ﬁl‘ International Journal of Fracturel02: 371-392, 2000.
i~ © 2000KIluwer Academic Publishers. Printed in the Netherlands.

Interaction among a row of ellipsoidal inclusions

NAO-AKI NODA, HITOSHI HAYASHIDA and KENJI TOMARI
Department of Mechanical Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan,
e-mail: noda@mech.kyutech.ac.jp

Received 14 January 1999; accepted in revised form 4 August 1999

Abstract. In this paper the interaction among a row 8f ellipsoidal inclusions of revolution is considered.
Inclusions in a body under both (A) asymmetric uniaxial tension inctdé@ection and (B) axisymmetric uniaxial
tension in thez-direction are treated in terms of singular integral equations resulting from the body force method.
These problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type
singularities, where unknowns are densities of body forces distributed indhe directions. In order to satisfy

the boundary conditions along the ellipsoidal boundaries, the unknown functions are approximated by a linear
combination of fundamental density functions and polynomials. The present method is found to yield rapidly
converging numerical results for interface stresses. When the elasti€katip E|/Ep; > 1, the primary feature

of the interaction is a large compressive or tensile stsgssn the interfac® = 0. WhenE, = E|/Ey < 1,a

large tensile stresg or o; on the interfac® = %n is of interest. If the spacing/d and the elastic rati& /E ;

are fixed, the interaction effects are dominant when the shapearétiis large. For any fixed shape and spacing

of inclusions, the maximum stress is shown to be linear with the reciprocal of the squared number of inclusions.

Keywords: Elasticity, body force method, singular integral equations, numerical analysis, three-dimensional analy-
sis, stress concentration factor, ellipsoidal inclusion.

1. Introduction

It is known that most engineering materials contain some defects in the form of cracks, voids,
inclusions, or second-phased particles. To evaluate the effect of defects on the strength of
structures, it is necessary to know the stress concentration of those defects. As a model of
defects elliptical and ellipsoidal inclusions are important because they cover a wide variety
of particular cases, such as line, circular, and spherical defects. In previous studies a sin-
gle ellipsoidal inclusion (Atsumi, 1960; Edwards, 1952; Eshelby, 1957, 1959), 2 D elliptical
inclusions (Donnel, 1941; Nisitani, 1968; Shioya, 1970; Isida—lgawa, 1994; Noda—Matsuo,
1997), and 3D symmetric inclusion problems (Miyamoto, 1957; Nisitani, 1963; Eubank,
1965; Shelly—Yu, 1966; Goree-Wilson, 1967; Noda—Matsuo, 1995) are treated by several
authors. However, few studies are made for 3D asymmetric problems except for spherical
cavities under asymmetric uniaxial tension treated by Tsuchida (1976, 1978) et al. and two
ellipsoidal inclusions treated by Noda—Tomari—Matsuo (1999).

This paper deals with an interaction among a rowcéllipsoidal inclusions of revolution
under (A) asymmetric and (B) axisymmetric uniaxial tension, which are formulated using the
body force method coupled with a singular integral equation approach. Then, the interaction
effects will be discussed by varying the shape, spacing and elastic ratio of the ellipsoidal
inclusions.
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Figure 1. Problem and coordinate system; (a) Uniaxial tension perpendicular to the line of the inclusions
(x-direction); (b) Uniaxial tension in the line of the inclusionsdirection); (c) Hydrostatic tension in a plane
perpendicular to the line of the inclusionsy(plane); (d) Pure shear in a plane perpendicular to the line of the
inclusions {y-plane); (e) Coordinate system.
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2. Method of analysis

Consider an infinite body having a row of ellipsoidal inclusions in the-direction. Method
of analysis will be explained when uniaxial tension is applied asymmetrically in-theection
as shown in Figure 1 (a). This problem is composed of the superposition of two auxiliary loads;
biaxial tension in thery-plane shown in Figure 1(c), and pure shear in.theplane shown
in Figure 1(d). Rectangular and cylindrical coordinatesy, z) and (r, 8, z) are defined in
Figure 1(e). Here(&,n,¢) and (p, ¢, ¢) are rectangular and cylindrical coordinates that
specify the points where body forces are distributed. In this paper, the solution of the problem
of pure shear in they-plane will be mainly explained assuming the number of inclusigris
even. WhenV is odd, the problem can be solved in the same way except that at the innermost
inclusion the boundary condition should be considered in the rarge/0< 7 /2.

The body force method (Nisitani, 1967) is used to formulate the problem as a system of sin-
gular integral equations. Here, the fundamental solutions are $Késsk 7 .. .| Kl K,f;)

nno nt »
and displacement fieldk -, K, ..., K K,\?) at an arbitrary poinfr = a cos vy, z =

d+2di —1D +bsinyy,i =1~ N/Z]then two ring forces acting symetrically to the
planez = 0[p = a coSay,{ = £{d + 2d(k — 1) + b sinog}, k = 1 ~ N/2]. In this case
the boundary conditions only an> 0 can be considered due to symmetry. Since each ring
force has a magnitude proportional to cas @ sin 2p along the circumference (Noguchi
et al., 1987; Noda—Tomari, 1998), the problem can be formulated in terms of singular integral
eguations by using the fundamental solutions due to ring forces in two infinite badiestd

"I'. Here, the infinite body M’ has the same elastic constants as those of the m@gpx vy,)

and the infinite body !’ has the same ones as those of the inclusigfisv,). The integral
equations are expressed in terms of unknown body force densjfiga;), o;,, (i), ol ()

P (), pa (o), pk () distributed at the infinitesimal argade ds specified by the angle.
These equations are

— o (i) cOS Yo + ply (i) Sin Yo}

— 2o} (Wi) cos o + ol (W) Sin Yo}

N/2 /2 - N/2 /2 ;
+> f Koy (e Wi plg () ds + > [ Kooy (o, Y1) g () dls
k=1 —/2 k=1 —/2

N/2 N/2

/2 /2
+> / L SEMCTRTAVAACAL DY) / Koo (e, ¥10) pf (et dis
k=1"~7/2 k=1 ~7/2

N/2 /2 N/2 /2

-> f Ko (o Y piy (o) ds = Y [ Kops (e Y1) o () dls

k=1""7/2 k=1""7/2

= —0> cog Yo COS D (1)
— o5 ) + P (W)}

N/2 /2

N/2 /2
+ Z/ Koy (e, i) plyg (i) ds + Z Kooty (e, i) iy (eze) dis
k=1"~7/2 k=1"~7/2
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N/2

N2 q)2 - /2 .
+> / K g @i ¥i) oy (o) ds — > / K (o, Y1) pf (o) dis
k=17 ~7/2 k=1"~7/2

N/2 /2 N/2 /2

-3 / 2K,f§.<ak,w,»>p;.(ak> ds — > [ Koo ¥i) (o) ds
-/ k=1

k=1 —7/2
= 1,5 SiN Y;0 COS Yo SiN 2
—3{=p}y () Sin Yio + ply (¥i) €OS Yio)
—3{=p}\ () sin Yo + o} (i) COS Yio)

N/2 /2 N/2 /2
A F
+> / Ko (@, Y1) pfyg (o) ds + ) / K i @, Ui Py () ds
k=1Y"7/2 1/ -m/2
N/2 xp2 . N2 qp2
+> / Ko (@, ¥) plyg () ds = > / Koo (e, ¥r) pfy (o) ds
k=17 "7/2 k=1""7/2

N/2

N/2 /2 e /2 E

-3 / K (et i) oy (o) ds — ) / K i, i) pl (o) ds
k=1"~7/2 k=1"~7/2
= 0, sin Y0 COS ;o COS D

) N/2

/2
> / Kol @, Y py () ds + ) / Kot @, i) pj g () ds
—/2 k=1 —/2

k=1

N/2 /2 . N/2 /2
z F,
Y Ko Yoy () ds = Y / K (e, Y1) o (or) ds
k=17 ~7/2 k=17 ~7/2
N/2  q/2 N/2 . q/2 v
F z
o K Yo ds =Y | K, (e, yi) ol (o) ds
k=1""7/2 k=1 "7/2

= (0,° —vyo,)r/Ey COS D

N/2 xp2 N2 q)2
r F
> / K @, )y () ds + / K i e, i) oy (et) dis
k=1Y"7/2 1 Y —7/2
N/2 /2 . N/2 /2
. Fy
+> / K oiar (@, U)oy () ds — > / K oy (e, ¥r) pfy (o) ds
k=1 "7/2 1/ -m/2
N2 n)2 N2 qp2 .
F, -
> Ko yop@dds =Y [ Ko, i) ol () ds
k=1 ~7/2 k=1 ~7/2

= —Tro;2(1+ v/ Ey - sin

(2)

®3)

(4)

(5)
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N/2 /2 N/2 /2
F; F,
> / Kooy @ W) prag () ds + Y | K,y (o, i) piyg (o) ds
k=17 "7/ k=17 "7/2
N/2 n/2 . N/2 . q/2
+> / Koo @, Yi)plyy () ds — D f K, (@, i) pji (@) ds
k=1""7/2 k=17 "7/2
N/2 /2 N/2 /2 F
F, z
-3 / Ko (e, Y pp () ds =Y [ Ky (e, ¥i) pf (o) dis
k=1 "7/2 1 -7/2
= —vy(0° +05°)z/Ey COS D (6)
i=1~ %N
where

—dp = a sinay day, dZ = b cosay doy, ds = \/az Si? oy + b2 co oy oy

Herevy is the angle between theaxis and the normal direction of the ellipsoidal inclusion
at (r, z), and the cos 2and sin 2 terms in (1)—(6) express a plane state of shear-at co.

The notationz,'{v :/ i means integrating the effect of body force density along the prospective
boundary for inclusions. The unknown functions in (1)—8), (), oy (), p}y, () are
defined by the following equations. Other unknown functipf$ay), g, (i), o] (k) can be
expressed in a similar way.

. A . . dF,
Py (o) COS 2p = PY YR Poy (ax) SIN 2p = pdsf:lqb’
i —dF,
pry () COS 2p = Sdpds (7)

Here dF,, dFy, dF, are the components of the resultant of the body force inthez direc-
tions, respectively, acting on the infinitesimal agedy ds. Equations (1)—(6) enforce bound-
ary conditions at the imaginary boundary; thabisy —o,,1 = 0, Tymr — Tt = 0, Thoy — Thor =
O,u,p0 —uy = 0,uzyr —uy = 0,ugy — ug = 0. 1t should be noted that (1)—(3) include the
Cauchy-type singularities and (4)—(6) include the logarithmic-type singularities. Therefore in
(1)—(3), the integration should be interpreted in the Cauchy principal value sense.

As shown in (1)—(6), the problem is reduced to determining the body force densities
Py () ~ pli(ax). Inthe present method, however, auxiliary functiofigia), f2(«)), which
are defined in terms of original unknowns, will be determined. In the following equations, the
notation f («) refers to the original unknowng?,, (ax) ~ p (), and fi(ay), fo(ey) refers
to the auxiliary functions defined by (Noda—Matsuo, 1998)

Silag) = {f () + f(—a)}/2, falar) = { f(ax) — f(—ap)}/2, (8)

where

Sfilar) = fi(—=ap), falow) = — fa(—). 9)
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Figure 2. Interface stress;, on 6 = 0 for a single inclusion for uniaxial tension in thedirection v = 1,
a/b=0.5,1.0,2.0E/Ey = 10°, 2.0, 0).

These relations show that determining the auxiliary functign@:), f>(«x) in the range
0< oy < %/n is equivalent to determining the unknown functigh@) in the range—%n <

ap < %7(. In other words, if the auxiliary functions are given in the rang€ @; < %n, the
original unknown functionsf (o) are expressed in the rangeér < o < 37 as follows.

fla) = frlow) + falou),

(10)
f(=ap) = fi(—ap) + fo(—ar) = frlow) — fa(ow).

Then, fundamental density functions are defined by (11) as examples of continuous functions
satisfying (10). Here, it should be noted that(oy), wes(ay), w,o(ay) are exact densities of
body force to express a single ellipsoidal inclusion under plane state of pure shear.

wra(or) = weslax) = ny(atg), Wralo) = woaloy) = n, (o) SN o,

. (11)
w 1(og) = n(ap)/ SIN o, woolax) = n (ag).
b cosa a Sinua
n (o) = : ‘ (o) = : : . (12)
Va? sir? a; + b2 coR o Va? sir? a; + b2 co o

In (11), w,3(o), wes(on), wo2(ey) satisfy the first (9), anab, 4(e), woalon), w 1(ey) satisfy
the second (9). The unknown functiop$, (ox) ~ p} () can be expressed as a linear com-
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Figure 3. Interface stressy on6 = %n for a single inclusion for uniaxial tension in thedirection (v = 1,
a/b=05,1.0,2.0FE/Ey = 10°, 1.0, 0.1, 0).

bination of the fundamental density functions and weight functions as shown in the following
eqguations.

oy (ar) = pram () wrs(ar) + pram () wralay),
P (o) = poam (o) wez (o) + poam () woalon),
ph(e) = pam (o) w 2(o) + poam () w 1), (13)
pn(ew) = prai(ar) wrs(o) + prar(e) wralag),
Pg1(ar) = pgai(@) wes(ar) + poar (o) wealo),
P2 () = prai(o)w2(on) + () we(a).

In (13), taking p¥,,(ax) for example, .3y (ox)w,3(erx) corresponds tofi(oy) of (10) and
Pram (@) w,4(cy) corresponds tg(ay) of (10). Then, all weight functiong?,, (o) ~ o7 (a)
must satisfy

glap) = g(—y), (14)

whereg (o) refers to the weight functions.ay (cex), pram (), . . ., p.u(ay). In this study, the
following equations have been applied.
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pram(ay) =

Pram (Olk) =

Pr3m (Olk) =

Pram (@) =

Pz2M (ak) =

pam(og) =

Table 1. Convergence of the stress is for biaxial tension
in the xy-plane, pure shear in they-plane, and uniax-

ial tension in thex-direction /b = 1.0, b/d = 0.8,
N=3,]J =2E/Ey =100 =0).

¥ (deg.) M Biaxal Pure shear  Uniaxial
16 1.7464 1.9910 3.7374
20 1.7443 1.9913 3.7356
0.0 24 1.7442 1.9914 3.7356
28 1.7441  1.9907 3.7348
32 1.7440 1.9904 3.7344
16 1.6819 1.9298 3.6117
20 1.6801 1.9301 3.6102
10.0 24 1.6800 1.9299 3.6099
28 1.6800 1.9297 3.6097
32 1.6800 1.9292 3.6092
16 1.1899 1.4909 2.6808
20 1.1915 1.4909 2.6824
30.0 24 1.1915 1.4908 2.6823
28 1.1916 1.4908 2.6824
32 1.1915 1.4909 2.6824
16 —0.3889 0.5337 0.1448
20 -0.3681 0.5337 0.1656
60.0 24 —-0.3672 0.5337 0.1665
28 —-0.3670 0.5337 0.1667
32 -0.3669 0.5337 0.1668
16 —2.1958 0.0002 —2.1956
20 —-2.1475 0.0002 —2.1473
90.0 24 —-2.1455 0.0002 —2.1453
28 —2.1450 0.0002 —2.1448
32 —-2.1449 0.0002 —2.1447

M/2 M/2
Zaanln(Olk), prai(on) = Zaknltn(ak)’
n=1 n=1
M/2 M/2
Zbanl‘n(Olk), prai(ay) = Zbkmfn(ak),
n=1 n=1
M)2 M)2
chan‘n(Olk), Po3i(ay) = chnltn (),
n=1 n=1
M/2 M/2
> dinmta (). poar(e) =Y _dimita(ee),
n=1 n=1
M/2 M/2
Zeanln(Olk), pz21(0) = Zeknltn(ak),
n=1 n=1
M/2 M/2

n=1

kathn (ax), prular) = kam tn (o).
n=1

(15)
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Table 2. Maximum stress of three spherical cavities for uniaxial tension intigection
(N=3,a/b=10,E|/Ey = 0).

ald
¥ (deg.) Kimax  Kta Kip ¥ (deg.) Kimax Kt
0 —-90~90 2.0454 2.0454 2.0454 —90~90 2.0454  2.0454
(—90~90) (2.045) (2.045) (2.045) —90~90) (2.045) (2.045)
0.1 -7 2.0455  2.0452 2.0451 O 2.0456 2.0454
0.2 —7 2.0463 2.0455 2.0446 +1 2.0469 2.0447
(~10) (2.046) (2.045) (2.045) (0) (2.047)  (2.045)
0.3 -13 2.0484 2.0455 2.0424 +1 2.0503 2.0427
0.4 -17 2.0528 2.0464 2.0372 +2 2.0571 2.0385
(~15) (2.053) (2.046) (2.038) (0) (2.057)  (2.039)
0.5 -23 2.0613 2.0483 2.0300 +3 2.0687 2.0329
0.6 -30 2.0769 2.0519 2.0295 +17 2.0869 2.0347
(~30) (2.077) (2.052) (2.031) H15) (2.087) (2.036)
0.7 —41 2.1066 2.0573 2.0690 +36 2.1186 2.0767
0.8 -90 2.2449 2.0650 2.2449 +90 2.2540 2.2540
(—90) (2.241) (2.265) (2.241) +90) (2.251) (2.251)
0.9 —-90 2.8263 2.0757 2.8263 +90 2.8345 2.8345
7§ 7
A
ed
J=1 i
rd B 24 7
C
J=2 ~ 2 v
g . 1 .
7
=3, £
d

ta(o) = cog2(n — Doy} (16)

The expressions (15) with (16) satisfy (14). Heeis number of collocation points in the
range—%n < o < %71. Then, the singular integral equations are reduced to a system of
algebraic equations for determining the coefficiants, b, Corrs dusts €nsts fusts Qnts bar,

Caly duty €n1, fu- The number of unknown coefficients 946 x %N. Using the numerical
solution mentioned above the stress distribution along the interface can be determined. In the
next section results for the maximum stresses are presented for various geometries and loading
conditions.
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3. Results and discussion

3.1. THE SINGLE INCLUSION

In Figure 2, an interface stresg on 6 = 0 is plotted as a function o when a single
ellipsoidal inclusion is under uniaxial tension in thelirection. In Figure 3, an interface stress

op ONO = %n is plotted under the same condition. When the elastic @i, = 10°, oy

on6 = 0 is also shown in Figure 3 because the value is larger than the oﬁe:or%n.

For a single inclusion we can see the maximum stresses for different valdigsiy;. When

E\/Ey > 1, the normal interface stressgsare important because they may cause debonding

of the interface. On the other hand, wheyVE,, < 1, tangential interface stresses are
important because they are larger than other stresses. In the following section Poisson’s ratios
are setasy = v = 0.3.

3.2. CONVERGENCE OF THE RESULTS

Table 1 shows the convergence of the interface stresm 6 = 0 for biaxial tension in the
xy-plane, pure shear in they-plane, and uniaxial tension in thedirection in Figure 1 with
increasing values of the collocation numbérfor a/b = 1.0, b/d = 0.8, E|/Ey = 10°.
The present results have shown good convergence to the fourth digitdrher24. Also the
boundary conditions are confirmed to be less thart £ o,y — 01, Tuorr — Tuots Tuemt — Turls

Upp —Url, Uop — Ugl, Uz — Uz ThiS shows that the present method yields rapidly converging
results and highly satisfied boundary conditions.

3.3. AROW OF SEVERAL ELLIPSOIDAL INCLUSIONS

Results of cavitiegE,/Ey = 0) will be shown. Table 2 indicates the maximum stresses as
function of position and the stresses at points A, B and C are indicated for three spherical
cavities(a/b = 1.0). Here, points A, B, and C are indicated in the figure of Table 2. Tuchida’s
results (1978) coincide with the present results to the fourth digit in most cases.

Interface stresses at the inclusions/ = 1 ~ 3 are compared in Figure 4 wheh = 5,
b/d = 0.9,a/b = 1.0 for uniaxial tension in the-direction. The stresses &t= 2 andJ = 3
are almost equal although the stresd at 1 is different. If N is fixed, it is not known which
inclusion has the maximum stress as this depends on the valug$ if;, b/d, anda/b. In
the following section, the interaction will be discussed by choosing the innermost inclusion
for uniaxial tension in the- andz-direction.

Figures 5-10 shows the interface stress at the innermost inclusion Mherl ~ 5 for
uniaxial tension in the-direction. Whenk,/Ey; > 1, the primary feature of the interaction is
a large compressive stregsaroundyr = :l:%rr. However, the maximum tensile stregsnear
Y = 0, which may cause debonding of the interface, is almost independent of the interaction.
WhenE,|/Ey < 1, alarge tensile stresg ong = %rr is of interest. Wher/d andE,/Ey,
are fixed, the interaction appears largely wlagh is large for both caseg,/E, > 1 and
E|/EM < 1.

Figures 11, 12 shows the interface stress at the innermost inclusionMWhkeld ~ 5 for
uniaxial tension in the-direction. Whenk,/E,; > 1, the primary feature of the interaction
is a large tensile stress, aty = :I:%n. WhenE,/E, < 1, alarge tensile stregs around
¥ = 0 is of interest. Generally, the interaction for uniaxial tension inztioérection is larger
than the one for uniaxial tension in thedirection.
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Figure 4. Interface stressy on6 = %n for uniaxial tension in the-direction Vv = 5,a/b = 1.0,b/d = 0.9,
E|/Ey =0.1).
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Figure 5. Interface stress;, on6 = 0 for uniaxial tension in the-direction v = 1~ 5,a/b = 1.0,b/d = 0.9,
E|/Ey = 10P).
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Figure 6. Interface stress;, on6 = 0 for uniaxial tension in the-direction v = 1~ 5,a/b = 0.5,b/d = 0.9,
E|/Ey = 10P).
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Figure 7. Interface stress;, on6 = 0 for uniaxial tension in the-direction v = 1 ~ 5,a/b = 2.0,b/d = 0.9,
E|/Ey = 10P).
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Figure 8. Interface stressy on6 = %n for uniaxial tension in the-direction N = 1 ~ 5,a/b = 1.0,b/d = 0.9,
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Figure 9. Interface stressy on6 = %n for uniaxial tension in the-direction N = 1 ~ 5,a/b = 0.5,b/d = 0.9,
E\/Epy = 0.1).
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Figure 10. Interface stressy on6 = %7{ for uniaxial tension in thec-direction = 1 ~ 5,a/b = 2.0,
b/d =0.9,E|/Ey = 0.1).
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Figure 11. Interface stress;, for uniaxial tension in the-direction v = 1 ~ 5,a/b = 1.0, b/d = 0.8,
E|/Ey = 10P).
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Figure 12. Interface stress; for uniaxial tension in the-direction = 1 ~ 5,a/b = 1.0, b/d = 0.8,
E\/Epy = 0.1).
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Figure 13. Maximum stress vs.ﬂN2 relation for uniaxial tension in the-direction @/b = 1.0, Ej/E; = 10°,
0 =0).
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Table 3. Maximum stress of ellipsoidal inclusions for uniaxial
tension in thex-direction (N — oo, a/b = 1.0).

a/b=1.0 Matrix
E\/Ey b/d ¢ on ¥ o
(deg.) (deg.)
6= %rr
0 —90~90 2.046
0.2 +1 2.047
0.5 46 2.033
0.0 0.7 +34 2.131
0.8 +90 2.279
0.9 490 2.888
6=0 0 =13n
0 0 0.192 0 1.854
02 0 0.192 +3 1.855
05 0 0.195 +3 1.879
0.1 07 O 0.199 +35 1.915
08 0 0.204 +90 2.023
09 0 0.209 490 2.454
6=0 6=0
0 0 1.768 0 0.670
02 0 1.768 0 0.670
05 0 1.756 0 0.667
10 07 O 1.728 0 0.658
08 0 1.705 0 0.651
09 0 1.677 0 0.643
6=0 0=0
0 0 1.938 0 0.831
02 0 1.936 0 0.834
05 0 1.924 0 0.825
10° 07 O 1.892 0 0.811
08 0 1.869 0 0.800
+90  (-1.393) +90 (-0.592)
09 0 1.843 0 0.790

+90  (~3.101) +90 (~1.351)
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Table 4. Maximum stress of ellipsoidal inclusions for uniaxial
tension in thex-direction (V — oo, a/b = 2.0).

a/b=20 Matrix
E\/Ey b/d ¥ On 1 o
(deg.) (deg.)

6= %rr
0 0 1.660
0.2 490 1.655
0.5 +14 1.696
0 0.7 490 1.970
0.8 490 2.332
0.9 +90 3.112

6=0 = %rr
0 0 0.156 0 1.524

02 +£1 0.157 +90 1.554
05 #1 0.165 +26 1.583
0.1 0.7 =1 0.173 +90 1.794
08 +1 0.176 +90 2.057
09 +1 0.176 +90 2.554

=0 =0
0 0 2.208 0 0.834
02 0 2.207 0 0.834
05 0 2.130 0 0.808
10 07 O© 2.033 0 0.761
08 O 1.986 0 0.756
09 © 1.934 0 0.742
=0 =0
0 0 2.557 0 1.096
02 0 2.556 0 1.095
05 0 2.448 0 1.049
10° 07 0 2.313 0 0.990
08 O 2.246 0 0.962
+90 (-1.771) +£90 (-0.767)
09 © 2.183 0 0.934

+90  (-3.851) 490  (~1.642)
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Table 5. Maximum stress of ellipsoidal inclusions for uniaxial

tension in thex-direction (V — oo, a/b = 0.5).

a/b =05 Matrix
E\JEy b/d ¥ on ¥ o
(deg.) (deg.)
6= %rr
0 0 2.480
0.2 0 2.481
0.5 +1 2.490
0 0.7 +3 2.509
0.8 +45 2.534
0.9 +73 2.644
6=0 = %rr
0 0 0.225 0 2.164
0.2 0 0.225 0 2.165
0.5 0 0.225 +1 2.170
0.1 0.7 0 0.227 +3 2.183
0.8 0 0.228 +43 2.199
0.9 0 0.230 +73 2.273
6=0 6=0
0 0 1.549 0 0.588
0.2 0 1.549 0 0.588
0.5 0 1.547 0 0.588
10 0.7 0 1.542 0 0.586
0.8 0 1.538 0 0.585
0.9 0 1.531 0 0.584
6=0 =0
0 0 1.652 0 0.708
0.2 0 1.653 0 0.708
0.5 0 1.651 0 0.708
10° 07 0 1.646 0 0.706
0.8 0 1.642 0 0.704
+90  (-1.351) 490  (—0.685)
0.9 0 1.635 0 0.701
+90  (-2.942) 490  (—1.289)
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Table 6. Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction N — oo,

a/b =1.0).
a/b=1.0 Matrix
E\/JEy b/d ¥ On v ot
(deg.) (deg.)

0 0 2.045
0.2 0 2.031
0.5 0 1.884

0 0.7 0 1.756
0.8 0 1.703
0.9 0 1.657
0 +90 0.192 O 1.854
0.2 +90 0191 O 1.843
05 90 0.170 O 1.731

0.1 0.7 £75 0.130 O 1.627
0.8 165 0.116 O 1.582
0.9 59 0.103 O 1.543

0 +90 1.768 £90 0.670
0.2 +90 1.780 =90 0.674
05 +£90 2.028 +90 0.768
10 0.7 £90 2.824 +90 1.085
0.8 +£90 3.903 +90 1.517
09 +90 6.68 +90 2.73

0 +90 1.938 =+90 0.831
0.2 +£90 1.955 £90 0.838
05 +£90 2.298 +90 0.985
10° 0.7 +90 3.495 =+90 1.498
0.8 +£90 5.36 +90 2.33
09 +90 115 £90 5.14

3.4. RELATION BETWEEN THE MAXIMUM STRESS AND THE NUMBER OF INCLUSIONN

Figures 13 illustrate,max vS. 1/ N2 relation wherz/b = 1.0 andb/d = 0.9, 0.7, 0.5, 0.2. It
appears as though,max is linearly related to AN? for large N. Therefore, the limiting values

of o,max fOr N — oo can be obtained by extrapolation. For example, even in the case of
b/d = 0.9 in Figure 5, two extrapolated values obtained frdfm= 8, 7 and fromN = 7, 6
coincide with each other to the fourth digit.

Tables 3, 4, 5 shows maximum stressgsor o, with their positions at the innermost
inclusion whenV — oo for uniaxial tension in the-direction. Tables 6, 7, 8 show maximum
stressesr,, o; with their positions at the innermost inclusion wh&nh — oo for uniaxial
tension in the-direction.
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Table 7.Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction N — oo,

a/b =2.0).
a/b =20 Matrix
E\/JEy b/d ¥ On v ot
(deg.) (deg.)

0 0 3.312
0.2 0 3.184
0.5 0 2.598

0 0.7 0 2.344
0.8 0 2.248
0.9 0 2.165
0 +90 0289 O 2.683
0.2 +£90 0280 O 2.607
0.5 62 0.203 O 2.233

0.1 0.7 449 0.166 O 2.052
0.8 45 0.151 O 1.983
0.9 +40 0.138 O 1.922

0 +90 1.328 £90 0.482
0.2 +90 1.357 +90 0.492
05 +£90 1.866 +90 0.681
10 0.7 £90 2.989 =+90 0.141
0.8 +£90 4.127 +£90 1.620
09 +90 6.299 =+90 2.574

0 +90 1.378 =+90 0.591
0.2 +£90 1416 £90 0.606
05 +£90 2.084 +90 0.894
10° 0.7 +90 3.835 +90 1.647
0.8 +£90 6.17 90 2.630
09 +90 128 +90 5.446

4. Conclusions

In this study, a row of ellipsoidal inclusions in an infinite body under tension incthend
z-directions are considered in terms of singular integral equations of the body force method.
The asymmetric tension problem in thedirection is solved on the superposition of two
auxiliary loads, biaxial tension in they-plane, and plane state of pure shear inithelane.

In order to satisfy the boundary conditions, the unknown functions are approximated by a
linear combination of fundamental density functions and ploynomials. The present method is
found to yield rapidly converging numerical results and smooth stress distribution along the
boundary. The maximum stresses and interface stresses are shown in tables and figures for
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Table 8. Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction N — oo,

a/b =0.5).
a/b =05 Matrix
E\/JEy b/d ¥ On v ot
(deg.) (deg.)

0 0 1.440
0.2 0 1.438
0.5 0 1.411

0 0.7 0 1.372
0.8 0 1.350
0.9 0 1.328
0 +90 0.139 0 1.380
0.2 +£90 0.139 0 1.378
05 90 0.135 0 1.357

0.1 0.7 +90 0.122 0 1.322
0.8 +£90 0.105 O 1.302
09 <77 0.078 0 1.282

0 +90 2.668 +90 1.026
0.2 +90 2.674 =+90 1.029
05 +£90 2.811 +90 1.081
10 0.7 £90 3.283 90 1.262
0.8 +£90 4.020 +£90 1.548
09 +90 6.359 +90 2.479

0 +90 3.279 %90 1.405
0.2 +£90 3.290 +90 1.410
05 +£90 3.519 +90 1.508
10° 0.7 +90 4.336 +90 1.858
0.8 +£90 5.680 +90 2.435
09 +90 11.43 =£90 4.87

various shape, spacing, and elastic ratio of inclusions. Tuchida’s results for spheroidal cavities
coincide with the present results to the fourth digit in most cases.

WhenE,/E, > 1, the primary feature of the interaction is a large compressive stjess
for uniaxial tension in the-direction and a large tensile stregsfor uniaxial tension in the-
direction. WhenE|/E,; < 1, the most important part of the interaction is a large tensile stress
oy for uniaxial tension in the:-direction, and a large tensile stragsfor uniaxial tension in
the z-direction. Whenb/d and E,/E,, are fixed, the interaction effects are dominant when
a/b is large as shown in Figures 5-10. A linear relationship is found between the maximum
stress and AN?, whereN is the number of inclusions. Using these relationship, the limiting
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values forN — oo are obtained. The maximum stress /r— oo are tabulated for uniaxial
tension in thex- andz-directions.
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