

By using the fundamental density function, the crack opening displacements V3;(¢;) and
V>2;(¢;) are shown as following equation:

2
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where u, and u,, denote the displacement in z- and y- directions, respectively.
In this numerical analysis, the weight functions F1;(¢;), F>;(£;) are approximated by the
following power series.

M

Fl] 5] Z bngn 1 FZj (5]) = Z Cn{?—l- (13)

n=1

A set of collocation points on jth imaginary crack site is chosen as follows (Noda and Oda,
1992; Kaya and Erdogan, 1987):

zj =ajcos{nm/(M + 1)}, (n=1,...,M), (14)
where M isthe number of collocation points on jth crack.
By using the numerical method mentioned above, we obtain the 2(M x N) agebraic

equationsfor determining the coefficients b,, and ¢,,. The stressintensity factor of jth interface
crack can be directly calculated from the value of weight function at the crack tip.

K1+ iKp = {Fij(aj) +iF2j(aj) }/ma;(1 + 2ie). (15)
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Figure 2. Interaction between two interface cracks with the same length.

Table1. Convergency of the present result of interface crack [K1+i K>
(Fl-l-in)O'oo 7Ta(1+2i6). Planestress, ' = Gl/Gz = O.l, vy =12
0.3inFigure 2]

A M F1 4 F> 4 F1B B

4 1.04938 0.00428 1.02881 0.00224

6 1.04946 0.00431 1.02885 0.00222

8 1.04946 0.00431 1.02885 0.00220

0.5 10 1.04946 0.00430 1.02886 0.00218
11 1.04946 0.00430 1.02886 0.00217

12 1.04946 0.00429 1.02886 0.00216

13 1.04946 0.00429 1.02886 0.00214

4 1.22703 0.03631 1.08158 0.01137

6 1.23281 0.03938 1.08300 0.01087

8 1.23351 0.03985 1.08319 0.01100

0.8 10 1.23360 0.03992 1.08321 0.01098
11 1.23361 0.03992 1.08322 0.01097

12 1.23361 0.03993 1.08322 0.01096

13 1.23362 0.03993 1.08322 0.01095

3. Numerical results and discussion

First, the interaction problem of two interface cracks with the same length 2a subjected to
uniform tension o in the y-direction is analyzed as shown in Figure 2. The stresses 0% and
0,5 a infinity have the relation defined by (1). It is treated under plane stress condition and
v1 = v = 0.3. The stressintensity factors obtained by the present analysis are written by the
following dimensionless expressions:

K]_’A—f—’iKz,A = (FLA+iF27A)O'ZO\/7Ta(1+2i€), (16)

where the subscript A refersto the interface crack tip A.
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Table 2. Compliance with the boundary conditions
near theinterface crack tip (r 4 : Distancefrom crack
tip A in Figure 2)

I'=G1/G2=01\A=a/d=08M =14

raja oy/oy” Tuy [0}

0.01 —3.4998E-05 7.1568E-05
0.02 —1.4064E-06 3.6386E-06
0.03 2.3276E-06 —7.2903E-06
0.04 2.1751E-06 —8.2153E-06
0.05 1.4159E-06 —6.6027E-06
0.06 7.5789E-07 —4.4652E-06
0.07 3.0787E-07 —2.4732E-06
0.08 8.9595E-08 —8.3326E-07
0.09 —3.1892E-08 3.8552E-07
0.10 —2.5696E-08 1.2284E-06

To verify the accuracy of the present numerical method, we examine the convergency
of the present results and the compliance with the boundary conditions. Table 1 shows the
convergency of the results with increasing the collocation number M when A = a/d = 0.5
and 0.8, where 24 is the distance between midpoint of both cracks. The present results have
the convergency in almost 5 digits when M = 12. Table 2 shows the values of o, /07 and
Tzy/0,° Near the crack tip when A = 0.8. These values which should be zero along the crack
surface arelessthan 10~° evenwhen M = 14. Thereforeit isfound that the present numerical
method is useful to analyze the interface crack problem as well as ordinary crack problemin
homogeneous material.

In Table 3, dimensionless stressintensity factors obtained by the present method are shown
when thevaluesof I' = G1/G2 and A\ = a/d are changed systematically. The parenthesized
valuein Table 3 is the results of Saimoto (1993) and the asterisked valueis the exact solution
for the two collinear cracks with the same length in homogeneous material given by Erdogan
(1962). Asshownin Table 3, present results are in good agreement with the results of Saimoto
and especially with Erdogan’s exact solution when I = 1.0.

Next, Table 4 shows the result of three interface cracks with the same length asillustrated
in Figure 3. The parenthesized value in Table 4 is the exact solution for the three collinear
crackswith the samelength in homogeneous material given by Sih (1964). The present results
are in close agreement with the exact solution in wide range of A when I" = 1.0. Table 5
shows the dimensionless stress intensity factors for two interface cracks with the same length
when the values of Poisson’s ratio v, and v» are changed. From Table 5, it is indicated that
the effect of Poisson’sratio on F;-value of interface crack issmall.

From Tables 3, 4 and 5, F;-values are found to be almost constant in a wide range of the
ratio’ = G1/G2 = 0.001 ~ 1.0 and Poisson’'s ratio v1, 2 = 0 ~ 0.4. Then, it seems that
Fi-value of several interface cracks defined by equation (3) can be approximately estimated
from the results of collinear cracksin homogeneous material.

Finally, the stress intensity factors for any number of interface cracks with the same
length are analyzed as illustrated in Figure 4. Tables 6 and 7 show the maximum values of
stress intensity factors, F1 mex and F> max, When the values of the number of interface cracks
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Figure 3. Interaction between three interface cracks with the same length.
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Figure 4. Row of interface cracks with the same length (When the number of cracks is an even number).

N, XA =a/dandT" = G1/G, are changed systematically. As shown in these tables, it is found
that the values of Fy max increase with increasing of the number of cracks N; on the other
hand, the values of F,max convergewhen N = 2 ~ 5. In this analysis, F1 max appears at the
middle crack and F> me OCCurs at the outermost interface crack. Figure 5 shows Fy max — 1/N
relationswhenT’ = G1/G2 = 0.1and A = a/d = 1/3,1/2,2/3. From this figure, the values
of F1max are found to be nearly linear with 1/N for fixed value of A = a/d. In Tables 6, 7
and Figure 5, the limiting values for N — oo are extrapolated from the valuesfor N = 9
and N = 10 by using the linearity between F1ma and 1/N. These results are similar to the
problem of collinear cracks (Isidaand Igawa, 1993).
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Table 5. F; and F> for two interface cracks when Poisson’s ratio
is changed (Plane stress, I' = G1/G2 = 0.001, A = a/d = 0.8in
Figure 2)

V1 V2 F1 4 F> 4 i B

0.0 1.2444 0.0792 1.0883 0.0217
01 1.2444 0.0792 1.0883 0.0217
0.0 0.2 1.2444 0.0792 1.0883 0.0217
0.3 1.2444 0.0792 1.0883 0.0217
0.4 1.2444 0.0792 1.0883 0.0217

0.0 12411 0.0686 1.0868 0.0188
0.1 12411 0.0686 1.0868 0.0188
01 0.2 12411 0.0686 1.0868 0.0188
0.3 1.2411 0.0686 1.0868 0.0188
0.4 1.2411 0.0686 1.0868 0.0188

0.0 1.2384 0.0590 1.0854 0.0161
01 1.2384 0.0590 1.0854 0.0161
0.2 0.2 1.2384 0.0590 1.0854 0.0161
0.3 1.2384 0.0590 1.0854 0.0161
0.4 1.2384 0.0590 1.0854 0.0161

0.0 1.2360 0.0502 1.0843 0.0137
01 1.2360 0.0502 1.0843 0.0137
0.3 0.2 1.2360 0.0502 1.0843 0.0137
0.3 1.2360 0.0502 1.0843 0.0137
0.4 1.2360 0.0502 1.0843 0.0137

0.0 1.2340 0.0420 1.0834 0.0115
0.1 1.2340 0.0420 1.0834 0.0115
0.4 0.2 1.2340 0.0420 1.0834 0.0115
0.3 1.2340 0.0420 1.0834 0.0115
0.4 1.2340 0.0420 1.0834 0.0115

Table 6. Maximum SlIFs for any number of interface cracks with the same length 2a (Plane
stress, I' = G1/G2 = 0.1, v1 = v» = 0.3 in Figure 4)

\ a/d Fl,max FZ,max

N 13 12 2/3 1/3 12 2/3

2 1.018 1.049 1.116 0.001 0.004 0.015
3 1.031 1.079 1172 0.001 0.005 0.017
4 1.036 1.091 1.200 0.001 0.005 0.018
5 1.039 1.100 1.220 0.001 0.005 0.018
6 1.041 1.105 1232 0.001 0.005 0.019
7 1.043 1.109 1241 0.001 0.005 0.019
8 1.044 1112 1.248 0.001 0.005 0.019
9 1.045 1114 1.253 0.001 0.005 0.019
10 1.045 1116 1.258 0.001 0.005 0.019
00 1051 1132 1.296 0.001 0.005 0.019
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Table 7. Maximum SIFs for any number of interface cracks with the same length 2a (Plane
stress, I' = G1/G2 = 0.0, v1 = v» = 0.3 in Figure 4)

\ a/d Fl,max Fz,max
N 13 12 2/3 13 12 213
2 1018 1050 1117 0001 0005 0018
3 1032 1080 1175 0001 0006 0021
4 1036 1092 1203 0001 0006  0.022
5 1040 1101 1223 0001 0006  0.023
6 1042 1107 1235 0001 0006  0.023
7 1043 1111 1245 0001 0006  0.023
8 1045 1114 1252 0001 0006  0.023
9 1046 1116 1257 0001 0006  0.023
10 1046 1118 1262 0001 0006  0.023
00 1052 1134 1301 0001 0006  0.023
1.4
i G1/G2=0.1
1.3
Tooeen . 3/0=2/3 Vi=v,=0.3
——t Plane stress
% 1.
g
R SEES
1.1
1.0} a/d
O.g 1 L L N |
0 0.1 0.2 0.3 0.4 0.5
I/N

Figure5. Anexample of Fimax — 1/N relations (Plane stress, I' = G1/G2 = 0.1, 1 = v» = 0.3).

4, Conclusions

Inthispaper, thestressintensity factorsfor any number of interface crackswere calcul ated very
accurately by using the singular integral equationsof the body force method and theinteraction
effects of interface cracks were considered. The conclusions can be made as follows.

(1) Singular integral equations of the body force method were shown in comparison with
the ones of the continuously distributed dislocation method. In the numerical solution, the
unknown functionswere approximated by the fundamental density functionsand power series.
Here, the fundamental density functionswere chosen to expressthe stressfield dueto asingle
interface crack exactly. It wasfound that the method gaverapidly converging numerical results
and highly satisfied boundary conditions.

(2) The dimensionless stress intensity factors defined by equation (1) for any humber of
interface cracks were shown in tables for various spacing A = a/d and elastic parameters
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I’ = G1/G>. Theresults of two and three interface cracks with the same length werein close
agreement with the exact solution in homogeneuous material when G = G».

(3) Fr-values were found to be almost constant in a wide range of the ratio of elastic
constantsI' = G1/G, = 0.001 ~ 1.0 and Poisson’s ratio 11,2 = 0 ~ 0.4. Then, it is
possible that F;-value of several interface cracks can be approximately estimated from the
results of collinear cracksin homogeneous material.

(4) The maximum stress intensity factors Fy max for any number of interface cracks were
foundto benearly linear with 1/N (N: number of interface cracks) for fixed valueof A = a/d.
From these results, it was found that the interaction effect of interface cracks appeared in a
similar way to ordinary collinear cracks having the same geometrical condition.
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