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Abstract--In this paper, the numerical solution of singular integral equations in stress concentration 
problems is considered. The idea of the body force method stress field induced by a point force in 
an infinite body is used as a fundamental solution. Then, the problem is formulated as an integral 
equation with a singularity of the form of r-‘. In solving the integral equations, the boundary 
conditions satisfied by two types of numerical procedure are examined. Then, it is found that the 
unknown functions of body force densities should be approximated by the product of a polynomial 
and several types of fundamental density functions. The calculation shows that this latter method 
gives a smooth variation of stresses along the elliptical boundary for various geometrical and loading 
conditions. In addition, this method gives rapidly converging numerical results and highly satisfied 
boundary conditions along the entire boundary. 0 1997 Elsevier Science Ltd. 

NOTATION 

major radius of elliptical hole 
minor radius of elliptical hole 
rectangular coordinate 
(x, y) coordinate where point force is applied 
eccetric angle of ellipse 

4: eccetric angle of ellipse for the point (t, 9) 

1. INTRODUCTION 

As a result of computer developments, various numerical methods useful for stress analysis 
have been developed. Among those methods, singular integral equation method has been 
applied to many crack problems (Erdogan and Gupta, 1972; Erdogan et al., 1973; Sih, 
1973 ; Theocaris and Ioakimidis, 1977 ; Boiko and Kerpenko, 1981; Erdogan, 1983a, b; 
Kaya and Erdogan, 1987; Fujimoto, 1990; Noda and Matsuo, 1991). In the analysis, a 
crack is represented by a distribution of infinitesimal dislocations in a plate without a crack. 
Then, the problem is reduced to singular integral equations having Cauchy-type singular 
kernel. This method, however, has hardly been applied to other than the boundary of the 
crack, such as hole, notch and inclusions. 

On the other hand, the body force method, which was originally proposed by Nisitani 
(Nisitani, 1967, 1974; Nisitani and Chen, 1987), has been applied to various stress con- 
centration problems. In solving the two dimensional notch problems, the body force method 
uses the stress field of a point force in an infinite plate as a fundamental solution. In the 
numerical solution, the concept of the fundamental density function was originally 
proposed, and the unknown function of the body force density was approximated by the 
products of “fundamental density functions” and “weight functions”. Here, the fun- 
damental density function is an exact density of body force to express a single elliptical 
hole exactly. The weight function is chosen to be a “step function”, which takes a constant 
value along each segment into which a whole boundary is discretized ; each constant value 
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of the step function is determined from the boundary condition at the mid-point of each 
segment (Nisitani, 1967, 1974 ; Nisitani and Chen, 1987). 

In the previous papers, the numerical solutions of the singular integral equation of the 
body force method in 2D crack problems have been discussed (Noda et al., 1989, 1990, 
1991, 1992, 1993; Noda and Oda, 1992). In those papers, unknown functions of the body 
force densities have been approximated by using polynomials instead of the step functions. 
It has been found that a new method gives the results of better accuracy with shorter CPU 
time compared with the conventional body force method using the step functions. 

Initially, in this paper, the singular integral equation of the body force method is 
shown in the analysis of stress concentration problem. Then, the numerical solution of the 
conventional body force method is discussed by applying two types of numerical procedure. 
In the former method “A”, the known weight functions are approximated as continuous 
functions by using polynomials instead of step functions. The results show that method A 
has better convergence rate than the conventional body force method ; however, it is found 
that this former method cannot completely satisfy the boundary condition along the 
boundaries. On the other hand, in method “B”, eight kinds of fundamental density functions 
are newly defined and applied. The results show that introducing the new fundamental 
functions can satisfy the boundary conditions along the entire boundary. It is found that 
this latter method yields a smooth variation of stresses along the boundary with higher 
accuracy compared with other methods. 

In this paper, some simple problems are taken as examples of stress concentration 
problems in order to explain the numerical solutions and results. However, the numerical 
method developed here can be applied to various stress concentration problems and 
especially suited for elliptical boundaries ; for example, arbitrarily distributed elliptical 
holes (Noda and Matsuo, 1995a, b), elliptical inclusions (Noda and Matsuo, 1996a, b), and 
a row of semi-elliptical notches (Noda et al., 1996). The idea of the use of several types of 
“fundamental densities” may be applied to other than the boundary of ellipse. 

2. NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATION OF THE 
CONVENTIONAL BODY FORCE METHOD (METHOD A) 

2.1. Numerical solution using the singuluv integral equation ofconoentional body force method 
Consider an infinite plate under uniform tension having two elliptical holes as shown 

in Fig. 1. Here, an infinite plate with two elliptical holes [X = f (d+ a cos f3), y = b sin U] 
subjected to tension is taken as a sample problem to explain the numerical solution. The 
problem can be formulated in terms of singular integral equation by using a Green’s 
function: that is, the stress field at an arbitrary point (x,~) when point forces act sym- 
metrically on another two points (+ l, y) in an infinite plate. The formation is based simply 
on the principle of the superposition. Here, (5, q) is a point in the (X,-Y) coordinate system 
where point forces are applied. Based on the body force method, the problem is reduced to 
determining the density of body force, that is, embedded point forces in an infinite plate, 
along the prospective boundary of the holes in the infinite plate without holes. 

-(1/2){p,*(@ COS& +pX0) sin 0,) + 
s 

K:;(4, @pT($) ds 
I- 

+ 
i 

KLZ($, O)p,X4) ds = - (0: cos’ 0” + a.: sin* 0,) 
r 

where 
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Fig. 1. Two circular holes in an infinite plate under tension. 

-d< = asin$d$, dy = bcos4&$, ds = J a2 sin2 4 + b2 cos’ 4 d$, tan 8, = (u/b) tan 8. 

Here, I denotes the boundary for an elliptical boundary and B, is the angle between the x- 
axis and the normal direction at the point (x,_y) on the ellipse. In eqn (l), the unknown 
functions are the body force densities [pZ($),p,*(~#~)l distributed along the prospective 
boundaries in the x, y-directions. Here, 4 is the angle that specifies the points where 
body forces are distributed. Equations (1) are the boundary conditions at the imaginary 
boundary ; that is, on = 0 and z,,~ = 0. It should be noted that the body forces lie within the 
prospective cavities. The first terms of eqns (1) represent the stress due to the body force 
distributed on the “minus boundary” (Nisitani, 1967). The “minus boundary” means the 
imaginary boundary composed of the internal points that are an infinitesimally small 
distance from the initial boundary. Taking Krj(4,S) for example, the notation means the 
normal stress rrn induced at the point when the body forces with unit density in the x- 
direction is acting symmetrically to the y-axis along the infinitesimal arc length on the 
elliptical boundary. These equations include the singular terms having the singularity of 
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the form l/{sin(O-@)/2} (Nisitani and Chen, 1987). In this case, 8 = 4, the integration 
should be interpreted as the meaning of Cauchy’s principle values. 

In the conventional body force method, the unknown functions in eqns (1) pF($), 
p,*(4) are expressed by the following equations, 

where dF,, dF,, are the components of the resultant of the body force in the x, y directions 
acting on an infinitesimal arc length ds, respectively. Here, n,(4), n,.(4) are the X, J 
components [ = (cos Q,,, sin &,)] of the normal unit vector, respectively, at the point (x, y). 
They are expressed by the following equations. 

n,(O) = 
bcosqb 

n,(4) = 
a sin 4 

a2 sin’ 4 + b2 cos2 4 ’ a2 sin” 4 + 6’ cos2 C$ ’ 
(3) 

where pX(@), p,(4) are the body force densities of the unit projected length in the X, _V 
directions (Nisitani, 1967, 1974; Nisitani and Chen, 1987). 

(4) 

Using the expression of eqns (4), the singular integral eqns (1) become the following 
equations, 

- UP){p,(4) ~0s’ e. +~,(4> sin2 do) + 
i 
2n K,F,“(4> @p.x(4>b cm 4 d4 
0 

s 2n 

+ K~(c$, d)p,(#)a sin 4 dd, = - (a: cos2 BO +oF sin’ 0,) 
0 

2n 

-(l/2)(-P,(@+P,.(@} sin~ocos&+ Kf(4,@~~(4)bcos4d4 

s 0 

+ 

s 

I* KX (4, Q)p,(4)a sin 4 d$ = - (0,” -a:) sin O. cos B. (0 G e G 7~). (5) 

It should be noted that n,(4), n,(4) are regarded as a kind of “fundamental densities” 
to approximate p:(4), p,*(4) very accurately. They are actually the exact densities of the 
body forces for the problem of an isolated elliptical hole in an infinite plate under tension 
(Nisitani, 1967, 1974; Nisitani and Chen, 1987). In the conventional body force method, 
the elliptical boundary is divided into small segments, then the unknown weighting functions 
p,(4), p,(4) have been approximated by step functions, which take a constant value along 
each segment. While in method A, polynomials have been applied to approximate the 
unknown functions as continuous function. Now, from the symmetry of the problem, the 
following expression can be used, 

P.,.W = r$ a,&(4) ( - xi-2 G e G 742) 

t,($> = cos((n/2-4)(n-1)) (1 d n d M/2) 
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&(4> = cos(W-4)(n- 1)). (7) 

In preliminary studies using the conventional body force method, it has been found that 
the weight function ~~(4) is discontinuous at 8 = +rc/2; therefore, as shown in eqn (6), 
~~(4) is expressed individually in the two ranges --n/2 d 13 < 742 and 742 d 8 < 3x/2. 
Using the approximation method mentioned above, we obtain the following system of 
linear equations for the determination of the coefficients a,, b,, c,, d,,. The number of 
unknown coefficients is 2M. The collocation points are set as given in eqn (8) to the 
determination of the coefficients. 

6’,=;(L-0.5) 1 <L<M 

“Q anAn + b&J = - (a: cos’ B. + a; sin’ 0,) 

n$, (a,C,, + b&J = - (CT,” -a,“) sin 8, cos 4, 

(8) 

(9) 

s 42 
A, = - (1 /2jsn(e) ~0~2 8, + _n,2 KE(h Wcos &n(4) d$ (1 G n G M/2) 

s 3np 

A, = - (lj2)sn(e) COS* eO + K:;($, e)bcos &sn($) d$ (M/2+ 1 < IZ B M) 
n/2 

s 

Zn 
B, = -(1/2)t,@)sin*&+ G:(+, @a sin 4%&N d4 

0 

s 

n/2 

c, = (i/2)t,(e) sine0 cos 8, + K:f:(4, fQbcos &n(4) d4 (1 < n G M/2) 
-n/2 

s 

3~12 

c, = (i/2)t,(e) sine, cos e. + KX+, e)b cos d%(4) d4 (M/2+ 1 Q n G M> n,2 

s 

2n 

D, = -(l/2)t,(e)sin8,c0se0+ E’($J, @sin 4~44) d@ (10) 
0 

For collocation points, evenly spaced intervals of the Br have been used in both analysis 
methods A and B as shown in eqns (8) and (17). On the other hand, in crack problems, it 
is well-known that setting more collocation points near crack tips is advantageous in 
generating high accuracy of the results. Some other sets of collocation points of eqn (8) 
have also been tried and they are found to cause insignificant difference from the present 
results. 
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Table 1. Convergence of maximum stress by method A (8: = 0, cry = I) 

(a) cl:h = 1 d:a = 3 
Present analysis B.F.M. 

A4 KA K, M K.4 KB 

4 3.02246 2.99350 4 3.01615 3.00564 
8 3.02018 2.99241 8 3.01823 2.99917 

12 3.02000 2.99246 16 3.01921 2.99571 
16 3.02001 2.99240 32 3.01967 2.99395 

48 3.01982 2.99336 
J; (48-32) 3.020 1 2.9922 

Ling 3.020 2.992 

(b) a/h = 2 diu = 3 
Present analysis 

M KA KB M 
B.F.M. 

K, KB 

4 5.04461 5.04732 4 5.04264 5.05363 
8 5.04493 5.04717 8 5.04383 5.05035 

12 5.04485 5.04719 16 5.04440 5.04868 
16 5.04486 5.04716 32 5.04467 5.04785 

48 5.04475 5.04758 
a (48-32) 5.0449 5.0470 

Table 2. Convergence of maximum stress by method A 
(0: = 1,u: = 0) 

u/h = 1 d/a = 3 
Present analysis B.F.M. 

M 4 M K 

4 2.82543 4 2.82074 
8 2.82456 8 2.82273 

12 2.82432 16 2.82386 
16 2.82455 32 2.82445 

48 2.82464 
co (48-32) 2.82503 

Ling 2.825 

2.2. Numerical results using the singular integral equation of conventional body force method 
Table 1 shows the convergence of stresses at points A and B when a/b = 1, d/a = 3, 

cx cc = 0, cr; = 1 (Table 1 (a)) and when a/b = 2, d/a = 3, a: = 0, cr,” = 1 (Table 1 (b)) with 
increasing collocation number, in comparison with the conventional body force method 
using step-function to approximate the unknown function p,(4), p,(4). Table 2 also shows 
the convergence of stresses at point C when a/b = 1, d/a = 3, 0.: = 1, a.7 = 0. The results 
of Ling (1948) are shown in Tables 1 and 2. These tables indicate that the present analysis 
has a better convergence rate than the conventional body force method. In order to 
investigate how accurately the boundary conditions are satisfied (cr, = 0, z,, = 0), boundary 
stresses CJ,,, or, z,, along the hole when the collocation number M = 16 have been indicated 
as shown in Tables 3 and 4. These tables show that the boundary conditions are not satisifed 
very well, especially around the point C. It should be noted that the residual stresses are 
skew-symmetrically distributed with respect to the point C. 

The reason why the boundary conditions cannot be satisfied completely is as follows. 
In both method A and the conventional body force method, only the fundamental density 
functions n,(4), n,(4), namely, the exact densities of the body forces for an isolated elliptical 
hole have been used. They are symmetrical to the point C, and, in addition, since n,(4) 
approaches zero when (b approaches f 7c/2, the body force p:(4) also approaches zero and, 
therefore, the residual shear stresses cannot be satisfied in the solution shown by eqns (2)- 
(10). 
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Table 3. Compliance of the boundary condition by method A 
(up = o,u; = 1) 

6 (deg.) 
alb=l,d/a=3,M=16 

0, 0, 
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0 3.02001 -0.000317 0.000000 
20 2.55390 -0.000333 -0.000345 
40 1.37677 -0.000139 -0.000179 
60 0.04621 0.000788 0.001175 
80 -0.80503 0.002580 0.009009 
86 -0.88051 - 0.000609 - 0.006905 
88 - 0.90409 -0.000093 -0.013961 
90 -0.91981 0.000000 -0.015511 
92 -0.92579 0.000093 -0.013961 
94 -0.92017 0.000609 -0.006905 

100 -0.79335 -0.002580 0.009009 
120 0.10783 -0.000788 0.001175 
140 1.43530 0.000139 -0.000179 
160 2.56053 0.000333 - 0.000345 
180 2.99240 0.000370 0.000000 

Table 4. Compliance of the boundary condition by method A 
(u? = 1, up = 0) 

a/b = 1, d/a = 3, M = 16 
6 (deg.) 0, 0” *?I, 

0 -0.33660 0.000646 0.000000 
20 - 0.04927 0.000666 0.00069 1 
40 0.81904 0.000278 0.000358 
60 1.96456 -0.001577 -0.002349 
80 2.72493 -0.005158 0.018011 
86 2.72493 0.001219 0.013805 
88 2.79911 -0.001865 0.027910 
90 2.82455 0.000000 0.031079 
92 2.83067 0.001865 0.027910 
94 2.79846 -0.001219 0.013805 

100 2.70069 0.005158 0.018011 
120 1.85017 0.001577 -0.002349 
140 0.72476 -0.000278 0.000358 
160 -0.06917 -0.000666 0.000691 
180 -0.32415 -0.000640 0.000000 

3. NEW SOLUTION OF SINGULAR INTEGRAL EQUATION OF THE BODY FORCE 
METHOD (METHOD B) 

3.1. Definition of new fundamental density functions 
New fundamental density functions for the body forces in the x-direction w,(4) and 

the ones in the y-direction w,,(4) are defined by the following expression (Noda and Matsuo, 
1992, 1993, 1995). 

wxI (4) = n,(4)/ cos 4 

w,2 (4) = n,(4) tan 4 
wx3(+) = 44) 
wx4 ($1 = n,(4) sin 4 

wyl (4) = n,(4)/ sin 4 

wy2(4) = n,(4) 
wy3 (4~) = n,(4) cot 4 

wy4 (4) = n,(4) cos 4. (11) 
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WXI: 
x-symmetric 
y-skew- 

symmetric 

. 
wx3: 

; GE2 I’ )_J- 
x-symmetric 
y-symmetric 

‘. I’ 
case 

wx4: 
x-skew- 

symmetric 
y-symmetric 

sinecose 

1 c0se . - 
Q 94: 

, ’ oc x , ;:;;;ytric 

’ -l-d ” 

symmetric 

sinecose 

Fig. 2. New fundamental density functions for circular boundary 

The fundamental density functions defined by eqn (11) are shown in Fig. 2 for a circular 
boundary. 

The unknown functions of the body force densities for elliptical holes p:(4), p_;(4) can 
be expressed by a linear combination of the fundamental density functions defined by 
eqns (11) and the weight functions P~,(c#I), pxz($), . ,py4(4), as shown in the following 
equations. 

PX@) = PXI (o)wxl(+> + Px2 ($)w.r, (4) + PY3 (6bJx3 (6) + Px4 (6)wx4 ($1 

P,X$) = Pyl ($hyl (4) +P,*(rp)w,,2(~>+P,,(~)w?.3(~)+P,4(~)w,4(~) (12) 

Using the eqns (12), p:(4), p,*(4) which are defined over 0 < $ < 2n, can be expressed by 
the weight functions pX, (c#I), pxZ(~), . , pp4(4). These weight functions are symmetric with 
respect to the axes C#I = 0, 1~12, n, 37112. 

PX~) = Pxl(6)Wx,($) + Px3 (#>wx3 (4) 

P,*(4) = P?2 (6>w,2 (4) + PY4 (d))wJ.4 (6) (13) 

3.2. New solution of the singular integral equation of the body force method 
Using the expressions in eqns (1 l)-( 13), the singular integral eqn (1) is reduced to the 

following eqns (14) instead of eqn (5) 
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-(1/2)[{P,,(~)/cos~+P,3(~)) CO? eO + { py2 (e) + py4 (e) cos e} sin* t&l 

s 

2z 

+ K~~(~,e)(p,,(~)/cos~+p,3(~)}bcos~d~ 

0 
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cm $}a sin 4 d4 = - (a: cos’ 8, + CT; sin2 e,) 

-u/2)~-~~xm/ cos e+ px3 (0)) + {py2 (e) + py4 (0) ~0s e>i sin 0, ~0s e. 

+ s 02~~~(~,~~~~,,(~~/c~~~+~~3(~~}bc~~dd~ 

s 2n 

+ ~7(+, 0) h2w + py4 (4) ~0s 41 asin4dd = -(o,“-~,“)sinO,cos8,. (14) 
0 

In the present analysis, polynomials have been used to approximate the unknown 
functions as continuous function. Now, from the symmetry of the problem, the following 
expression can be applied. 

t,(4) = cos {2(n- l)$}. (16) 

Using the approximation method mentioned above, we obtain the following system of 
linear equations for the determination of the coefficients a,, b,, c,, d,,. The number of 
unknown coefficients is 2M. The collocation points are set as given by eqn (17). 

8, = $L-0.5) i d L G M (17) 

n;l (wt, +bJn + GG + d,D,) = - (a,” cos2 8, + a; sin2 0,) 

M/2 
nT, (a,& + b,I;, + c,G, + d,H,) = - (ay” - a:) sin O. cos 8, (18) 

j 

2n 

A, = -(i/2pn(e)~0~2eo/~0se+ G(4>ek(4)bd4 
0 

B,, = - (1/2)f,@) COS2 8, + 
s 
02'K::(~,e)~.($)bcos)d~ 

s 

2n 

c, = - (1/2)t,(O) sin2 e. + ~~~(~~eV&#+~sidW~ 
0 

D, = - (1/2)f,(e) sin’ e. cos e+ Kz($, O)t,(4)u sin 4 cos 4 d4 
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Table 5. Convergence of unknown functions by method B (0.: = 0, u: = 1) 

Q (deg.) A4 PIa 

a/h= l,a/d= l/3 

PI, P.7 , 

0 4 -0.8914 2.9828 -0.0301 0.0528 
8 -0.8899 2.9787 -0.0401 0.0615 

12 -0.8899 2.9787 -0.0401 0.0615 

20 4 -0.8972 2.9875 
8 -0.8971 2.9853 

12 -0.8971 2.9853 

40 4 -0.9120 2.9994 
8 -0.9135 3.0000 

12 -0.9135 3.0000 

60 4 - 0.9288 3.0129 0.0180 0.0457 
8 - 0.9288 3.0137 0.0197 0.0419 

12 - 0.9288 3.0137 0.0197 0.0419 

80 4 -0.9398 3.0217 0.0338 0.0436 
8 -0.9373 3.0211 0.0312 0.0375 

12 -0.9373 3.0211 0.0312 0.0375 

90 4 -0.9413 3.0229 0.0360 0.0433 
8 -0.9384 3.0221 0.0326 0.0370 

12 -0.9384 3.0221 0.0326 0.0369 

- 0.0276 
~ 0.0282 
- 0.0282 

- 0.0062 
- 0.0026 
- 0.0026 

0.0517 
0.0579 
0.0579 

0.0489 
0.0498 
0.0498 

s 2n 

E,, = -(1/2)t,(B)sin8,cos8,/cos~+ KZ($, W,($)bd4 
0 

i 

2n 

F, = - (1/2)&(B) sin B0 cos 8, + C’(#>W,(~)bcos#d$ 
II 

G,, = -(l/2)&(8) sin 8, cos l& + 
s 

“‘=KI(~,H)t,(b)asindrdd 

s 

2n 

RI, = -(1/2)t,(0)sin8,cos8,cos8+ K::($I, @t,(q5)a sin 4 cos 4 dq5. (19) 
0 

The stresses at an arbitrary point are represented by a linear combination of the 
coefficients a,, b,, c,, d,, and the influence coefficients corresponding to A,, B,, . . , H,,. 

Using the numerical solution mentioned above, we will obtain the stress concentration 
factors and the stress distribution along the boundaries. 

3.3. Numerical results using the new solution of singular integral equation of the body force 
method 

Tables 5 and 6 show the convergence of unknown functions pXX(4), pY2(4), pX,(q5), 
pY4(4) along the prospective boundary of circular hole with increasing the collocation 
number. The present results have the convergency to the fourth digit when A4 = 8. Figures 
3 and 4 show the variation of the unknown functions in comparison with the results of 
conventional body force method, where only two unknown functions pX(4), p,(4) are 
approximated by using the stepped functions when M = 12, 24. In the present results four 
unknown functions of the body force densities, pX3($), pY2($), pX,(q5), py4(~) seem to 
approximate the continuous density distributions very well because the present results of 
M = 8 and M = 12 coincide with each other to the fifth digits. On the other hand, two 
unknown functions p,.(4), p,($) do not converge with an increasing number of collocation 
points as shown in Figs 3 and 4. The reason is that pX(4), p,.(4) cannot represent the actual 
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Table 6. Convergence of unknown functions by method B (a: = 1, u; = 0) 
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0 (deg.) M Px, 

b/a= l,a/d= l/3 

Pr, 

0 4 2.1196 -0.8476 0.0704 -0.1267 
8 2.1776 -0.8419 0.0764 -0.1394 

12 2.1776 -0.8419 0.0764 -0.1394 

20 4 2.7894 -0.8564 0.0539 -0.1247 
8 2.7893 -0.8534 0.0548 -0.1338 

12 2.7893 -0.8534 0.0548 -0.1338 

40 4 2.8140 -0.8786 0.0122 -0.1196 
8 2.8160 -0.8796 0.0068 -0.1209 

12 2.8160 -0.8796 0.0068 -0.1209 

60 4 2.8420 -0.9038 0352 -0.1138 
8 2.8418 -0.9050 -0.0377 -0.1081 

12 2.8418 - 0.9050 -0.0377 -0.1082 

80 4 2.8603 -0.9203 -0.0661 -0.1100 
8 2.8565 -0.9194 -0.0621 -0.1008 

12 2.8565 -0.9194 -0.0621 -0.1008 

90 4 2.8628 - 0.9226 - 0.0704 -0.1095 
8 2.8584 -0.9212 - 0.0652 -0.0998 

12 2.8584 -0.9212 - 0.0652 -0.0998 

PY2 PY 

3: ./ 

2 
.s Present analysis (four unknown functions:p,s,py2,p,I,Py4) 

s 2 Stepped function (two unknown functions:p,,p,) 
2 
z 
.S 
s 

1 

% 
2 0 
-2 
> 

-1 

0 
a/b= 1 

20 40 60 80 100 120 140 160 180 ald= 113 

8 (deg.) 
Fig. 3. Variation of unknown functions by method B in comparison with the conventional body 

force method ((T: = O,op = 1). 

density distribution p,*(4), p,*(d) enough, especially near 8 = n/2, because of the fundamental 
density functions n,(4), n,(4) approaches zero when 0 = 7c/2. 

To investigate the satisfaction of the boundary conditions (0, = 0, z,~ = 0), the stresses 
CJ~, err, z,, along the elliptical boundary have been investigated as shown in Tables 7 and 8. 
The values of cr,, z,,~ which should be 0 along the boundary are less than lo-‘, even when 
M = 8. In the present analysis, therefore, the boundary requirements can be highly satisfied 
along the entire boundary by the use of new fundamental functions. 

As another example, two ellipsoidal cavities in an infinite body under tension as shown 
in Fig. 5 is solved in a similar way using another Green’s function, that is, the stress field 
at an arbitrary point (r, z) when ring forces act symmetrically on another two points (+ p, i) 
in an infinite body (Nisitani and Noda, 1984). Table 9 shows the results of stress erg at 
points A and B in comparison with the results of Tsuchida et al. (1976) when a/b = 1, 
a,” = 1, 0,” = 0. The method B yields rapidly converging numerical results for the wide 
range of u/d. The present results and Tsuchida’s results coincide with each other to the 
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3 Px3 
./ _._ 

z 
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2 2. 

Present analysis (four unknown functions:p+3.py2.pxt.p~) m m 
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z Stepped function (two unknown functions:p,,p,) 
.z b 1 - . 1 - 
3 
LI 0 PXl +933 da- 

2 0 
"m 
s- _ ' PY4 

PY 
b/a = 1 
ald = l/3 

-1. ’ 
\ Py2 

0 20 40 60 80 100 120 140 160 180 

0 (deg.) 

Fig. 4. Variation of unknown functions by method B in comparison with the conventional body 
force method (up = 1, up” = 0). 

Table 7. Compliance of the boundary condition by method B (0: = 1, CT: = 0) 

0 (deg.) 

0 

40 

80 

90 

100 

140 

180 

4 3.0188 -9.4 x 1om4 
8 3.0197 -2.9 x 10m6 

12 3.0197 -4.9 x 1omy 

4 1.3759 8.1 x 10m4 
8 1.3747 -2.0 x lom6 

12 1.3747 2.1 x lo-” 

4 -0.8154 -3.7 x lo-” 
8 -0.8135 -2.4 x IO-’ 

12 -0.8135 1.1 x 1o--9 

4 -0.9191 -3.1 x 1om4 
8 -0.9188 - 8.6 x lo-’ 

12 -0.9188 - 1.3 x lo-.9 

4 -0.7812 -7.3 x 10 -j 
8 -0.7829 -3.7 x lo-* 

12 -0.7829 1.5 x lo-‘” 

4 1.4358 - 1.1 x 10-j 
8 1.4379 2.4 x lO-6 

12 1.4379 -2.5 x 10m9 

4 2.9929 2.0x 10 3 
8 2.9908 5.4 x 10m6 

12 2.9908 8.5 x lOmy 

0 
0 
0 

-5.0 x 1om4 
1.2x 1om4 

-l.3x1o-9 

8.7 x 10m4 
5.6 x IO-’ 

-2.7 x 10m9 

1.2 x tom3 
3.7 x 10m6 
6.0 x 10m9 

1.0 x IO_) 
7.0 x lo- ’ 

-3.2 x lOmy 

- 1.3 x 1om3 
2.8 x 10mh 

-2.9 x 10m9 

0 
0 
0 

third significant digit. The results when a/b = 1, CT,” = 0, a_? = 1 was shown in the previous 
paper (Noda and Matsuo, 1995). The magnitude and position of maximum stress of two 
ellipsoidal cavities under tension are shown in Table 10 (CT? = 0, a,” = 1) and Table 11 
(07 = 1, CJ_? = 0) for various values of a/b. 

4. CONCLUSION 

In this paper, singular integral equations of the body force method were formulated 
by using the stress field of a point force as a fundamental solution. Then, then numerical 
solution was considered in the analysis of stress concentration problems. 
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Table 8. Compliance of the boundary conditions by method B (UT = 1, CT;” = 0) 
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6 (deg.) 
b/a = 1, a/d = l/3 

M 0, on 5”, 

0 

40 

80 

86 

88.6 

90 

94 

100 

140 

180 

4 - 0.9376 -1.4x 10-j 0 
8 -0.9391 3.7 x 1o-b 0 

12 -0.9391 5.8 x lo-9 0 

4 0.6548 - 1.2 x 10-j 
8 0.6567 2.5 x 1O-6 

12 0.6567 -2.5 x lo-’ 

4 2.7413 
8 2.7385 

12 2.7384 

4 2.8190 
8 2.8174 

12 2.8174 

5.9 x 1om4 
3.1 x lo-’ 

- 1.3 x lo-9 

5.9 x 1o-4 
1.1 x 1o-6 
1.3 x 1om9 

4 2.8264 
8 2.8255 

12 2.8255 

4 2.8233 
8 2.8228 

12 2.8228 

4 2.7910 
8 2.7917 

12 2.7917 

5.4 x lo-4 
1.1 x lo-6 
1.7 x lo-9 

5.0 x 1o-4 
1.1 x 1o-6 
1.6 x 1O-9 

3.6 x 1O-4 
6.8 x lo-’ 
7.7 x lo-‘o 

4 2.6735 1.3 x 1o-4 
8 2.6761 5.1 x lo-* 

12 2.6761 -1.9x lo-10 

4 0.5597 
8 0.5567 

12 0.5567 

4 -0.8381 
8 - 0.8350 

12 -0.8350 

1.6 x 10-j 
- 3.0 x 1om6 

3.0 x 1o-9 

-3.0 x 1om3 
-6.7 x 1O-6 
-1.0x lo-* 

7.7 x lo-4 
-1.6x 1O-6 

1.6 x 10m9 

1.3 x lo-3 
- 7.3 x lo-’ 

3.2 x 1O-9 

-1.7x 10-j 
3.8 x lo-” 

-4.6 x 1O-9 

- 1.8 x lo-’ 
-4.5 x lo-6 
-6.7 x 10m9 

- 1.9 x 1o-3 
4.7 x 10m6 

-7.1 x 1o-9 

-1.9x lo-) 
-4.1 x 1o-6 
-4.9 x 10-s 

- 1.6 x 1O-3 
-8.8 x lo-’ 

3.8 x 10m9 

1.9 x 10-j 
-3.5 x 1o-6 

3.4 x 1om9 

0 
0 
0 

In the conventional body force method, the unknown functions of the body force 
densities has been approximated by the products of the fundamental density functions and 
weight functions. Here : 

(a) the fundamental density function is an exact density of body force to express a single 
elliptical hole ; and 
(b) the weight function is chosen to be a “step function”, which takes a constant value 
along each segment into which a whole boundary is discretized. 

In this paper, to solve the integral equations accurately, the boundary conditions 
satisfied by two types of numerical procedure (methods A and B) are examined. The 
conclusions are summarized as follows : 

(1) In the former method A, the known weight functions were approximated as continuous 
functions by using polynomials instead of step functions. The results show that method A 
has better convergence rate than the conventional body force method. However, it was 
found that this former method cannot completely satisfy the boundary condition along the 
boundaries. The reason is that the conventional fundamental density functions cannot 
represent real density distribution enough near the apex of elliptical boundary. 
(2) In the later method B, eight kinds of fundamental density functions were newly defined 
and applied ; then, the unknown functions of the body force densities were approximated 
by a linear combination of the new fundamental density functions and weight functions. 
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< 
A d a 

4 

Fig. 5. Two ellipsoidal cavities in an infinite body subjected to up and a”. 

Table 9. Results of two spherical cavities in an infinite body under tension 
(u/b = ],a: = 1,~: = 0) 

aId 

A($= -90”) B ($ = 90”) 
Present Present 
analysis !Tsuchida analysis Tsuchida 

0 2.1820 2.182 2.1820 
0.1 2.1817 2.18 2.1818 
0.2 2.1798 2.18 2.1812 
0.3 2.1730 2.17 2.1803 
0.4 2.1572 2.16 2.1795 
0.5 2.1292 2.13 2.1796 
0.6 2.0954 2.09 2.1809 
0.7 2.0939 2.09 2.1840 
0.8 2.2395 2.24 2.1889 
0.9 2.8130 2.1960 

2.182 
2.18 
2.18 
2.18 
2.18 
2.18 
2.18 
2.19 
2.19 

Table 10. Results of two ellipsoidal cavities in an infinite body under tension (0: = 0, u_? = 1) 

bid 
alb 

0 
K0 

l/3 l/2 213 
ti (deg.) K ti (deg.) K ti (deg.) K 

l/2 1.4403 0.2 1.4365 0.7 1.4285 2.0 1.4159 
1 2.0455 0.3 2.0200 1.2 1.9800 2.4 1.9394 
2 3.3130 0.6 3.1515 1.5 3.0269 2.1 2.9492 
4 5.8678 0.6 5.1063 1.2 4.9734 1.5 4.8634 
8 10.9706 0.5 8.9554 0.8 8.6904 0.8 8.5604 

The results show that introducing the new fundamental functions can satisfy the boundary 
conditions along the entire boundary. It is found that this latter method yields a smooth 
variation of stresses along the boundary with higher accuracy compared with other methods. 
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Table 11. Results of two ellipsoidal cavities in an infinite body under tension (a,” = 1, u: = 0) 
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bid 0 
alb K,0 

l/3 112 213 
$ (deg.) K, ti (deg.) K, + (deg.) K, 

1 2.1819 90.0 2.1799 90.0 2.1795 90.0 2.1827 
l/2 2.5373 90.0 2.5369 90.0 2.5366 90.0 2.5368 
l/4 2.7404 -90.0 2.7409 - 90.0 2.7449 -90.0 2.7611 
l/8 2.8221 90.0 2.8210 90.0 2.8213 90.0 2.8214 

(3) As an example, the interaction of two ellipsoidal cavities in an infinite body is analyzed. 
The results of two spheroidal cavities coincide with Tsuchida’s results to the third significant 
digit. The exact stress concentration factors are indicated in tables with varying the shape 
and space. It is found that the method B yields rapidly converging numerical results for the 
wide geometrical range. 
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