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Abstract. In rolling/sliding contact fatigue, it is known that the crack propagates at a characteristic angleθ = 15–
30 deg to the surface. To analyze the mechanism, however, the body force method has been widely used assuming
3D crack models forθ = 45–90. In this study, therefore, the unknown body force densities are newly approximated
by using fundamental density functions and polynomials. Then, a semi-elliptical crack model is analyzed for
θ = 15–90 under compressive residual stresses and Hertzian contact loads. The stress intensity factorsKII ,KIII
are calculated with varying the crack shapeb/a, inclination crack angleθ , and crack face friction coefficientµ.
The calculations show that the present method is useful for the analysis forθ = 15–30 deg with high accuracy.
It is seen that theKII -values whenb/a → 0 are larger than the ones whenb/a = 1 by 0–24% for both under
compressive residual stress and Hertzian contact load. Regarding the maximumKII values under Hertzian contact
load, the results ofθ = 15 deg are smaller than the ones ofθ = 45 deg by 23–34%. Regarding the amplitude
of (KII max− KII min), the results ofθ = 15 deg are smaller than the ones ofθ = 45 deg by 4–24%. With
increasing the value of friction coefficientµ for crack faces the value ofKII decreases significantly. When the
crack is short and the inclination angleθ is small, the value of friction coefficientf for Hertzian contact load
largely affect theKII value.

Key words: Stress intensity factor, tribology, contact problem, friction coefficient, fracture mechanics, rolling
contact fatigue, surface crack, body force method.

Nomenclature

a,b= radius of a semi-elliptical crack

c= half width of Hertzian contact

e= distance from cracktip to contact centerline

E= Young modulus

f = coefficients of friction for Hertzian contact

β = parametric angle of ellipse from free surface

µ = coefficients of friction for crack faces

ν = Poisson’s ratio

θ = crack angle from the surface

θ(cr) = critical loading crack angle below which there is no crack face sliding at the

crack tip

ψ = crack inclination angle= π/2− θ
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1. Introduction

Recently, fracture mechanics approach has been widely applied to investigate the mechanism
involved with rolling contact fatigue although many studies have been made since the experi-
ments of Way (1935). Keer and Bryant (1983) used a 2D crack model in a semi-infinite plate
under Hertzian contact load with a Paris law to calculate fatigue lives, which is in agreement
in order of magnitude to experimentally measured life times. Bower (1988) indicated that
entrapped lubricant can keep part of surface crack open during the loading cycle also by
using a 2D model. On the other hand, Murakami et al. (1985) and Kaneta et al. (1985, 1986)
applied a 3D model of an inclined semicircular crack in a semi-infinite body, and analytically
confirmed that the crack on the follower surface propagates more easily than that on the driver
surface. Hanson and Keer (1992) and Kuo et al. (1997) discussed single and multiple crack
propagation also by using 3D models with a modified Paris law. Ichimaru et al. (1992, 1994)
considered the effect of surface roughness by the application of 3D model. Murakami et al.
(1994) performed a 3D analysis for an arrow-headed crack shape developed under contact
loading.

All of those 3D analyses have been carried out by the application of the body force method
(Nisitani, 1967; Nisitani-Murakami, 1974). Then, the stress intensity factors of a surface
crack inclined mainlyθ = 45–90 deg to the surface are discussed (see Table 1). However,
in contact fatigue it is well-known that the crack propagates at a characteristic angleθ = 15–
30 deg to the surface. As indicated in Table 1 the body force method has been applied to
3D crack analysis by many researchers because of its usefulness. However, if the crack is
very shallow, the convergence and compliance of the boundary condition becomes bad due
to the predominant effect of the surface. In Table 2 the stress intensity factors of an inclined
2D crack in a semi-infinite plate are compared. Nisitani’s results (1975) are obtained by the
body force method, where unknown functions are approximated by using fundamental density
functions and ‘N-step function’ with extrapolationN →∞. Isida (1979) also used the body
force method and resultant boundary conditions with ‘linear functions’. Both Nisitani’s and
Isida’s results have some errors for the small angle ofθ . Noda-Oda’s results (1992) using
‘polynomials’ look reliable because of the coincidence with Hasebe-Inohara’s (1980) results
using conformal mapping. The error involved in the conventional body force method may be
larger for 3D shallow crack problems because of the difficulty of analysis.

In the previous papers, numerical solutions of the singular integral equations of the body
force method for crack problems have been considered. Then, the conclusions can be summa-
rized as follows.

(1) The unknown body force densities are approximated by using fundamental density
functions and polynomials. In 2D crack problems, it is found that the new method gives rapidly
converging results with shorter CPU time compared with the conventional method using step
functions (Noda-Oda, 1992).

(2) In 3D crack problems it is difficult to satisfy the boundary conditions through the entire
crack surface. In the conventional method, for example, the boundary condition is considered
and satisfied only at the collocation points. However, in the proposed method the boundary
condition is found to be satisfied within the error of 3× 10−3 throughout the crack surface
(Noda-Miyoshi, 1995).

(3) The new method is found to yield smooth variation of stress intensity factor with highly
satisfied boundary conditions even for 3D mixed mode shallow cracks (Noda et al., 1999).
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Table 1. Examples of previous studies and edge crack models under
rolling/sliding contact load

Researcher Model θ (deg)

Keer and Bryant (1983) a 2D crack 25

Bower (1988) a 2D crack 25

Murakami et al. (1985) a 3D semi-circular crack 45, 90

Kaneta et al. (1985) a 3D semi-circular crack 45

Hanson and Keer (1992) a 3D semi-circular crack 22.5, 45

Ichimura et al. (1994) a 3D semi-circular crack 45

Murakami et al. (1994) a 3D arrow head shaped crack 45

Kuo et al. (1997) multiple semi-circular cracks 45

Table 2. Comparison of the results of a 2D edge crack under tension

θ Noda et al. Nisitani Isida Hasebe

deg F| F‖ F| F‖ F| F‖ F| F‖

10 0.1621 0.1734 0.162 0.174

15 0.2318 0.2261 0.225 0.228 0.239 0.219 0.232 0.226

20 0.3054 0.2710 0.305 0.271

22.5 0.3436 0.2905 0.335 0.301

30 0.4625 0.3326 0.461 0.337 0.461 0.338 0.463 0.336
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Figure 1. Problem of analysis. (a) A semi-elliptical surface crack subjected to rolling/sliding Hertzian contact. (b)
A semi-elliptical surface crack under compressive residual stress. (c) Shape of crack.

In this study, therefore, the method will be applied to the crack surface contact problem for
the small angle ofθ . Then, the effect of crack shape, inclination angle, and friction coefficient
in crack surface will be discussed in detail.

2. Singular integral equation of the body force method for a mixed mode surface crack

Consider a semi-infinite body having an inclined semi-elliptical crack under Hertzian contact
load, or uniform compressive stressσ ′∞2 as shown in Figures 1(a) and 1(b). Here,z′x-plane is
free from stress, and a semi-elliptical crack with principal diameters 2a and 2b is embedded
on thexy plane having an inclination angleψ to thexy′ plane. The body force method is
used to formulate the problem as a system of singular integral equations, whose unknowns are
body forces densitiesfyz(ξ, η), fzx(ξ, η). Here,(ξ, η, ζ ) is a (x, y, z) coordinate where the
body force is applied. The body force densities are equivalent to crack opening displacements
Ux(xa, yb), Uy(xa, yb), Uz(xa, yb) as shown in Equation (1d) (Noda-Oda, 1992).
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y = y′/ cosψ, z = z′/ cosψ, r1 =
√
(x − ξ)2+ (y − η)2,

S = {(ξ, η) | (ξ/a)2+ (η/b)2 ≤ 1, η ≤ 0},
(1c)

Ux(xa, yb) = ux(xa, yb,+0)− ux(xa, yb,−0) = 2(1+ ν)
E

fzx(xa, yb),

Uy(xa, yb) = uy(xa, yb,+0)− uy(xa, yb,−0) = 2(1+ ν)
E

fyz(xa, yb),

Uz(xa, yb) = uz(xa, yb,+0)− uz(xa, yb,−0) = (1+ 2ν)(1+ ν)
E(1− ν) fzz(xa, yb) = 0.

(1d)

In the present solution it is assumed that partial crack opening/closure is not encountered
(see Equation (1d)). Equations (1a) and (1b) enforce boundary conditions at the prospective
boundary S for crack; that is,τzx = τ ∗zx , τyz = τ ∗yz. Equation (1) includes singular terms in
the form of 1/r3

1, 1/r5
1 corresponding to the ones of an elliptical crack in an infinite body.

Therefore the integration should be interpreted as a Hadamard’s sense (1923) in the region S.
The notationKfzx

yz (ξ, η, x, y, ψ) refers to a function that satisfies the boundary condition for
free surface. The expressions ofKfzx

yz (ξ, η, x, y, ψ) can be derived from the stress field due
to a point force in a semi-infinite body (Mindlin, 1936, Tokumoto, 1981; Murakami, 1985;
Kobayashi, 1996). The stressesτ ∗zx , τ ∗yz in Equation (1a), (1b) can be expressed as follows by
taking an example of compressive residual stress. The expressions for rolling/sliding contact
loading are shown in the Appendix.
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τyz∗ =
 σ ′z cosψ sin ψ − µσz0 if σ ′∞z cosψ sin ψ − µσz ≥ 0,

0 if σ ′∞z cosψ sin ψ − µσz < 0,
τzx∗ = 0,

σz0 = σ ′∞z cos2ψ − 1
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3. Numerical solution of singular integral equations

In the conventional body force method (Nisitani, 1967), the crack region is divided into sev-
eral elements and unknown functions of the body force densities have been approximated by
using fundamental density functions and step functions. However, the expressions using step
functions give rise to singularities along the element boundaries, and they tend to deteriorate
the accuracy and validity in sophisticated problems. In the present analysis, the following
expressions have been used to approximate the unknown functionsfyz(ξ, η), fzx(ξ, η) as
continuous functions. First, we put

fyz(ξ, η) = Fyz(ξa, ηb)wyz(ξa, ηb),
fzx(ξ, η) = Fzx(ξa, ηb)wzx(ξa, ηb),
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C(k) = (k2+ νk′2)E(k)− νk′2K(k),

k′ = b/a ≤ 1, k = √1− (b/a)2, ξa = ξ/a, ηb = η/b,

K(k) =
∫ π/2

0

dλ√
1− k2 sin2 λ

, K(k) =
∫ π/2

0

√
1− k2 sin2 λ dλ.

(2)

Here,wyz(ξa, ηb), wzx(ξa, ηb) are called fundamental density functions, which express the
stress field due to an elliptical crack in an infinite body under the stressesτ∞yz , τ∞zx and lead
to solutions with high accuracy. In numerical calculations, we can putτ∞yz = τ∞zx = 1. Using
the expression (2), Equation (1a) is reduced to Equation (3), where unknowns areFyz(ξa, ηb),
Fzx(ξa, ηb), which are called weight functions.
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Since the problem is symmetric with respect toy axis, the expressions (4) can be applied to
approximate symmetric unknown functionsFyz(ξa, ηb), Fzx(ξa, ηb).
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Using the approximation method mentioned above, we obtain the following system of al-
gebraic equations for the determination ofFyz(ξa, ηb), Fzx(ξa, ηb). The unknown coefficients
β0 ∼ βl, γ0 ∼ γl [n = 1, 2, . . . , l, l = (1/2) (n + 1)(n + 2)] are then determined from
Equation (5) by selecting a set of collocation points.
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In Equation (5b)B
fyz
yz,i,B

fzx
yz,i can be evaluated easily because of no singularity. However,A

fyz
yz,i,

A
fyz
yz,i have singularities when the point(x, y) coincides with(ξ, η). In this case the integration

can be evaluated in a similar way shown in the previous paper (Noda and Miyoshi, 1996).

4. Numerical results and discussion

4.1. CONVERGENCE OF THE RESULTS

Numerical calculations have been carried out with varyingn in Equation (4) whenb/a = 0.5,
1.0. Poisson’s ratioν = 0.3 is assumed. Numerical integrals have been performed using
scientific subroutine library (FACOM SSL II DAQE, etc.). In demonstrating the numerical
results of stress intensity factors of mode II and III the following dimensionless factors will
be used.
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Fyz = Fyz(ξa, ηb) |ξa=cosβ,ηb=sin β, Fzx = Fzx(ξa, ηb) |ξa=cosβ,ηb=sin β .

(6)

Here, the notationp0 refers to the pressure of Hertzian contact load or compressive residual
stress as shown in Figure 1.

In previous studies, the stress intensity factors are mainly obtained assumingθ ≥ 45 deg.
Generally, very accurate analysis for small values ofθ < 45 deg is difficult because of the
predominant effect of free surface. Table 3 shows the convergence of the present analysis
whenθ = 30 deg,b/a = 1.0, a/c = 2.0, e/c = 1.0 in Figure 1(a) with increasingn. As
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Figure 2. Compliance of boundary conditionτyz = 0, τzx = 0 whenb/a = 1.0, θ = 30◦, a/c = 2.0, e/c = 1.0,
f = µ = 0, ν = 0.3 in Figure 1(a).

shown in Table 3, the results have good convergence to about fourth digit. Figure 2 indicates
the compliance of the boundary conditions along the prospective crack surface. The remaining
stressesτyz andτzx are less than 2× 10−4 whenn = 20. It is seen that the present method
gives accurate results even ifθ < 45 deg.

4.2. RESULTS UNDER COMPRESSIVE RESIDUAL STRESS INFIGURE 1(B)

Table 4 and Figures 3 and 4 show the stress intensity factors at the deepest pointFII (β = 90◦)
under uniform compressive stress. The results ofb/a→ 0 refer to two-dimensional solutions,
which are shown in the appendix. The 3D results approach the 2D results smoothly asb/a→
0. From Figure 3, it is seen the absolute value ofFII (β = 90◦) under tension is smaller than
the value under compression whenµ = 0. Since the results under tension are equivalent to
the results under compression if the crack faces are allowed to overlap, crack face contact
without friction increases the value ofFII compared with the unphysical case of overlapping.
With increasing the value of friction coefficientµ the value ofFII decreases significantly (see
Figure 4). It should be noted that there is zero sliding mode stress intensity factor, i.e.,FII = 0
for all values ofβ if and µ 6= 0 andθ < θcr , which is a critical loading crack angle below
which there is no crack face sliding at the crack tip. From Figures 3 and 4, it is seen that the
FII values forb/a = 1 are smaller than the ones forb/a → 0 by 0–24%. Figures 5 and 6
indicate the variation ofFII , FIII along the crack front whenθ = 45, 30 deg.

4.3. RESULTS UNDERHERTZIAN CONTACT LOAD IN FIGURE 1(A) WHEN f = µ = 0

Figures 7–9 indicate the values ofFII (β = 90◦) whenθ = 45, 30, 15 deg, respectively, and
f = µ = 0. From Figures 7–9 it is also seen that theFII values forb/a = 1 are smaller than
the ones forb/a → 0 by 0–24%. Whenθ = 45 deg the results of Ichimaru et al. (1992) for
a semicircular crack are in good agreement with the present results forb/a = 1. Regarding
the maximumFII values, the results ofθ = 15 deg are smaller than the ones ofθ = 45 deg
by 23–24%. Regarding the amplitude of(FII max− FII min), the results ofθ = 15 deg are
smaller than the ones ofθ = 45 deg by 4–24%. As examples, variations of mode II and mode
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l.Table 3. Convergence of dimensionless stress intensity factorsFII (β), FIII (β) along the crack front whenb/a = 1.0, θ = 30 deg,a/c = 2.0, e/c = 1.0,
f = µ = 0, ν = 0.3 in Figure 1(a)

β (deg) 1 3 5 7 9 10 20 30 40 50 60 70 80 90

n

17 −0.01007−0.00797−0.00632−0.00400−0.00103 0.00065 0.02420 0.05864 0.09692 0.12996 0.15269 0.16569 0.17193 0.17373

FII 18 −0.01010−0.00805−0.00640−0.00403−0.00103 0.00065 0.02421 0.05864 0.09692 0.12996 0.15269 0.16569 0.17193 0.17374

19 −0.01010−0.00808−0.00643−0.00403−0.00103 0.00064 0.02422 0.05864 0.09692 0.12996 0.15269 0.16569 0.17193 0.17372

20 −0.01010−0.00811−0.00644−0.00403−0.00103 0.00064 0.02422 0.05864 0.09692 0.12996 0.15269 0.16569 0.17193 0.17374

17 0.01403 0.01331 0.01549 0.01902 0.02326 0.02558 0.05154 0.07263 0.08117 0.07597 0.06104 0.04158 0.02085 0.00000

FIII 18 0.01400 0.01334 0.01556 0.01906 0.02327 0.02558 0.05153 0.07262 0.08117 0.07597 0.06104 0.04158 0.02086 0.00000

19 0.01405 0.01337 0.01560 0.01909 0.02327 0.02557 0.05154 0.07262 0.08116 0.07597 0.06104 0.04158 0.02086 0.00000

20 0.01411 0.01338 0.01561 0.01908 0.02326 0.02556 0.05154 0.07262 0.08116 0.07597 0.06104 0.04158 0.02086 0.00000
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Table 4. Dimensionless stress intensity factorFII (β = 90◦) in Figure 1(b)

b/a µ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

θ (deg)

FII 75 0.2772 0.0709 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

→ 0 60 0.4686 0.3096 0.1470 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 0.5321 0.4279 0.3226 0.2160 0.1084 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.4676 0.4113 0.3554 0.2998 0.2446 0.1902 0.1366 0.0843 0.0330 0.0000

75 0.2557 0.0657 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 60 0.4285 0.2849 0.1364 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 0.4843 0.3917 0.2971 0.2005 0.1014 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.4276 0.3775 0.3274 0.2773 0.2273 0.1777 0.1284 0.0796 0.0314 0.0000

75 0.2116 0.0543 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 60 0.3570 0.2373 0.1136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 0.4054 0.3284 0.2496 0.1688 0.0857 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.3581 0.3170 0.2758 0.2344 0.1930 0.1515 0.1101 0.0686 0.0273 0.0000

III stress intensity factors are indicated in Figure 10 for three cases taken from Figures 7–9,
that is, (a)b/c = 1.0, e/c = 0.0, (b)b/c = 2.0, e/c = 1.0, and (c)b/c = 0.5, e/c = −0.5.

4.4. RESULTS UNDERHERTZIAN CONTACT LOAD WHEN b/a→ 0, f 6= 0,µ 6= 0 IN

FIGURE 1(A)

In the present solution it is assumed that partial crack opening/closure is not encountered
(see Equation (1d)); however, if the friction coefficientf 6= 0, a part of the crack sometimes
opens. Figures 3, 4, 7–9 indicate that 3D results can be estimated from the results ofb/a→ 0
because theFII values forb/a = 1 are always smaller than the ones forb/a→ 0 by 0–24%.
In this section, therefore, the results whenb/a → 0, f 6= 0, µ 6= 0, in Figure 1(a) will
be shown. The detail of the 2D solution is indicated in the appendix. Figures 11–13 indicate
stress intensity factors at the deepest pointFII (β = 90◦) with varying coefficients of friction
f andµ whenb/a → 0 andθ = 45, 15 deg in Figure 1(a). From Figures 12–14 it is seen
that theFII values ofθ = 15 deg are smaller than the ones ofθ = 45 deg. by about 28–34%.
Regarding the amplitude of(FII max− FII min), the results ofθ = 15 deg are smaller than
the ones ofθ = 45 deg by 5–24%. From Figures 11–13 it is seen that theKII value is largely
affected by the value of friction coefficientf for Hertzian contact load when the crack is short
and the inclination angleθ is small.

5. Conclusion

In rolling/sliding contact fatigue, it is known that the crack propagate at a characteristic angle
θ = 15–30 deg to the surface. To analyze the mechanism, however, the body force method has
been widely applied to crack propagation models forθ = 45–90 because the accuracy forθ =
15–30 is not very good due to predominant effect of the surface. In this study, therefore, the
unknown body force densities are newly approximated by using fundamental density functions
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Figure 3. Comparison ofFII (β = 90◦) between tension and compression whenb/a =→ 0, 0.5, 1.0 andµ = 0.

and polynomials. Then, a semi-elliptical crack is analyzed forθ = 15–90 under compressive
residual stresses and Hertzian contact loads. The conclusions can be made as follows.

(1) The calculations show that the present method is useful for the analysis of cracks
at an angle ofθ = 15–30 deg with high accuracy (see Table 3, Figure 2). Stress intensity
factors were indicated with varying the inclination angleθ , semi-elliptical crack shapeb/a,
and friction coefficient at the crack facesµ.

(2) It is seen that theKII -values at the deepest point of the crack whenb/a→ 0 are larger
than theKII -values whenb/a = 1 by 0–24% for both under compressive residual stress and
Hertzian contact load.

(3) Regarding the maximumFII values under Hertzian contact load, the results ofθ =
15 deg. are smaller than the ones ofθ = 45 deg by 23–34%. Regarding the amplitude of
(FII max− FII min), the results ofθ = 15 deg are smaller than the ones ofθ = 45 deg by
4–24%.

(4) With increasing the value of friction coefficientµ for crack faces the value ofFII
decreases significantly (See Figures 4, 11–13). The crack face contact without friction in-
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Figure 4. FII (β = 90◦) vs.θ with varyingµ andb/a in Figure 1(b).

Figure 5. Variation ofFII (β), FIII (β) along the crack front whenθ = 45 deg in Figure 1(b).
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Figure 6. Variation ofFII (β), FIII (β) along the crack front whenθ = 30 deg in Figure 1(b).

Figure 7. FII (β = 90◦) vs.e/c whenθ = 45◦, f = µ = 0 ,ν = 0.3 in Figure 1(a) forb/c = 0.5, 1.0, 2.0.
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Figure 8. FII (β = 90◦) vs.e/c whenθ = 30◦, f = µ = 0, ν = 0.3 in Figure 1(a) forb/c = 0.5, 1.0, 2.0.

creases theKII value compared with the unphysical case when the crack faces are overlapped
(Figure 3).

(5) When the crack is short and the inclination angleθ is small, the value of friction
coefficientf for Hertzian contact load largely affect theKII value (see Figures 11–13).
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Appendix. Solution for a two-dimensional partial crack opening/closure model under
Hertzian contact load for 2D crack problems

Consider a semi-infinite body having an edge crack with diameterb2 and lengthb1 is opening
as shown in Figure 14. The body force method is used to formulate the problem as a system of
integral equations whose unknowns are body forces densitiesP1(ξ), P2(ξ) distributed along
the prospective crack surface.
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Figure 9. FII (β = 90◦) vs.e/c whenθ = 15◦, f = µ = 0, ν = 0.3 in Figure 1(a) forb/c = 0.5, 1.0, 2.0.

=
∫ b1

0

P1(ξ)

(ξ − x1)
2

dξ +
∫ b1

0
K11(ξ, x1)P1(ξ) dξ +

∫ b2

0
K12(ξ, x1)P2(ξ) dξ =

= −π (κ + 1)2

2(κ − 1)
p0(x1),

(7a)

=
∫ b2

0

P2(ξ)

(ξ − x2)2
dξ +

∫ b1

0
K21(ξ, x2)P1(ξ) dξ +

∫ b2

0
K22(ξ, x2)P2(ξ) dξ =

= −π κ + 1

2
q0(x2),

(7b)

Here,[0, b1] is an integral interval for the body forces density of tension typeP1(ξ), and[0, b2]
is an integral interval for the one of shear typeP2(ξ). The notation=∫ should be interpreted
as a finite part integral in the region. The notationsKij (ξ, xi)(i, j = 1,2) are functions that
satisfies the boundary condition for a straight edge, andp0(x1), q0(x2) are surface tractions
that should be zero by the distribution of body forces (Smith-Liu, 1953).



Effect of crack shape, inclination angle, and friction coefficient383

Figure 10. Variations ofFII (β), FIII (β) along the crack front whenθ = 45◦, 30◦, 15◦, n = 20, ν = 0.3 in
Figure 1(a). (a)b/c = 1.0, e/c = 0.0 (b) b/c = 2.0, e/c = 1.0 (c)b/c = 0.5, e/c = −0.5 (for these three cases
are taken from Figures 7–9).

p0(x1) = σn,

q0(x2) =



τns if 0 ≤ x2 ≤ b1,

τns + µ(σn − σ ′n) if b1 ≤ x2 ≤ b2, τns > 0, |τns | > µ|σn|,
τns − µ(σn − σ ′n) if b1 ≤ x2 ≤ b2, τns < 0, |τns | > µ|σn|,

0 if b1 ≤ x2 ≤ b2, |τns | < µ|σn|n
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Figure 11. FII (β = 90◦) vs.e/c whenb/a =→ 0, b/c = 0.5, andν = 0.3 with varyingf andµ in Figure 1(a).
(a)θ = 45◦ (b) θ = 15◦.

σn = (σ nx + σ tx) sin2 θ + (σ ny + σ ty) cos2 θ − 2(τnxy + τ txy) sin θ cosθ,

τns = [(σ nx + σ tx)− (σ ny + σ ty)] sin θ cosθ + (τnxy + τ txy)(sin2 θ − cos2 θ),

σ nx = −
P0

π
y0

(
c2 + 2x2

0 + 2y2
0

c
F − 2π

c
− 3x0G

)
,

σ ny = −
P0

π
y0(cF − x0G), τnxy = −

P0

π
y2

0G,

σ tx = −
fP0

π

[
(2x2

0 − 2c2 − 3y2
0)G+ 2π

x0

c
+ 2(c2− x2

0 − y2
0)
x0

c
F
]
,

σ ty = −
fP0

π
y2

0G, τ txy = −
fP0

π

[
(c2+ 2x2

0 + 2y2
0)
y0

c
F − 2π

y0

c
− 3x0y0G

]
,

F = π

K1

(
1+

√
K2

K1

)/
√
K2

K1

√√√√2

√
K2

K1
+
(
K1+K2 − 4c2

K1

) ,

(7c)
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Figure 12. FII (β = 90◦) vs. e/c whenb/a =→ 0, b/c = 1.0, andν = 0.3 with varyingf andµ in Figure 1
(a). (a)θ = 45◦ (b) θ = 15◦.

G = π

K1

(
1−

√
K2

K1

)/
√
K2

K1

√√√√2

√
K2

K1
+
(
K1+K2− 4c2

K1

) ,
K1 = (c + x0)

2+ y2
0, K2 = (c − x0)

2+ y2
0,

σ ′n =
∫ b2

0
K12(ξ, x2)P2(ξ) dξ.

First, normalizing the interval[0, b1] of integration by defining

r = ξ

b1
, si = xi

b1
, fi(r) = Pi(ξ)

b1
, (i = 1,2), (8)

the integral Equation (7a) becomes
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Figure 13. FII (β = 90◦) vs.e/c whenb/a =→ 0, b/c = 2.0, andν = 0.3 with varyingf andµ in Figure 1(a).
(a)θ = 45◦ (b) θ = 15◦.

Figure 14. Model of 2D edge crack subjected to rolling/sliding Hertzian contact (f = coefficients of friction for
Hertzian contact,µ = coefficients of friction for crack faces).
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=
∫ 1

0

f1(r)

(r − s1)2 dr +
∫ 1

0
k11(r, s1)f1(r) dr +

∫ b2

0
k12(r, s1)f2(r) dr =

= −π (κ + 1)2

2(κ − 1)
p(s1)

(
b∗2 =

b2

b1

)
.

(9)

Second, normalizing the interval[0, b2] of integration by defining

t = ξ

b2
, ui = xi

b2
, gi(t) = Pi(ξ)

b2
, (i = 1,2), (10)

the integral Equations (7b) becomes

=
∫ 1

0

g2(t)

(t − u2)2
dt +

∫ b∗1

0
k21(t, u2)g1(t) dt +

∫ 1

0
k22(t, u2)g2(t) dt

= −π κ + 1

2
q(u2)

(
b∗1 =

b1

b2

)
.

(11)

The unknown functionfi(r) is approximated by the product of the fundamental density
functionwi(r), (i = 1,2) and Chebyshev polynomial as shown in the following equations.

w1(r) = (κ + 1)2

2(κ − 1)

√
1− r2, w2(r

∗) = κ + 1

2

√
1− r∗2,

w1(t
∗) = (κ + 1)2

2(κ − 1)

√
1− t∗2, w2(t) = κ + 1

2

√
1− t2,

f1(r) = F1(r)w1(r), F1(r) =
N−1∑
n=0

anUn(r),

f2(r) = 1

C0
FII (r

∗)w2(r
∗), FII (r

∗) =
N−1∑
n=0

enUn(r
∗),

g1(t) = C0F1(t
∗)w1(t

∗), FI (t
∗) =

N−1∑
n=0

anUn(t
∗),

g2(t) = FII (t)w2(t), FII (t) =
N−1∑
n=0

enUn(t),

r∗ = b1

b2
r, t∗ = b2

b1
t, C0 = b1

b2
.

(12)

We cannot know the dimension of contact length(b2−b1) in advance. In this analysis, several
values ofb2 are assumed; then, the correct valueb1 is found through examining the crack
opening displacement. If smooth distribution of crack opening displacement is obtained from
x = 0 tox = b2, the assumed value ofb1 seems correct.

The integral involves a singular term is calculated by using the following expression

=
∫ 1

0

Un(r)
√

1− r2

(r − si)2 dr = −π(n+ 1)Un(si). (13)
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Other integrals not involving singular terms can be evaluated by using numerical integration.
Equations (9) and (11) are reduced to the following equations in order to use Equation (13).

=
∫ 1

−1

f1(r)

(r − s1)2 dr −
∫ 0

−1

f1(r)

(r − s1)2 dr +
∫ 1

0
k11(r, s1)f1(r) dr+

+
∫ b2

0
k12(r, s1)f2(r) dr = −π (κ + 1)2

2(κ − 1)
p(s1),

=
∫ 1

−1

g2(t)

(t − u2)
2

dt −
∫ 0

−1

g2(t)

(t − u2)
2

dt +
∫ b1

0
k21(t, u2)g1(t) dt+

+
∫ 1

0
k22(t, u2)g2(t) dt = −π κ + 1

2
q(u2).

(14)

By substituting Equations (12) and (13) into Equation (14), we have 2N algebraic equations
for the determination of unknown coefficientsan, en.

N−1∑
n=0

[an{−π(n+ 1)Un(s1)+ An(s1)} + enBn(s1)] = −πp(s1),

N−1∑
n=0

[anCn(u2)+ en{−π(n+ 1)Un(u2)+Dn(u2)}] = −πq(u2),

An(s1) = −
∫ 0

−1

Un(r)
√

1− r2

(r − s1)2 dr +
∫ 1

0
k11(r, s1)Un(r)

√
1− r2 dr,

Bn(s1) = κ − 1

κ + 1

1

C0

∫ b1

0
k12(r, s1)Un(r

∗)
√

1− r∗2 dr,

Cn(u2) = κ + 1

κ − 1
C0

∫ b1

0
k21(t, u2)Un(t

∗)
√

1− t∗2 dt,

Dn(u2) = −
∫ 0

−1

Un(t)
√

1− t2
(t − u2)

2
dt +

∫ 1

0
k22(t, u2)Un(t)

√
1− t2 dt,

s1 = 1

2

[
1+ cos

(
2j

2M + 1
π

)]
,

u2 =


b1

2b2

[
1+ cos

(
2j

2M1 + 1
π

)]
if 0 < u2 <

b1

b2
,

b1

b2
+ b2 − b1

2b2

[
1+ cos

(
2j

2M2 + 1
π

)]
if

b1

b2
< u2 < 1,

0< s1, u2 < 1, M1+M2 = M(= N).
The stress intensity factors can be calculated from the following equations.

KI = FI (1)
√
πb1, KII = FII (1)

√
πb2. (15)
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