「材料」(J. Soc. Mat. Sci., Japan), Vol. 46, No. 4, pp. 419-424, Apr. 1997 論 文

不等長界面き裂の応力拡大係数の干渉効果と弾性定数の影響

小田和広*野田尚昭**

Interaction of Interface Cracks with Unequal Length and Effect of Elastic Constants on Stress Intensity Factor

by

Kazuhiro ODA* and Nao-Aki NODA**

This paper deals with interaction problems of interface cracks with unequal length. The problems are analyzed by using the singular integral equations on the basis of the body force method. In the numerical analysis, the unknown function of body force density is approximated by the product of the fundamental density function and power series. The stress intensity factor of interface cracks is systematically calculated for various crack dimensions, spacing and elastic constants. The interaction effect of these variables is discussed by comparing the present results with the results of ordinary crack problems in a homogeneous material. The calculation shows that the effect of elastic constants of dissimilar materials on the dimensionless stress intensity factor F_1 for interface cracks is small and F_1 -value of interface cracks is almost the same as that of ordinary cracks with the same geometrical condition.

Key words : Stress intensity factor, Interface crack, Interaction effect, Elastic constant, Singular integral equation, Body force method

緒 言

1

最近,構造物の高機能化などを狙いとして材料の複合 化,接合化などの技術が進んでいる.それらの材料の普 及および使用分野の拡大に伴い、異種接合材、複合材の 界面の強度評価が大きな問題になっている. Williams, Erdogan, および England により指摘されたように, 界面上に生じるき裂(界面き裂)は均質材のき裂と異な り、応力の振動特異性や変位のオーバーラッピングが生 じるため、それらの特異応力場を規定するパラメータの 解析が重要な課題になっており、多くの研究が進められ ている.なかでも実際上重要と考えられる界面き裂が複 数存在する場合の干渉問題は,まず,Riceらຶにより等 長・等間隔の界面き裂群の問題が、Erdogan により半 無限長さの界面き裂干渉問題の解析がなされている、等 長・等間隔の界面き裂群の問題については、Comninou により界面き裂先端の接触域を考慮した解析もなされて いる. 最近では、才本が等長二界面き裂の問題を、また、 著者らは等長の二個および三個の界面き裂の問題の解析 を行っている.しかしながら、これまでの研究では、干 渉問題としてより一般的なき裂長さの異なる界面き裂が 存在する場合を詳細に検討した例は少なく、その応力拡 大係数を実用に便利なように考察した研究は見当たらな いようである.

そこで本研究では,長さの異なる界面き裂の問題を取扱い,体積力法の特異積分方程式を用いて界面き裂の応力拡大係数を,き裂の寸法,間隔および材料の弾性定数

を系統的に変化させて解析を行う.得られた結果に基づいて均質材の応力拡大係数との比較を行い,その干渉効 果および材料定数の影響について考察する.

2 解 析 方 法

Fig.1に示すような異なる弾性係数およびポアソン比 G_1 , ν_1 , G_2 , ν_2 を持つ接合半無限板に,遠方で一様応力 σ_y^{σ} , τ_{xy}^{σ} および $\sigma_{x,1}^{\sigma}$ (材料 1) あるいは $\sigma_{x,2}^{\sigma}$ (材料 2) が作用する場合を考える.このとき, $\varepsilon_{x,1}^{\sigma} = \varepsilon_{x,2}^{\sigma}$ の関係 から, $\sigma_{x,1}^{\sigma}$, $\sigma_{x,2}^{\sigma}$, σ_y^{σ} の間には次の関係があるものとする.

$$\sigma_{x,2}^{\infty} = \frac{1}{1+\chi_2} \bigg[\Gamma(1+\chi_1) \sigma_{x,1}^{\infty} + |3-\chi_2 - \Gamma(3-\chi_1)| \sigma_y^{\infty} \bigg] \quad (1)$$

ここで,
$$\Gamma, \kappa_m (m=1,2)$$
は次式で与えられる.

$$\Gamma = \frac{G_2}{G_1}, \ k_m = \begin{cases} \frac{3-\nu_m}{1+\nu_m} & (Plane \ stress)\\ 3-4\nu_m & (Plane \ strain) \end{cases}$$
(2)

+ 原稿受理 平成 8 年 5 月 23 日 Received May 23, 1996

* 正 会 員 德山工業高等專門学校機械電気工学科 〒745 徳山市久米高城, Dept. of Mech. and Elec. Eng., Tokuyama College of Tech., Kume,

** 正 会 員 九州工業大学工学部設計生産工学科 〒804 北九州市戸畑区仙水町, Dept. of Mech. Eng., Kyushu Inst. of Tech., Tobata-ku, Kitakyushu, 804

Tokuyama, 745

この接合半限板の接合面に,複数の界面き裂が存在す る場合を例に取り,解析方法を説明する.結城らの複素 応力拡大係数の定義によれば,界面上の応力分布は次式 で表される.

$$\sigma_y + i\tau_{xy} = \frac{K_1 + iK_2}{\sqrt{2\pi r}} \left(\frac{r}{2a_j}\right)^{i\varepsilon} \tag{3}$$

ここで, εは2つの材料の組み合わせにより決まるバイ メタル定数であり,次式で与えられる.

$$\varepsilon = (1/2\pi) \ln [(G_2x_1 + G_1)/(G_1x_2 + G_2)]$$
 (4)
長さ 2 a_j の界面き裂が $j=1, ..., M$ 個存在するとき、 j
番目の界面き裂の境界条件を表す特異積分方程式は、界
面き裂のない接合半無限板中の界面上に分布させた g
方向引張型集中力対およびせん断型集中力対の分布密度
 $P_i(\xi_i) P_a(\xi_i) を表知関数とする次式で表される$

$$\begin{aligned} &-\pi\beta \frac{dP_{2j}(x_j)}{dx_j} + \int_{-a_j}^{a_j} \frac{P_{1j}(\xi_j)}{(\xi_j - x_j)^2} d\xi_j \\ &+ \sum_{\substack{k=1\\k+j}}^{M} \int_{-a_k}^{a_k} h_y(\xi_k, x_j) P_{1k}(\xi_k) d\xi_k = -\sum_{m=1}^{2} \frac{G_m(1 + x_m)}{x_m - 1} \frac{\pi}{C} \sigma_y^{\infty} \\ &- \pi\beta \frac{dP_{1j}(x_j)}{dx_j} + \int_{-a_j}^{a_j} \frac{P_{2j}(\xi_j)}{(\xi_j - x_j)^2} d\xi_j \\ &+ \sum_{\substack{k=1\\k+j}}^{M} \int_{-a_k}^{a_k} h_{xy}(\xi_k, x_j) P_{2k}(\xi_k) d\xi_k = -\sum_{m=1}^{2} G_m \frac{\pi}{C} \tau_{xy}^{\infty} \\ &\qquad (j = 1, 2, \cdots, M) \\ C = \frac{2G_1(1 + \alpha)}{(1 - \beta^2)(x_1 + 1)} = \frac{2G_2(1 + \alpha)}{(1 - \beta^2)(x_2 + 1)} \\ &\alpha = \frac{G_2(x_1 + 1) - G_2(x_2 + 1)}{G_2(x_1 + 1) + G_1(x_2 - 1)}, \\ &\beta = \frac{G_2(x_1 - 1) - G_1(x_2 - 1)}{G_2(x_1 - 1) + G_1(x_2 - 1)} \end{aligned}$$
(6)

ここで式(5)は界面き裂の境界条件 $\sigma_y=0$, $\tau_{xy}=0$ に相当 しており, f は発散積分の有限部分を取ることを意味 している. 関数 $h_y(\xi_k, x_j)$ などは注目している j 番目の き裂以外のき裂となる仮想境界上の点 $\xi_k(k=1,2,\cdots M, k \neq j)$ に単位大きさの集中力対を分布させたとき点 x_j に生じる応力 σ_y であり, 下添字 m=1,2 はそれぞれ材 料 1,2 を表す. また, α および β は Dunders のコンポ ジットパラメータである. 本解析では, 標準型集中力対 の分布密度 $P_{1,j}(\xi_j)$, $P_{2,j}(\xi_j)$ を次のように基本密度関数 $w_{1,j}(\xi_j)$, $w_{2,j}(\xi_j)$ と重み関数 $F_{1,j}(\xi_j)$, $F_{2,j}(\xi_j)$ の積で近似する. $P_{1,j}(\xi_j)+iP_{2,j}(\xi_j)$

 $L_{1j}(\varsigma_j) = L_{2j}(\varsigma_j)$

$$= \{ w_{1j}(\xi_j) + \iota w_{2j}(\xi_j) \} \{ F_{1j}(\xi_j) + \iota F_{2j}(\xi_j) \}$$
(7)

$$F_{1j}(\xi_j) \cong \sum_{n=1}^{N} a_n \xi_j^{n-1}, \ F_{2j}(\xi_j) \cong \sum_{n=1}^{N} b_n \xi_j^{n-1}$$
(8)

ここで *N*, は, *j* 番目の界面き裂の仮想境界上にとる選 点数である.界面き裂の場合,基本密度関数として界面 き裂のき裂縁変位をもとにした次式を用いる.^(6),10),11)

$$\sum_{m=1}^{2} \left\{ \frac{\kappa_{m} - 1}{1 + \kappa_{m}} w_{1j}(\xi_{j}) + i w_{2j}(\xi_{j}) \right\}$$
$$= \sum_{m=1}^{2} \frac{1 + \kappa_{m}}{4\cosh(\pi\varepsilon)} \sqrt{a_{j}^{2} - \xi_{j}^{2}} \left(\frac{a_{j} - \xi_{j}}{a_{j} + \xi_{j}} \right)^{i\varepsilon}$$
(9)

境界条件を満足させる選点は、き裂の両端で密となるよ

うに配置する.

以上のような離散化手法により、式(3)で表される特異 積分方程式を解くことによって重み関数 $F_{1,1}(\xi_{2})$, $F_{2,2}(\xi_{2})$ が決定される. き裂先端での重みの値より、次式で表さ れる結城らの定義に基づく界面き裂の応力拡大係数を得 ることができる.

 $K_1 + iK_2 = \{F_{1j}(a_j) + iF_{2j}(a_j)\} \sqrt{\pi a_j} (1 + 2i\varepsilon)$ (10)

3 解析結果および考察

本研究では,界面に2個および3個の長さの異なるき 裂が存在する場合の問題を取扱い,その干渉効果および 弾性定数の影響について検討した.

はじめに Fig. 2 に示す長さの異なる 2 個の界面き裂の 問題の解析を行った.まず,本解析法の解析精度の確認 のために,解析結果の収束性を Table I に示す.ここで $F_{1,4}$ は Fig. 2 に示す界面き裂 A 点の無次元化応力拡大係 数で,選点数の比 $N_1: N_2$ はき裂寸法比 $a_1: a_2$ と同じに した。Table よりわかるように, $F_{1,4}$ および $F_{2,4}$ の値は $N_1=10$ 程度で有効数字 5 桁程度収束しており,干渉の 大きい $\lambda=0.9$ の場合でも4 桁程度の収束性が得られて いる.他のき裂寸法,弾性定数で解析した結果も Table I と同程度の収束性が得られており,本解析法の有効性 が確認される.

次に剛性比 $G_2/G_1=10.0$ の場合にき裂寸法比 a_2/a_1 および $\lambda=(a_1+a_2)/d$ を系統的に変化させ、界面き裂 A 点における無次元応力拡大係数 F_{1A} , F_{2A} の解析を行っ た結果を Table II に示す. ここで()の値は均質材 (G_2 $/G_1=1.0$)の厳密解である. Table II より、 $G_2/G_1=10.0$ で解析した界面き裂の F_1 の値は、均質材の F_1 とほぼ 同じであることがわかる. Fig. 3 には、剛性比 G_2/G_1 =1.0, 10.0, 100.0 の場合の F_{1A} と λ との関係を示す. 実 線は均質材の場合の厳密解を示している. これらの結果

Fig. 2. Two interface cracks with unequal length.

Table I. Convergency of numerical results. $(G_2/G_1=10.0, a_2/a_1=2.0, \nu_1=\nu_2=0.3, \text{Plane stress})$

$\lambda = \frac{a_1}{2}$	$\frac{a_2}{d}$	0.	.5	0.9		
N_1	N_2	F _{1A}	F _{2A}	F _{1A}	F_{2A}	
2	4	1.0772	0.0059	1.4833	0.0768	
4	8	1.0793	0.0066	1.6061	0.1301	
6	12	1.0793	0.0066	1.6260	0.1430	
8	16	1.0793	0.0066	1.6293	0.1457	
10	20	1.0793	0.0066	1.6299	0.1462	
12	24	1.0793	0.0066	1.6300	0.1463	
14	28	1.0793	0.0066	1.6299	0.1463	

から、 F_1 に対する材料の剛性比の影響は少なく、その 干渉効果は均質材の場合とほぼ同様であることがわかる. 次に長さの異なる3個の界面き裂の干渉問題(Fig. 4) において、剛性比 $G_2/G_1 = 10.0$ の場合に、き裂寸法比 a_2/a_1 および $\lambda = (a_1 + a_2)/d$ を系統的に変化させ、き裂 の A 点および B 点における無次元化応力拡大係数 F_{14} , F_{24} , F_{1B} , F_{28} の解析を行った結果を Table III および

Table IV に示す. ここで()の値は均質材 ($G_2/G_1=1.0$) の厳密解である. Fig. 5 には、剛性比 $G_2/G_1=1.0$, 10.0, 100.0 の場合の $F_{1,4}$ と λ との関係を示す. Table IV, Table V および Fig. 5 より界面き裂が 3 個の場合も 2 個 の場合と同様に F_1 の値に対する材料の剛性比の影響は 少なく、その干渉効果はき裂寸法比 a_2/a_1 およびき裂 間隔 $\lambda = (a_1 + a_2)/d$ によってほとんど決定されることが わかる.

1.80 $G_2/G_1 = 1.0$ 1.70 a₂/a₁=3 $G_2/G_1 = 10$ Δ 1.60 $G_2/G_1 = 10^2$ 1.50 $a_{2}/a_{1}=1$ ա[™] 1.40 1.30 $a_{2}/a_{1}=1/3$ 1.20 1.10 1.00⁴ 0.2 0.4 0.6 0.8 0 1

Fig.6には、剛性比の影響を詳しく調べるために、干

 $\lambda = (a_1 + a_2)/d$

渉効果の大きい $\lambda=0.8$ の場合に剛性比 G_2/G_1 を大きく 変化させたときの F_{14} の値を,均質材の値 F_1 と比較し て示す. Fig. 6 中の実丸●は界面き裂が2 個の場合であ り、白丸〇は3 個の場合の結果をプロットしたものであ

Fig. 4. Three interface cracks with unequal length.

Fig. 5. Relation between F_{1A} and λ when $G_2/G_1 =$ 1.0, 10.0, 100.0 (Three interface cracks, Plane stress, $\nu_1 = \nu_2 = 0.3$).

Table II. Dimensionless stress intensity factors F_{14} and F_{24} at crack tip A for two interface cracks of length $2a_1$ and $2a_2$ $(K_1 + iK_2 = (F_{14} + iF_{24})\sigma_y^{\omega}\sqrt{\pi a_1}(1+2i\varepsilon)$, $G_2/G_1 = 10.0$, $\nu_1 = \nu_2 = 0.3$, Plane stress).

<u> </u>										
a_2/a_1	· · · · · · · · · · · · · · · · · · ·		F_{1A}			1.1.1		F_{2A}		
λ	1/3	1/2	1	2	3	1/3	1/2	1	2	3
0.1	1.0002	1.0006	1.0014	1.0024	1.0030	0.0000	0.0000	0.0000	0.0000	0.0000
	(1.0003)	(1.0006)	(1.0013)	(1.0023)	(1.0029)					
0.2	1.0015	1.0027	1.0059	1.0100	1.0125	0.0000	0.0000	0.0001	0.0002	0.0002
	(1.0015)	(1.0026)	(1.0057)	(1.0097)	(1.0121)	1. S.				
0.3	1.0039	1.0068	1.0143	1.0240	1.0297	0.0002	0.0003	0.0007	0.0010	0.0012
	(1.0039)	(1.0066)	(1.0138)	(1.0232)	(1.0287)					
0.4	1.0082	1.0138	1.0281	1.0461	1.0566	0.0006	0.0010	0.0019	0.0029	0.0034
	(1.0080)	(1.0133)	(1.0272)	(1.447)	(1.0548)					
0.5	1.0154	1.0252	1.0495	1.0793	1.0965	0.0015	0.0024	0.0044	0.0066	0.0077
	(1.0149)	(1.0244)	(1.0480)	(1.0769)	(1.0936)					
0.6	1.0277	1.0440	1.0827	1.1291	1.1557	0.0036	0.0054	0.0095	0.0137	0.0159
	(1.270)	(1.0428)	(1.0804)	(1.1255)	(1.1513)					
0.7	1.0501	1.0766	1.1366	1.2066	1.2467	0.0082	0.0120	0.0197	0.0277	0.0318
the second second	(1.0489)	(1.0747)	(1.1333)	(1.2015)	(1.2406)					1
0.8	1.0958	1.1395	1.2332	1.3393	1.4006	0.0204	0.0283	0.0433	0.0582	0.0661
	(1.0941)	(1.1370)	(1.2289)	(1.3329)	(1.3929)			- · · ·		
0.9	1.2182	1.2974	1.4559	1.6299	1.7311	0.0643	0.0827	0.1149	0.1462	0.1630
	(1.2182)	(1.2966)	(1.4532)	(1.6254)	(1.7255)					

る. 図より, F_{14}/F_I の値は剛性比の増加とともに大き くなり, $G_2/G_1=10^2$ 程度で一定の値に収束しているこ とがわかる. したがって, $G_2/G_1\ge10^2$ の結果は, 一方 の材料を剛体として解析した場合と考えて差し支えない ものと思われる. また, き裂の寸法比 a_2/a_1 が大きく なると F_{14}/F_I の値は大きくなる傾向があるが, その変 化は最大でも 2 % 程度 $(a_2/a_1\le 3)$ である.

最後にポアソン比の影響を検討した結果を Table V および Table VI に示す. き裂寸法比が $a_2/a_1=1.0$, 剛 性比が $G_2/G_1=2.0$, 1000 の場合に, μ および ν_2 を 0.0 ~0.4 まで変化させて解析を行った. Table V は界面き 裂が 2 個の場合の結果であり, Table VI は 3 個の場合 の結果である. Table よりわかるように, ポアソン比 が変化しても、 F_{1A} の値の変化は小さい.通常よく採用 されている $\mu_1 = \mu_2 = 0.3$ の結果と比較すると、 $\mu_1 < 0.3$ の 結果は若干大きめの値となる傾向があり、 $F_{1A} \circ \sigma_1 = \mu_2$ =0.3の結果との差は最大で2%程度(Table VI で G_2 / $G_1 = 1000, \mu = 0.0$ の場合)である.また、剛性比が大 きいときは、 μ_2 の影響はほとんどなくなることがわか る.

これらの結果から,結城らの定義に基づく界面き裂の 無次元化応力拡大係数 F₁ は,材料の組み合わせにほと んど影響を受けず,同一の幾何形状を持つ均質材のき裂 の F₁ より数% 程度の誤差で推定できると考えられる.

4 結

本研究では、接合半無限板中の異なる長さの界面き裂

言

Table III. Dimensionless stress intensity factors F_{1A} and F_{2A} at crack tip A for three interface cracks of length $2 a_1$, $2a_2$ and $2a_2$ ($K_1 + iK_2 = (F_{1A} + iF_{2A}) \sigma_y^{\infty} \sqrt{\pi a_1} (1+2i\varepsilon)$, $G_2/G_1 = 10.0$, $\nu_1 = \nu_2 = 0.3$, Plane stress).

an la	le contraction de la c		F			F ₂₄				
a2/a1			I'IA		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u>1'2A</u>		
λ	1/3	1/2	1	2	3 .	1/3	1/2	1	2	3
0.1	1.0007	1.0012	1.0026	1.0046	1.0059	0.0000	0.0000	0.0000	0.0000	0.0000
	(1.0006)	(1.0011)	(1.0025)	(1.0045)	(1.0056)					
0.2	1.0027	1.0048	1.0107	1.0189	1.0239	0.0000	0.0000	0.0001	0.0001	0.0001
	(1.0026)	(1.0046)	(1.0103)	(1.0182)	(1.0231)		1.1			
0.3	1.0065	1.0114	1.0249	1.0439	1.0555	0.0001	0.0001	0.0002	0.0002	0.0002
	(1.0063)	(1.0110)	(1.0241)	(1.0424)	(10536)	· · · · ·			and the second	
0.4	1.0127	1.0218	1.0469	1.0819	1.1036	0.0002	0.0003	0.0005	0.0007	0.0008
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	(1.0122)	(1.0210)	(1.0453)	(1.0791)	(1.1001)					$= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
0.5	1.0225	1.0380	1.0794	1.1369	1.1733	0.0004	0.0007	0.0014	0.0020	0.0020
	(1.0217)	(1.0366)	(1.0766)	(1.1322)	(1.1675)					
0,6	1.0386	1.0633	1.1278	1.2167	1.2741	0.0011	0.0018	0.0034	0.0048	0.0051
	(1.0371)	(1.0609)	(1.1232)	(1.2092)	(1.2649)				المراجع والمراجع	المراجعين
0.7	1.0665	1.1053	1.2031	1.3371	1.4257	0.0026	0.0042	0.0080	0.0112	0.0121
	(1.0638)	(1.1012)	(1.1956)	(1.3254)	(1.4113)		1			
0.8	1.1219	1.1840	1.3341	1.5382	1.6770	0.0066	0.0104	0.0191	0.0272	0.0298
	(1.1166)	(1.1764)	(1.3214)	(1.5191)	(1.6539)				ale sa	1. 1. 1. N. 1.
0.9	1.2686	1.3791	1.6322	1.9730	2.2125	0.0205	0.0313	0.0548	0.0787	0.0891
	(1.2565)	(1.3623)	(1.6064)	(1.9370)	(2.1697)					

Table IV. Dimensionless stress intensity factors F_{1B} and F_{2B} at crack tip B for three interface cracks of length $2a_1$, $2a_2$ and $2a_2$ $(K_1 + iK_2 = (F_{1B} + iF_{2B})\sigma_y^{\omega}\sqrt{\pi a_2}(1+2i\varepsilon)$, $G_2/G_1 = 10.0$, $\nu_1 = \nu_2 = 0.3$, Plane stress).

a_2/a_1	F_{1B}						F_{2B}				
2	1/3	1/2	1	2	3	1/3	. 1/2	1	2	3	
0.1	1.0030	1.0025	1.0017	1.0012	1.0010	0.0000	0.0000	0.0000	0.0000	0.0000	
	(1.0030)	(1.0025)	(1.0016)	(1.0012)	(1.0011)		ta dina.				
0.2	1.0128	1.0106	1.0073	1.0052	1.0048	0.0000	0.0000	0.0000	0.0000	0.0000	
	(1.0124)	(1.0103)	(1.0070)	(1.0051)	(1.0046)						
0.3	1.0305	1.0255	1.0176	1.0128	1.0117	0.0010	0.0009	0.0007	0.0005	0.0005	
	(1.0296)	(1.0247)	(1.0171)	(1.0124)	(10113)						
0.4	1.0583	1.0492	1.0347	1.0254	1.0230	0.0032	0.0028	0.0021	0.0015	0.0015	
	(1.0564)	(1.0476)	(1.0335)	(1.0246)	(1.0223)						
0.5	1.0997	1.0849	1.0611	1.0453	1.0409	0.0077	0.0067	0.0049	0.0035	0.0031	
	(1.0967)	(1.0822)	(1.0591)	(1.0438)	(1.0396)						
0.6	1.1615	1.1387	1.1023	1.0771	1.0694	0.0162	0.0142	0.0106	0.0077	0.0067	
	(1.1568)	(1.1347)	(1.0991)	(1.0746)	(1.0672)			1.14.2.2.			
0.7	1.2572	1.2234	1.1693	1.1304	1.1172	0.0329	0.0293	0.0223	0.0165	0.0144	
	(1.2505)	(1.2174)	(1.1644)	(1.1264)	(1.1135)					1 - Sec 1	
0.8	1.4204	1.3703	1.2899	1.2304	1.2073	0.0700	0,0630	0.0490	0.0376	0.0327	
	(1.4116	(1.3621)	(1.2825)	(1.2238)	(1.2012)						
0.9	1.7752	1.6963	1.5638	1.4748	1.4314	0.1814	0.1658	0.1285	0.1074	0.0938	
	(1.7678)	(1.6885)	(1.5527)	(1.4645)	(1.4211)						

Table V. Effect of Poisson's ratios ν_1 and ν_2 on $F_{1,A}$ and F_{2A} for two interface cracks $(a_2/a_1=1.0, \lambda=(a_1+a_2)/d=0.8$, Plane stress).

		G ₂ /G	=2.0	$G_2/G_1=1000$			
\boldsymbol{v}_1	<i>V</i> ₂	F_{1A}	F_{2A}	F _{1A}	F _{2A}		
	0.0	1.2305	0.0224	1.2443	0.0791		
	0.1	1.2312	0.0275	1.2443	0.0791		
0.0	0.2	1.2320	0.0322	1.2444	0.0791		
	0.3	1.2329	0.0365	1.2444	0.0792		
	0.4	1.2337	0.0404	1.2444	0.0792		
	0.0	1.2296	0.0150	1.2411	0.0685		
	0.1	1.2301	0.0201	1.2411	0.0685		
0.1	0.2	1.2308	0.0247	1.2411	0.0685		
	0.3	1.2315	0.0288	1.2411	0.0685		
	0.4	1.2321	0.0327	1.2411	0.0685		
	0.0	1.2291	0.0083	1.2383	0.0588		
	0.1	1.2294	0.0133	1.2384	0.0589		
0.2	0.2	1.2299	0.0179	1.2384	0.0589		
	0.3	1.2304	0.0219	1.2384	0.0589		
	0.4	1.2309	0.0257	1.2384	0.0589		
	0.0	1.2289	0.0020	1.2360	0.0501		
	0.1	1.2291	0.0070	1.2360	0.0501		
0.3	0.2	1.2293	0.0115	1.2360	0.0501		
	0.3	1.2297	0.0155	1.2360	0.0501		
	0.4	1.2300	0.0192	1.2360	0.0501		
	0.0	1.2290	0.0039	1.2340	0.0419		
	0.1	1.2289	0.0011	1.2340	0.0419		
0.4	0.2	1.2290	0.0056	1.2341	0.0419		
	0.3	1.2292	0.0096	1.2341	0.0420		
	0.4	12295	0.0133	1.2341	0.0420		

の問題(Fig. 2, Fig. 4)を取扱い,その応力拡大係数を 体積力法の特異積分方程式を用いて高精度に解析し,そ の干渉効果について考察した.結果をまとめると以下の ようになる.

(1) 2 個および3 個の不等長界面き裂の応力拡大係数 の解析を行い,得られた結果を均質材 (G_2/G_1 =1.0)の 結果と比較して示し (Table II~IV, Fig. 3, 5),その干 渉効果を検討した.結城らの定義に基づく界面き裂の無 次元化応力拡大係数 F_1 は,き裂寸法比 a_2/a_1 およびき 裂間隔 $\lambda = (a_1 + a_2)/d$ が等しい均質材中のき裂の F_1 と ほぼ同じであった.

(2) 材料の剛性比の影響を検討するために、 G₂/G₁

Table VI. Effect of Poisson's ratios ν_1 and ν_2 on $F_{1.4}$ and $F_{2.4}$ for three interface cracks $(a_2/a_1=1.0, \lambda=(a_1+a_2)/d=0.8$, Plane stress).

and the state of the state of the state		and the Article of Article of Article		and a sugar state of the second	and the second		
		G₂/G	1=2.0	$G_2/G_1 = 1000$			
v ₁	<i>V</i> ₂	<i>F</i> _{1A}	F _{2A}	F_{1A}	F_{2A}		
	0.0	1.3230	0.0116	1.3644	0.0395		
	0.1	1.3280	0.0130	1.3644	0.0395		
0.0	0.2	1.3299	0.0154	1.3644	0.0395		
	0.3	1.3313	0.0175	1.3644	0.0395		
	0.4	1.3335	0.0196	1.3644	0.0395		
	0.0	1.3229	0.0071	1.3549	0.0340		
· ·	0.1	1.3243	0.0097	1.3549	0.0340		
0.1	0.2	1.3276	0.0115	1.3549	0.0340		
	0.3	1.3286	0.0137	1.3549	0.0340		
	0.4	1.3303	0.0156	1.3550	0.0340		
	0.0	1.3219	0.0039	1.3469	0.0290		
	0.1	1.3225	0.0063	1.3469	0.0290		
0.2	0.2	1.3238	0.0085	1.3469	0.0290		
	0.3	1.3238	0.0108	1.3469	0.0290		
	0.4	1.3277	0.01207	1.3470	0.0290		
	0.0	1.3214	0.0009	1.3403	0.0245		
	0.1	1.3218	0.0033	1.3404	0.0245		
0.3	0.2	1.3220	0.0054	1.3404	0.0245		
	0.3	1.3230	0.0074	1.3404	0.0245		
	0.4	1.3241	0.0093	1.3404	0.0245		
	0.0	1.3215	0.0018	1.3349	0.0204		
	0.1	1.3214	0.0005	1.3349	0.0204		
0.4	0.2	1.3216	0.0026	1.3350	0.0204		
	0.3	1.3267	0.0053	1.3350	0.0204		
	0.4	1.3225	0.0063	1.3350	0.0204		

=1.0~10⁵ まで変化させて解析を行った(Fig. 6). その 結果,界面き裂の F_1 と均質材のき裂の F_1 との比は, 剛性比の増加とともに大きくなり, $G_2/G_1=10^2$ 程度で 一定の値に収束することがわかった. き裂の寸法比 a_2 $/a_1$ が大きくなるとその値は大きくなる傾向があるが, その変化は最大でも2%程度 $(a_2/a_1 \leq 3)$ であった.

(3) ポアソン比の影響を検討するために、材料1,2 のポアソン比 μ , $\nu_2 \in 0.0 \sim 0.4$ まで変化させ解析を行っ た (Table V, VI).解析結果から、 F_1 の値に対するポ アソン比の影響は小さいことがわかり、通常よく採用さ れている $\mu_1 = \mu_2 = 0.3$ の結果と比較すると、 $\mu_1 < 0.3$ の結 果 ($G_1 < G_2$)は、 F_1 が若干大きめの値となる傾向があり、 $\mu_1 = \mu_2 = 0.3$ の結果との差は最大で2%程度であった.

(4) 上記(1)~(3)の結果から,結城らの定義に基づく界 面き裂の無次元化応力拡大係数 F₁ は,材料の組合わせ にほとんど影響を受けず,同一の幾何形状を持つ均質材 のき裂の F₁ より数% 程度の誤差で推定できるものと考 えられる.

参考文献

- 1) L. Williams, Bull. Seism. Soc. Am., 49, 199 (1959).
- 2) F. Erdogan, J. Appl. Mech., 30, 232 (1963).
- 3) F. Erdogan, J. Appl. Mech., 32, 403 (1965).
- 4) F. Erdogan, J. Appl. Mech., **32**, 829 (1965).
- 5) H. England, J. Appl. Mech., 32, 400 (1965).
- 6) J. R. Rice and G. C. Sih, J. Appl. Mech., 32, 418 (1965).
- 7) D. Schmueser and M. Comninou, Int. J. Solids. Structures, 15, 927 (1979).
- 8) X. Lu and M. Comninou, Int. J. Mech. Sci., 32, 1011 (1990).

424

- 9)才本明秀,九州大学学位論文, p 114 (1993).
- 10)野田尚昭,小田和広,樋口 健,田中 篤,日本機械学会 論文集,A-60,2213 (1994).
- 11) 西谷弘信,才本明秀,野口博司,日本機械学会論文集,A -59, 68 (1993).
- 12) J. Dunders, J. Appl. Mech., 28, 103 (1961).
- 13) 結城良治, "界面の力学"(1993) 培風館.
- 14) T. Yokobori, M. Ichikawa and M. Ohashi, Report of the

Research for Strength and Fracture of Materials, 1, 33 (1965) Tohoku University.

- 15)石田 誠, "き裂の弾性解析と応力拡大係数", p. 186(1976) 培風館.
- 16) F. Erdogan and B. Wu, J. Mech. Phys. Solids, 41, 889 (1993).
- 17) 石田 誠, 日本機械学会論文集, A-49, 137 (1983).