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Abstract. In this paper the interaction among a row ofN ellipsoidal inclusions of revolution is considered.
Inclusions in a body under both (A) asymmetric uniaxial tension in thex-direction and (B) axisymmetric uniaxial
tension in thez-direction are treated in terms of singular integral equations resulting from the body force method.
These problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type
singularities, where unknowns are densities of body forces distributed in ther, θ, z directions. In order to satisfy
the boundary conditions along the ellipsoidal boundaries, the unknown functions are approximated by a linear
combination of fundamental density functions and polynomials. The present method is found to yield rapidly
converging numerical results for interface stresses. When the elastic ratioE1⇒ EI/EM > 1, the primary feature
of the interaction is a large compressive or tensile stressσn on the interfaceθ = 0. WhenE1 ⇒ EI/EM < 1, a
large tensile stressσθ or σt on the interfaceθ = 1

2π is of interest. If the spacingb/d and the elastic ratioEI/EM
are fixed, the interaction effects are dominant when the shape ratioa/b is large. For any fixed shape and spacing
of inclusions, the maximum stress is shown to be linear with the reciprocal of the squared number of inclusions.

Keywords: Elasticity, body force method, singular integral equations, numerical analysis, three-dimensional analy-
sis, stress concentration factor, ellipsoidal inclusion.

1. Introduction

It is known that most engineering materials contain some defects in the form of cracks, voids,
inclusions, or second-phased particles. To evaluate the effect of defects on the strength of
structures, it is necessary to know the stress concentration of those defects. As a model of
defects elliptical and ellipsoidal inclusions are important because they cover a wide variety
of particular cases, such as line, circular, and spherical defects. In previous studies a sin-
gle ellipsoidal inclusion (Atsumi, 1960; Edwards, 1952; Eshelby, 1957, 1959), 2 D elliptical
inclusions (Donnel, 1941; Nisitani, 1968; Shioya, 1970; Isida–Igawa, 1994; Noda–Matsuo,
1997), and 3 D symmetric inclusion problems (Miyamoto, 1957; Nisitani, 1963; Eubank,
1965; Shelly–Yu, 1966; Goree–Wilson, 1967; Noda–Matsuo, 1995) are treated by several
authors. However, few studies are made for 3 D asymmetric problems except for spherical
cavities under asymmetric uniaxial tension treated by Tsuchida (1976, 1978) et al. and two
ellipsoidal inclusions treated by Noda–Tomari–Matsuo (1999).

This paper deals with an interaction among a row ofN ellipsoidal inclusions of revolution
under (A) asymmetric and (B) axisymmetric uniaxial tension, which are formulated using the
body force method coupled with a singular integral equation approach. Then, the interaction
effects will be discussed by varying the shape, spacing and elastic ratio of the ellipsoidal
inclusions.
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Figure 1. Problem and coordinate system; (a) Uniaxial tension perpendicular to the line of the inclusions
(x-direction); (b) Uniaxial tension in the line of the inclusions (z-direction); (c) Hydrostatic tension in a plane
perpendicular to the line of the inclusions (xy-plane); (d) Pure shear in a plane perpendicular to the line of the
inclusions (xy-plane); (e) Coordinate system.
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2. Method of analysis

Consider an infinite body having a row ofN ellipsoidal inclusions in thez-direction. Method
of analysis will be explained when uniaxial tension is applied asymmetrically in thex-direction
as shown in Figure 1 (a). This problem is composed of the superposition of two auxiliary loads;
biaxial tension in thexy-plane shown in Figure 1(c), and pure shear in thexy-plane shown
in Figure 1(d). Rectangular and cylindrical coordinates(x, y, z) and (r, θ, z) are defined in
Figure 1(e). Here,(ξ, η, ζ ) and (ρ, φ, ζ ) are rectangular and cylindrical coordinates that
specify the points where body forces are distributed. In this paper, the solution of the problem
of pure shear in thexy-plane will be mainly explained assuming the number of inclusionsN is
even. WhenN is odd, the problem can be solved in the same way except that at the innermost
inclusion the boundary condition should be considered in the range 06 ψ 6 π/2.

The body force method (Nisitani, 1967) is used to formulate the problem as a system of sin-
gular integral equations. Here, the fundamental solutions are stress(KFr

nn ,K
Fθ
nn , . . . , K

Fθ
nt , K

Fz
nt )

and displacement fields(KFr
ur ,K

Fθ
ur , . . . , K

Fθ
uz ,K

Fz
uz ) at an arbitrary point[r = a cosψk, z =

d + 2d(i − 1) + b sin ψk, i = 1 ∼ N/2] when two ring forces acting symetrically to the
planez = 0 [ρ = a cosαk, ζ = ±{d + 2d(k − 1) + b sin αk}, k = 1 ∼ N/2]. In this case
the boundary conditions only onz > 0 can be considered due to symmetry. Since each ring
force has a magnitude proportional to cos 2ϕ or sin 2ϕ along the circumference (Noguchi
et al., 1987; Noda–Tomari, 1998), the problem can be formulated in terms of singular integral
equations by using the fundamental solutions due to ring forces in two infinite bodies ‘M ’ and
’I ’. Here, the infinite body ‘M ’ has the same elastic constants as those of the matrix(EM, νM)

and the infinite body ‘I ’ has the same ones as those of the inclusions(EI, νI). The integral
equations are expressed in terms of unknown body force densitiesρ∗rM(αk), ρ

∗
θM(αk), ρ

∗
zM(αk)

ρ∗r I(αk), ρ∗θ I(αk), ρ
∗
zI(αk) distributed at the infinitesimal areaρ dφ ds specified by the angleαk.

These equations are

−1
2{ρ∗rM(ψi) cosψi0 + ρ∗zM(ψi) sin ψi0}
−1

2{ρ∗r I(ψi) cosψi0+ ρ∗zI(ψi) sin ψi0}

+
N/2∑
k=1

∫ π/2

−π/2
K
Fr
nnM(αk, ψi)ρ

∗
rM(αk)ds +

N/2∑
k=1

∫ π/2

−π/2
K
Fθ
nnM(αk, ψi)ρ

∗
θM(αk)ds

+
N/2∑
k=1

∫ π/2

−π/2
K
Fz
nnM(αk, ψi)ρ

∗
zM(αk)ds −

N/2∑
k=1

∫ π/2

−π/2
K
Fr
nnI(αk, ψi)ρ

∗
r I(αk)ds

−
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k=1

∫ π/2

−π/2
K
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∗
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∫ π/2
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K
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∗
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= −σ∞r cos2 ψi0 cos 2θ (1)

−1
2{ρ∗θM(ψi)+ ρ∗θ I(ψi)}

+
N/2∑
k=1

∫ π/2

−π/2
K
Fr
nθM(αk, ψi)ρ

∗
rM(αk)ds +

N/2∑
k=1

∫ π/2

−π/2
K
Fθ
nθM(αk, ψi)ρ

∗
θM(αk)ds
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+
N/2∑
k=1

∫ π/2

−π/2
K
Fz
nθM(αk, ψi)ρ

∗
zM(αk)ds −
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−1
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−1
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+
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k=1

∫ π/2

−π/2
K
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ntM(αk, ψi)ρ

∗
rM(αk)ds +

N/2∑
k=1

∫ π/2

−π/2
K
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∗
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+
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k=1

∫ π/2

−π/2
K
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k=1
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−π/2
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+
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i = 1∼ 1
2N

where

−dρ = a sin αk dαk,dζ = b cosαk dαk, ds =
√
a2 sin2 αk + b2 cos2 αk dαk

Hereψ0 is the angle between ther-axis and the normal direction of the ellipsoidal inclusion
at (r, z), and the cos 2θ and sin 2θ terms in (1)–(6) express a plane state of shear atr →∞.
The notation

∑N/2
k=1 means integrating the effect of body force density along the prospective

boundary for inclusions. The unknown functions in (1)–(6)ρ∗rM(αk), ρ
∗
θM(αk), ρ

∗
zM(αk) are

defined by the following equations. Other unknown functionsρ∗r I(αk), ρ∗θ I(αk), ρ
∗
zI(αk) can be

expressed in a similar way.

ρ∗rM(αk) cos 2ϕ = dFr
ρ dφ ds

, ρ∗θM(αk) sin 2ϕ = dFθ
ρ ds dφ

,

ρ∗zM(αk) cos 2ϕ = −dFz
ρ dφ ds

. (7)

Here dFr , dFθ , dFz are the components of the resultant of the body force in ther, θ, z direc-
tions, respectively, acting on the infinitesimal areaρ dφ ds. Equations (1)–(6) enforce bound-
ary conditions at the imaginary boundary; that is,σnM−σnI = 0,τntM−τnt I = 0,τnθM−τnθ I =
0, urM − ur I = 0, uzM − uzI = 0, uθM − uθ I = 0. It should be noted that (1)–(3) include the
Cauchy-type singularities and (4)–(6) include the logarithmic-type singularities. Therefore in
(1)–(3), the integration should be interpreted in the Cauchy principal value sense.

As shown in (1)–(6), the problem is reduced to determining the body force densities
ρ∗rM(αk) ∼ ρ∗zI(αk). In the present method, however, auxiliary functions(f1(α), f2(α)), which
are defined in terms of original unknowns, will be determined. In the following equations, the
notationf (α) refers to the original unknownsρ∗rM(αk) ∼ ρ∗zI(αk), andf1(αk), f2(αk) refers
to the auxiliary functions defined by (Noda–Matsuo, 1998)

f1(αk) = {f (αk)+ f (−αk)}/2, f2(αk) = {f (αk)− f (−αk)}/2, (8)

where

f1(αk) = f1(−αk), f2(αk) = −f2(−αk). (9)
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Figure 2. Interface stressσn on θ = 0 for a single inclusion for uniaxial tension in thex-direction (N = 1,
a/b = 0.5, 1.0, 2.0,EI/EM = 105, 2.0, 0).

These relations show that determining the auxiliary functionsf1(αk), f2(αk) in the range
06 αk 6 1

2/π is equivalent to determining the unknown functionsf (αk) in the range−1
2π 6

αk 6 1
2π . In other words, if the auxiliary functions are given in the range 06 αk 6 1

2π , the
original unknown functionsf (αk) are expressed in the range−1

2π 6 αk 6
1
2π as follows.

f (αk) = f1(αk)+ f2(αk),

f (−αk) = f1(−αk)+ f2(−αk) = f1(αk)− f2(αk).
(10)

Then, fundamental density functions are defined by (11) as examples of continuous functions
satisfying (10). Here, it should be noted thatwr3(αk), wθ3(αk), wz2(αk) are exact densities of
body force to express a single ellipsoidal inclusion under plane state of pure shear.

wr3(αk) = wθ3(αk) = nr(αk),wr4(αk) = wθ4(αk) = nr(αk) sin αk,

wz1(αk) = nz(αk)/ sin αk,wz2(αk) = nz(αk).
(11)

nr(αk) = b cosαk√
a2 sin2 αk + b2 cos2 αk

, nz(αk) = a sin αk√
a2 sin2 αk + b2 cos2 αk

. (12)

In (11),wr3(αk), wθ3(αk), wz2(αk) satisfy the first (9), andwr4(αk), wθ4(αk), wz1(αk) satisfy
the second (9). The unknown functionsρ∗rM(αk) ∼ ρ∗zI(αk) can be expressed as a linear com-
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Figure 3. Interface stressσθ on θ = 1
2π for a single inclusion for uniaxial tension in thex-direction (N = 1,

a/b = 0.5, 1.0, 2.0,EI/EM = 105, 1.0, 0.1, 0).

bination of the fundamental density functions and weight functions as shown in the following
equations.

ρ∗rM(αk) = ρr3M(αk)wr3(αk)+ ρr4M(αk)wr4(αk),
ρ∗θM(αk) = ρθ3M(αk)wθ3(αk)+ ρθ4M(αk)wθ4(αk),

ρ∗zM(αk) = ρz2M(αk)wz2(αk)+ ρz1M(αk)wz1(αk),
ρ∗r I(αk) = ρr3I(αk)wr3(αk)+ ρr4I(αk)wr4(αk),

ρ∗θ I(αk) = ρθ3I(αk)wθ3(αk)+ ρθ4I(αk)wθ4(αk),

ρ∗zI(αk) = ρz2I(αk)wz2(αk)+ ρz1I(αk)wz1(αk).

(13)

In (13), takingρ∗rM(αk) for example,ρr3M(αk)wr3(αk) corresponds tof1(αk) of (10) and
ρr4M(αk)wr4(αk) corresponds tof2(αk) of (10). Then, all weight functionsρ∗rM(αk) ∼ ρ∗zI(αk)
must satisfy

g(αk) = g(−αk), (14)

whereg(αk) refers to the weight functionsρr3M(αk), ρr4M(αk), . . . , ρz1I(αk). In this study, the
following equations have been applied.
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Table 1. Convergence of the stress is for biaxial tension
in the xy-plane, pure shear in thexy-plane, and uniax-
ial tension in thex-direction (a/b = 1.0, b/d = 0.8,
N = 3, J = 2,EI/EM = 105, θ = 0).

ψ (deg.) M Biaxal Pure shear Uniaxial

16 1.7464 1.9910 3.7374

20 1.7443 1.9913 3.7356

0.0 24 1.7442 1.9914 3.7356

28 1.7441 1.9907 3.7348

32 1.7440 1.9904 3.7344

16 1.6819 1.9298 3.6117

20 1.6801 1.9301 3.6102

10.0 24 1.6800 1.9299 3.6099

28 1.6800 1.9297 3.6097

32 1.6800 1.9292 3.6092

16 1.1899 1.4909 2.6808

20 1.1915 1.4909 2.6824

30.0 24 1.1915 1.4908 2.6823

28 1.1916 1.4908 2.6824

32 1.1915 1.4909 2.6824

16 −0.3889 0.5337 0.1448

20 −0.3681 0.5337 0.1656

60.0 24 −0.3672 0.5337 0.1665

28 −0.3670 0.5337 0.1667

32 −0.3669 0.5337 0.1668

16 −2.1958 0.0002 −2.1956

20 −2.1475 0.0002 −2.1473

90.0 24 −2.1455 0.0002 −2.1453

28 −2.1450 0.0002 −2.1448

32 −2.1449 0.0002 −2.1447

ρr3M(αk) =
M/2∑
n=1

aknMtn(αk), ρr3I(αk) =
M/2∑
n=1

aknI tn(αk),

ρr4M(αk) =
M/2∑
n=1

bknMtn(αk), ρr4I(αk) =
M/2∑
n=1

bknI tn(αk),

ρr3M(αk) =
M/2∑
n=1

cknMtn(αk), ρθ3I(αk) =
M/2∑
n=1

cknI tn(αk),

ρr4M(αk) =
M/2∑
n=1

dknMtn(αk), ρθ4I(αk) =
M/2∑
n=1

dknI tn(αk),

ρz2M(αk) =
M/2∑
n=1

eknMtn(αk), ρz2I(αk) =
M/2∑
n=1

eknI tn(αk),

ρz1M(αk) =
M/2∑
n=1

fknMtn(αk), ρz1I(αk) =
M/2∑
n=1

fknItn(αk).

(15)
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Table 2. Maximum stress of three spherical cavities for uniaxial tension in thex-direction
(N = 3, a/b = 1.0,EI/EM = 0).

J = 1 J = 2

a/d

ψ (deg.) Ktmax Kta Ktb ψ (deg.) Ktmax Ktc

0 −90∼90 2.0454 2.0454 2.0454 −90∼90 2.0454 2.0454

(−90∼90) (2.045) (2.045) (2.045) (−90∼90) (2.045) (2.045)

0.1 −7 2.0455 2.0452 2.0451 0 2.0456 2.0454

0.2 −7 2.0463 2.0455 2.0446 ±1 2.0469 2.0447

(−10) (2.046) (2.045) (2.045) (0) (2.047) (2.045)

0.3 −13 2.0484 2.0455 2.0424 ±1 2.0503 2.0427

0.4 −17 2.0528 2.0464 2.0372 ±2 2.0571 2.0385

(−15) (2.053) (2.046) (2.038) (0) (2.057) (2.039)

0.5 −23 2.0613 2.0483 2.0300 ±3 2.0687 2.0329

0.6 −30 2.0769 2.0519 2.0295 ±17 2.0869 2.0347

(−30) (2.077) (2.052) (2.031) (±15) (2.087) (2.036)

0.7 −41 2.1066 2.0573 2.0690 ±36 2.1186 2.0767

0.8 −90 2.2449 2.0650 2.2449 ±90 2.2540 2.2540

(−90) (2.241) (2.265) (2.241) (±90) (2.251) (2.251)

0.9 −90 2.8263 2.0757 2.8263 ±90 2.8345 2.8345

tn(αk) = cos{2(n− 1)αk}. (16)

The expressions (15) with (16) satisfy (14). HereM is number of collocation points in the
range−1

2π 6 αk 6 1
2π . Then, the singular integral equations are reduced to a system of

algebraic equations for determining the coefficientsanM , bnM , cnM , dnM , enM , fnM , anI , bnI ,
cnI , dnI , enI , fnI . The number of unknown coefficients is 6M × 1

2N . Using the numerical
solution mentioned above the stress distribution along the interface can be determined. In the
next section results for the maximum stresses are presented for various geometries and loading
conditions.
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3. Results and discussion

3.1. THE SINGLE INCLUSION

In Figure 2, an interface stressσn on θ = 0 is plotted as a function onψ when a single
ellipsoidal inclusion is under uniaxial tension in thex-direction. In Figure 3, an interface stress
σθ on θ = 1

2π is plotted under the same condition. When the elastic ratioEI/EM = 105, σθ
on θ = 0 is also shown in Figure 3 because the value is larger than the one onθ = 1

2π .
For a single inclusion we can see the maximum stresses for different values ofEI/EM . When
EI/EM > 1, the normal interface stressesσn are important because they may cause debonding
of the interface. On the other hand, whenEI/EM < 1, tangential interface stressesσθ are
important because they are larger than other stresses. In the following section Poisson’s ratios
are set asνM = νI = 0.3.

3.2. CONVERGENCE OF THE RESULTS

Table 1 shows the convergence of the interface stressσn on θ = 0 for biaxial tension in the
xy-plane, pure shear in thexy-plane, and uniaxial tension in thex-direction in Figure 1 with
increasing values of the collocation numberM for a/b = 1.0, b/d = 0.8, EI/EM = 105.
The present results have shown good convergence to the fourth digit whenM = 24. Also the
boundary conditions are confirmed to be less than 10−4 for σnM −σnI , τnθM − τnθ I , τntM − τnt I ,
urM−ur I , uθM −uθ I , uzM −uzI . This shows that the present method yields rapidly converging
results and highly satisfied boundary conditions.

3.3. A ROW OF SEVERAL ELLIPSOIDAL INCLUSIONS

Results of cavities(EI/EM = 0) will be shown. Table 2 indicates the maximum stresses as
function of position and the stresses at points A, B and C are indicated for three spherical
cavities(a/b = 1.0). Here, points A, B, and C are indicated in the figure of Table 2. Tuchida’s
results (1978) coincide with the present results to the fourth digit in most cases.

Interface stressesσθ at the inclusionsJ = 1 ∼ 3 are compared in Figure 4 whenN = 5,
b/d = 0.9, a/b = 1.0 for uniaxial tension in thex-direction. The stresses atJ = 2 andJ = 3
are almost equal although the stress atJ = 1 is different. IfN is fixed, it is not known which
inclusion has the maximum stress as this depends on the values ofEI/EM , b/d, anda/b. In
the following section, the interaction will be discussed by choosing the innermost inclusion
for uniaxial tension in thex- andz-direction.

Figures 5–10 shows the interface stress at the innermost inclusion whenN = 1 ∼ 5 for
uniaxial tension in thex-direction. WhenEI/EM > 1, the primary feature of the interaction is
a large compressive stressσn aroundψ = ±1

2π . However, the maximum tensile stressσn near
ψ = 0, which may cause debonding of the interface, is almost independent of the interaction.
WhenEI/EM < 1, a large tensile stressσθ on θ = 1

2π is of interest. Whenb/d andEI/EM
are fixed, the interaction appears largely whena/b is large for both casesEI/EM > 1 and
EI/EM < 1.

Figures 11, 12 shows the interface stress at the innermost inclusion whenN = 1 ∼ 5 for
uniaxial tension in thez-direction. WhenEI/EM > 1, the primary feature of the interaction
is a large tensile stressσn atψ = ±1

2π . WhenEI/EM < 1, a large tensile stressσt around
ψ = 0 is of interest. Generally, the interaction for uniaxial tension in thez-direction is larger
than the one for uniaxial tension in thex-direction.
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Figure 4. Interface stressσθ on θ = 1
2π for uniaxial tension in thex-direction (N = 5, a/b = 1.0, b/d = 0.9,

EI/EM = 0.1).

Figure 5. Interface stressσn on θ = 0 for uniaxial tension in thex-direction (N = 1∼ 5, a/b = 1.0, b/d = 0.9,
EI/EM = 105).
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Figure 6. Interface stressσn on θ = 0 for uniaxial tension in thex-direction (N = 1∼ 5, a/b = 0.5, b/d = 0.9,
EI/EM = 105).

Figure 7. Interface stressσn on θ = 0 for uniaxial tension in thex-direction (N = 1∼ 5, a/b = 2.0, b/d = 0.9,
EI/EM = 105).
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Figure 8. Interface stressσθ onθ = 1
2π for uniaxial tension in thex-direction (N = 1∼ 5,a/b = 1.0,b/d = 0.9,

EI/EM = 0.1).

Figure 9. Interface stressσθ onθ = 1
2π for uniaxial tension in thex-direction (N = 1∼ 5,a/b = 0.5,b/d = 0.9,

EI/EM = 0.1).
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Figure 10. Interface stressσθ on θ = 1
2π for uniaxial tension in thex-direction (N = 1 ∼ 5, a/b = 2.0,

b/d = 0.9,EI/EM = 0.1).

Figure 11. Interface stressσn for uniaxial tension in thez-direction (N = 1 ∼ 5, a/b = 1.0, b/d = 0.8,
EI/EM = 105).
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Figure 12. Interface stressσt for uniaxial tension in thez-direction (N = 1 ∼ 5, a/b = 1.0, b/d = 0.8,
EI/EM = 0.1).

Figure 13. Maximum stress vs. 1/N2 relation for uniaxial tension in thex-direction (a/b = 1.0,EI/EM = 105,
θ = 0).
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Table 3. Maximum stress of ellipsoidal inclusions for uniaxial
tension in thex-direction (N →∞, a/b = 1.0).

a/b = 1.0 Matrix

EI/EM b/d ψ σn ψ σθ

(deg.) (deg.)

θ = 1
2π

0 −90∼90 2.046

0.2 ±1 2.047

0.5 ±6 2.033

0.0 0.7 ±34 2.131

0.8 ±90 2.279

0.9 ±90 2.888

θ = 0 θ = 1
2π

0 0 0.192 0 1.854

0.2 0 0.192 ±3 1.855

0.5 0 0.195 ±3 1.879

0.1 0.7 0 0.199 ±35 1.915

0.8 0 0.204 ±90 2.023

0.9 0 0.209 ±90 2.454

θ = 0 θ = 0

0 0 1.768 0 0.670

0.2 0 1.768 0 0.670

0.5 0 1.756 0 0.667

10 0.7 0 1.728 0 0.658

0.8 0 1.705 0 0.651

0.9 0 1.677 0 0.643

θ = 0 θ = 0

0 0 1.938 0 0.831

0.2 0 1.936 0 0.834

0.5 0 1.924 0 0.825

105 0.7 0 1.892 0 0.811

0.8 0 1.869 0 0.800

±90 (−1.393) ±90 (−0.592)

0.9 0 1.843 0 0.790

±90 (−3.101) ±90 (−1.351)
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Table 4. Maximum stress of ellipsoidal inclusions for uniaxial
tension in thex-direction (N →∞, a/b = 2.0).

a/b = 2.0 Matrix

EI/EM b/d ψ σn ψ σθ

(deg.) (deg.)

θ = 1
2π

0 0 1.660

0.2 ±90 1.655

0.5 ±14 1.696

0 0.7 ±90 1.970

0.8 ±90 2.332

0.9 ±90 3.112

θ = 0 θ = 1
2π

0 0 0.156 0 1.524

0.2 ±1 0.157 ±90 1.554

0.5 ±1 0.165 ±26 1.583

0.1 0.7 ±1 0.173 ±90 1.794

0.8 ±1 0.176 ±90 2.057

0.9 ±1 0.176 ±90 2.554

θ = 0 θ = 0

0 0 2.208 0 0.834

0.2 0 2.207 0 0.834

0.5 0 2.130 0 0.808

10 0.7 0 2.033 0 0.761

0.8 0 1.986 0 0.756

0.9 0 1.934 0 0.742

θ = 0 θ = 0

0 0 2.557 0 1.096

0.2 0 2.556 0 1.095

0.5 0 2.448 0 1.049

105 0.7 0 2.313 0 0.990

0.8 0 2.246 0 0.962

±90 (−1.771) ±90 (−0.767)

0.9 0 2.183 0 0.934

±90 (−3.851) ±90 (−1.642)
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Table 5. Maximum stress of ellipsoidal inclusions for uniaxial
tension in thex-direction (N →∞, a/b = 0.5).

a/b = 0.5 Matrix

EI/EM b/d ψ σn ψ σθ

(deg.) (deg.)

θ = 1
2π

0 0 2.480

0.2 0 2.481

0.5 ±1 2.490

0 0.7 ±3 2.509

0.8 ±45 2.534

0.9 ±73 2.644

θ = 0 θ = 1
2π

0 0 0.225 0 2.164

0.2 0 0.225 0 2.165

0.5 0 0.225 ±1 2.170

0.1 0.7 0 0.227 ±3 2.183

0.8 0 0.228 ±43 2.199

0.9 0 0.230 ±73 2.273

θ = 0 θ = 0

0 0 1.549 0 0.588

0.2 0 1.549 0 0.588

0.5 0 1.547 0 0.588

10 0.7 0 1.542 0 0.586

0.8 0 1.538 0 0.585

0.9 0 1.531 0 0.584

θ = 0 θ = 0

0 0 1.652 0 0.708

0.2 0 1.653 0 0.708

0.5 0 1.651 0 0.708

105 0.7 0 1.646 0 0.706

0.8 0 1.642 0 0.704

±90 (−1.351) ±90 (−0.685)

0.9 0 1.635 0 0.701

±90 (−2.942) ±90 (−1.289)
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Table 6. Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction (N → ∞,
a/b = 1.0).

a/b = 1.0 Matrix

EI/EM b/d ψ σn ψ σt

(deg.) (deg.)

0 0 2.045

0.2 0 2.031

0.5 0 1.884

0 0.7 0 1.756

0.8 0 1.703

0.9 0 1.657

0 ±90 0.192 0 1.854

0.2 ±90 0.191 0 1.843

0.5 ±90 0.170 0 1.731

0.1 0.7 ±75 0.130 0 1.627

0.8 ±65 0.116 0 1.582

0.9 ±59 0.103 0 1.543

0 ±90 1.768 ±90 0.670

0.2 ±90 1.780 ±90 0.674

0.5 ±90 2.028 ±90 0.768

10 0.7 ±90 2.824 ±90 1.085

0.8 ±90 3.903 ±90 1.517

0.9 ±90 6.68 ±90 2.73

0 ±90 1.938 ±90 0.831

0.2 ±90 1.955 ±90 0.838

0.5 ±90 2.298 ±90 0.985

105 0.7 ±90 3.495 ±90 1.498

0.8 ±90 5.36 ±90 2.33

0.9 ±90 11.5 ±90 5.14

3.4. RELATION BETWEEN THE MAXIMUM STRESS AND THE NUMBER OF INCLUSIONN

Figures 13 illustrateσnmax vs. 1/N2 relation whena/b = 1.0 andb/d = 0.9, 0.7, 0.5, 0.2. It
appears as thoughσnmax is linearly related to 1/N2 for largeN . Therefore, the limiting values
of σnmax for N → ∞ can be obtained by extrapolation. For example, even in the case of
b/d = 0.9 in Figure 5, two extrapolated values obtained fromN = 8, 7 and fromN = 7, 6
coincide with each other to the fourth digit.

Tables 3, 4, 5 shows maximum stressesσn or σθ with their positions at the innermost
inclusion whenN →∞ for uniaxial tension in thex-direction. Tables 6, 7, 8 show maximum
stressesσn, σt with their positions at the innermost inclusion whenN → ∞ for uniaxial
tension in thez-direction.
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Table 7. Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction (N → ∞,
a/b = 2.0).

a/b = 2.0 Matrix

EI/EM b/d ψ σn ψ σt

(deg.) (deg.)

0 0 3.312

0.2 0 3.184

0.5 0 2.598

0 0.7 0 2.344

0.8 0 2.248

0.9 0 2.165

0 ±90 0.289 0 2.683

0.2 ±90 0.280 0 2.607

0.5 ±62 0.203 0 2.233

0.1 0.7 ±49 0.166 0 2.052

0.8 ±45 0.151 0 1.983

0.9 ±40 0.138 0 1.922

0 ±90 1.328 ±90 0.482

0.2 ±90 1.357 ±90 0.492

0.5 ±90 1.866 ±90 0.681

10 0.7 ±90 2.989 ±90 0.141

0.8 ±90 4.127 ±90 1.620

0.9 ±90 6.299 ±90 2.574

0 ±90 1.378 ±90 0.591

0.2 ±90 1.416 ±90 0.606

0.5 ±90 2.084 ±90 0.894

105 0.7 ±90 3.835 ±90 1.647

0.8 ±90 6.17 ±90 2.630

0.9 ±90 12.8 ±90 5.446

4. Conclusions

In this study, a row of ellipsoidal inclusions in an infinite body under tension in thex- and
z-directions are considered in terms of singular integral equations of the body force method.
The asymmetric tension problem in thex-direction is solved on the superposition of two
auxiliary loads, biaxial tension in thexy-plane, and plane state of pure shear in thexy-plane.
In order to satisfy the boundary conditions, the unknown functions are approximated by a
linear combination of fundamental density functions and ploynomials. The present method is
found to yield rapidly converging numerical results and smooth stress distribution along the
boundary. The maximum stresses and interface stresses are shown in tables and figures for
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Table 8. Maximum stress of ellipsoidal inclusions
for uniaxial tension in thez-direction (N → ∞,
a/b = 0.5).

a/b = 0.5 Matrix

EI/EM b/d ψ σn ψ σt

(deg.) (deg.)

0 0 1.440

0.2 0 1.438

0.5 0 1.411

0 0.7 0 1.372

0.8 0 1.350

0.9 0 1.328

0 ±90 0.139 0 1.380

0.2 ±90 0.139 0 1.378

0.5 ±90 0.135 0 1.357

0.1 0.7 ±90 0.122 0 1.322

0.8 ±90 0.105 0 1.302

0.9 ±77 0.078 0 1.282

0 ±90 2.668 ±90 1.026

0.2 ±90 2.674 ±90 1.029

0.5 ±90 2.811 ±90 1.081

10 0.7 ±90 3.283 ±90 1.262

0.8 ±90 4.020 ±90 1.548

0.9 ±90 6.359 ±90 2.479

0 ±90 3.279 ±90 1.405

0.2 ±90 3.290 ±90 1.410

0.5 ±90 3.519 ±90 1.508

105 0.7 ±90 4.336 ±90 1.858

0.8 ±90 5.680 ±90 2.435

0.9 ±90 11.43 ±90 4.87

various shape, spacing, and elastic ratio of inclusions. Tuchida’s results for spheroidal cavities
coincide with the present results to the fourth digit in most cases.

WhenEI/EM > 1, the primary feature of the interaction is a large compressive stressσn
for uniaxial tension in thex-direction and a large tensile stressσn for uniaxial tension in thez-
direction. WhenEI/EM < 1, the most important part of the interaction is a large tensile stress
σθ for uniaxial tension in thex-direction, and a large tensile stressσt for uniaxial tension in
the z-direction. Whenb/d andEI/EM are fixed, the interaction effects are dominant when
a/b is large as shown in Figures 5–10. A linear relationship is found between the maximum
stress and 1/N2, whereN is the number of inclusions. Using these relationship, the limiting
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values forN →∞ are obtained. The maximum stress forN →∞ are tabulated for uniaxial
tension in thex- andz-directions.
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