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Abstract. This paper deals with an interaction problem of arbitrarily distributed elliptical inclusions under lon-
gitudinal shear loading. The problem is formulated as a system of singular integral equations with Cauchy-type
or logarithmic-type singularities, where unknown functions are the densities of body forces distributed in the
longitudinal directions of infinite bodies having the same elastic constants as those of the matrix and inclusions.
In order to satisfy the boundary conditions along the elliptical inclusions, four kinds of fundamental density
functions are introduced in a similar way of previous papers treating plane stress problems. Then the body force
densities are approximated by a linear combination of those fundamental density functions and polynomials. In
the analysis, elastic constants of matrix and inclusion are varied systematically; then the magnitude and position
of the maximum stress are shown in tables and the stress distributions along the boundary are shown in figures.
For any fixed shape, size and elastic constant of inclusions, the relationships between number of inclusions and
maximum stress are investigated for several arrangements.

Key words: Body force method, elasticity, elliptical inclusion, interaction effect, longitudinal shear, numerical
analysis, singular integral equation stress concentration.

1. Introduction

It is well-known that most engineering materials contain some defects in the form of cracks,
voids or inclusions. To evaluate the effect of defects on the strength of structures, it is im-
portant to know the stress concentration of elliptical inclusions because they cover a wide
variety of particular cases, such as line and circular defects. Therefore elliptical and ellipsoidal
inclusion problems are treated by many researchers [1–4]. However arbitrary distributed ellip-
tical inclusions under longitudinal shear loading have not been treated yet. In this paper, the
interaction of distributed elliptical inclusions in an infinite body under longitudinal shear is
analyzed by extending the previous research [5] based on the body force method [6]. Then, the
magnitude and position of the maximum stress are examined, when the shape, position and
number of inclusions are varied. The results show that the introducing fundamental density
functions can yield rapid converging numerical results and satisfy the boundary conditions
along the entire boundary. It is also found that this method yields a smooth stress variation
along the boundary with high accuracy. Also, stress concentration factor of a row of elliptical
inclusions is extrapolated on the linear relationship between the maximum stress and the
number of inclusions.
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Figure 1. Arbitrarily distributed elliptical inclusions.

2. Numerical solution for singular integral equations under longitudinal shear loading

By taking an example of elliptical inclusions in an infinite body under longitudinal shearτ∞zx ,
τ∞yz shown in Fig. 1, the present method will be explained. The problem can be formulated
in terms of singular integral equations by using the stress field at an arbitrary point (xi , yi)
when a point force acts on another point (ξk, ηk) in an infinite body. The formation is simply
based on the principle of the superposition. Consider two infinite bodies. An infinite body
‘M’ has the same elastic constants as the ones of the matrix, and an infinite body ‘I ’ has the
same elastic constants as the ones of inclusions. DenoteτnzM , wM as stress and displacement
which appear along the prospective elliptical boundaries in the infinite body ‘M ’. In a similar
way, denoteτnzI , wI as stress and displacement which appear along the prospective elliptical
boundary in the infinite body ‘I ’. Then Equations (1) and (2) enforce the boundary conditions
at the i-th elliptical boundary; that is,τnzM − τnzI = 0,wM − wI = 0.
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i = 1∼ m, 06 θi 6 2π, (1)
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i = 1∼ m, 06 θi 6 2π. (2)

Here, ds is an infinitesimal arc length.θ ′i0 = θi0+ ψi; θi0 is the angle betweenx-axis and the
normal direction at the point (xi , yi) on thei-th ellipse,ψi is the angle betweenxi-axis and
x-axis. In Equations (1) and (2), the unknown functions are the body force densityρk∗zM(φk)
(k = 1, . . . , m) which is distributed in the infinite body ‘M ’, and the densityρk∗zI (φk)
(k = 1, . . . , m) which is distributed in the infinite body ‘I ’. Here,m is the number of
inclusions andφk is the angle that specifies the points where body forces are distributed. The
functionKFz

nzM(φk, θi) means the shear stress induced at the point when the body force with
unit density in thez-direction is acting at the infinitesimal arc length on thek-th elliptical
boundary. Equations (1) and (2) include Cauchy-type and logarithmic-type singularities, re-
spectively wheni = k. Therefore whenθ = φ andk = i, the integration in Equation (1)
should be interpreted as the meaning of Cauchy’s principle values. The unknown functions
ρk∗zM(φk) andρk∗zI (φk) in Equations (1) and (2) are expressed by the following equations.

ρk∗zM =
dFk∗zM

ds
, ρk∗zI =

dFk∗zI
ds

. (3)

Here, taking dFk∗zM for example, the notation is the component of the resultant of the
body force in the z-direction acting on the infinitesimal arc length ds of matrix. To solve
Equations (1) and (2) is to determine the body force densitiesρk∗zM(φk), ρ

k∗
zI (φk) in the range

0 6 φk 6 2π . Here, by taking an example ofρk∗zM(φk) how to determine unknown func-
tions will be explained. Consider the auxiliary functionsρk∗z1M(φk) ∼ ρk∗z4M(φk) defined by
Equation (4) instead ofρk∗zM(φk).

ρk∗z1M(φk) = {ρk∗zM(φk)+ ρk∗zM(π − φk)+ ρk∗zM(π + φk)+ ρk∗zM(−φk)}/4,
ρk∗z2M(φk) = {ρk∗zM(φk)+ ρk∗zM(π − φk)− ρk∗zM(π + φk)− ρk∗zM(−φk)}/4,
ρk∗z3M(φk) = {ρk∗zM(φk)− ρk∗zM(π − φk)− ρk∗zM(π + φk)+ ρk∗zM(−φk)}/4,
ρk∗z4M(φk) = {ρk∗zM(φk)− ρk∗zM(π − φk)+ ρk∗zM(π + φk)− ρk∗zM(−φk)}/4. (4)

These new functions must satisfy Equation (5) because of definition (4).
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ρk∗z1M(φk) = ρk∗z1M(π − φk) = ρk∗z1M(π + φk) = ρk∗z1M(−φk),
ρk∗z2M(φk) = ρk∗z2M(π − φk) = −ρk∗z2M(π + φk) = −ρk∗z2M(−φk),
ρk∗z3M(φk) = −ρk∗z3M(π − φk) = −ρk∗z3M(π + φk) = ρk∗z3M(−φk),
ρk∗z4M(φk) = −ρk∗z4M(π − φk) = ρk∗z4M(π + φk) = −ρk∗z4M(−φk). (5)

We should note that determining four auxiliary functionsρk∗z1M(φk) ∼ ρk∗z4M(φk) in the
range 06 φk 6 π/2, is equivalent to determining original unknown densityρk∗zM(φk) in the
range 06 φk 6 2π . In other words, if the auxiliary functionsρk∗z1M(φk) ∼ ρk∗z4M(φk) are given
in the range 06 φk 6 π/2, original unknown functionρk∗zM(φk) is expressed in the range
06 φk 6 2π using Equation (6).

ρk∗zM(φk) = ρk∗z1M(φk)+ ρk∗z2M(φk)+ ρk∗z3M(φk)+ ρk∗z4M(φk),
ρk∗zM(π − φk) = ρk∗z1M(φk)+ ρk∗z2M(φk)− ρk∗z3M(φk)− ρk∗z4M(φk),
ρk∗zM(π + φk) = ρk∗z1M(φk)− ρk∗z2M(φk)− ρk∗z3M(φk)+ ρk∗z4M(φk),
ρk∗zM(−φk) = ρk∗z1M(φk)− ρk∗z2M(φk)+ ρk∗z3M(φk)− ρk∗z4M(φk). (6)

The fundamental density functions for longitudinal shear problem are defined by the fol-
lowing Equation (7). Here, it should be noted thatwz3(φk) is the exact density to express a sin-
gle elliptical inclusion. Equations (7) are good examples of continuous auxiliary functions (4)
because they satisfy Equations (5).

wz1(φk) = nz(φk)/ cosφk,

wz2(φk) = nz(φk) tanφk,

wz3(φk) = nz(φk),
wz4(φk) = nz(φk) sin φk. (7)

Here, nz(φk) is the xk component of the normal unit vector at the point (xk , yk) on the
prospective boundary, and is expressed by the following equation.

nz(φk) = bk cosφk√
a2
k sin2 φk + b2

k cosφk

= cosθk0. (8)

The fundamental density functions defined by Equations (7) are shown in Fig. 2 for a circu-
lar boundary. Using Equations (7), original body force densities are expressed as shown in
Equation (9).

ρk∗z1M(φk) = ρkz1M(φk)wz1(φk),
ρk∗z2M(φk) = ρkz2M(φk)wz2(φk),
ρk∗z3M(φk) = ρkz3M(φk)wz3(φk),
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Figure 2. Fundamental density functions for circular boundary.

ρk∗z4M(φk) = ρkz4M(φk)wz4(φk), (9)

whereρkz1M(φk) ∼ ρkz4M(φk) are new unknown functions, which have been called weight
functions. Then, allρkz1M(φk) ∼ ρkz4M(φk)must satisfy Equation (10).

f (φk) = f (π − φk) = f (π + φk) = f (−φk). (10)

Finally, original unknown densitiesρk∗zM(φk) can be expressed in Equation (11) as a linear
combination of the fundamental densities and the weight functions. The discussion forρk∗zI (φk)
can be made in a similar way ofρk∗zM(φk).

ρk∗zM(φk) = ρkzM1(φk)wz1(φk)+ ρkzM2(φk)wz2(φk)+ ρkzM3(φk)wz3(φk)+ ρkzM4(φk)wz4(φk),

ρk∗zI (φk) = ρkzI1(φk)wz1(φk)+ ρkzI2(φk)wz2(φk)+ ρkzI3(φk)wz3(φk)+ ρkzI4(φk)wz4(φk). (11)

Here, all unknown weight functions can be approximated as shown in Equations (12) and (13).
The expressions satisfy Equation (10).

ρkz1M(φk) =
M/4∑
n=1

aknMtn(φk), ρ
k
z2M(φk) =

M/4∑
n=1

bknMtn(φk),

ρkz3M(φk) =
M/4∑
n=1

cknMtn(φk), ρ
k
z4M(φk) =

M/4∑
n=1

dknMtn(φk),

ρkz1I (φk) =
M/4∑
n=1

aknI tn(φk), ρ
k
z2I (φk) =

M/4∑
n=1

bknI tn(φk),

ρkz3I (φk) =
M/4∑
n=1

cknI tn(φk), ρ
k
z4I (φk) =

M/4∑
n=1

dknI tn(φk), (12)
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Figure 3. Two equal elliptical inclusions.i = 1: x = a cosθ1 cosψ1 − b sin θ1 sin ψ1 + x′
y = a cosθ1 sin ψ1+ b sin θ1 cosψ1+ y′ i = 2: x = a cosθ2, y = b sin θ2.

tn(φk) = cos{2(n− 1)φk}, (13)

whereM is the number of the collocation points in 06 φk 6 2π . Using the approximation
method mentioned above, we obtain the following system of linear equations for determining
the coefficientsaknM , bknM , . . . , dknI (k = 1, . . . ,m).

m∑
k=1

M/4∑
n=1

aknMAnM + bknMBnM + cknMCnM + dknMDnM + aknIAnI + bknIBnI + cknICnI+

+dknIDnI = −τ∞nzM + τ∞nzI ,
(14)

m∑
k=1

M/4∑
n=1

aknMEnM + bknMFnM + cknMGnM + dknMHnM + aknIEnI + bknIFnI + cknIGnI+

dknIHnI = −w∞M + w∞I ,
(15)

AnM = −(1/2)tn(θi) cosθi0/ cosθi +
∫ 2π

0
KFz
nzM(φk, θi)tn(φk)bk dφk. (16)

The notationsBnM ∼ HnI can be expressed in a similar manner. The stresses at an arbitrary
point are represented by a linear combination of the coefficientsaknM ∼ dknI (k = 1, . . . , m)
which is determined from the boundary conditions at suitably chosen collocation points and
the influence coefficients corresponding toAnM ∼ HnI . Using the numerical method men-
tioned above, we will discuss interaction effects of arbitrarily distributed elliptical inclusions
under longitudinal shear loading.
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Table 1. Maximum stress along the matrix interface of the central inclusion in Fig. 7 underτ∞zx = 0, τ∞yz = 1 (a/b = 1, Smax = τtzM max/τtzM0 or
Smax= τnz max/τnz0, τtzM0 = τtzM max |a/d→0, τnz0 = τnz max |a/d→0)

GI /GM a/d 0.0 0.0 0.2 0.4 0.6 0.8

N (deg.) τtzM0 (deg.) smax (deg.) smax (deg.) smax (deg.) smax (deg.) smax

6 0,180 ±2.000 0.180 1.000 0.0 1.027 0.0 1.128 0.0 1.384 0.0 2.147

7 0,180 ±2.000 0,180 1.000 0,180 1.029 0.180 1.134 0,180 1.400 0.180 2.204

0.0 8 0,180 ±2.000 0,180 1.000 0.0 1.029 0.0 1.137 0.0 1.414 0.0 2.261

∞ ±2.000 1.000 1.035 1.164 1.511 2.706

(1.000) (1.035) (1.164) (1.511) (2.705)

6 0,180 ±1.333 0,180 1.000 0.0 1.009 0.0 1.040 0.0 1.107 0.0 1.252

7 0,180 ±1.333 0,180 1.000 0,180 1.009 0,180 1.041 0,180 1.111 0.180 1.258

0.5 8 0,180 ±1.333 0,180 1.000 0.0 1.010 0.0 1.042 0.0 1.113 0.0 1.265

∞ ±1.333 1.000 1.011 1.050 1.132 1.307

N (deg.) τnz0 (deg.) smax (deg.) smax (deg.) smax (deg.) smax (deg.) smax

6 ±90.0 ±1.333 ±90.0 1.000 ±90.0 0.992 ±90.0 0.969 ±90.0 0.941 ±90.1 0.914

7 ±90.0 ±1.333 ±90.0 1.000 ±90.0 0.991 ±90.0 0.968 ±90.0 0.938 ±90.0 0.911

2.0 8 ±90.0 ±1.333 ±90.0 1.000 ±90.0 0.991 ±90.0 0.967 ±90.0 0.937 ±90.0 0.908

∞ ±1.333 1.000 0.989 0.961 0.924 0.888

6 ±90.0 ±2.000 ±90.0 1.000 ±90.0 0.975 ±90.0 0.913 ±90.0 0.844 ±90.1 0.790

∞ 7 ±90.0 ±2.000 ±90.0 1.000 ±90.0 0.974 ±90.0 0.910 ±90.0 0.838 ±90.0 0.782

8 ±2.000 ±90.0 1.000 ±90.0 0.973 ±90.0 0.908 ±90.0 0.835 ±90.1 0.778

∞ 1.000 0.969 0.892 0.807 0.74
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Table 2. Maximum stress along the matrix interface of the outermost inclusion (j = 1) in Fig. 7 underτ∞zx = 0, τ∞yz = 1 (a/b = 1,
Smax= τtzM max/τtzM0 or Smax= τnz max/τnz0, τtzM0 = τtzM max |a/d→0, τnz0 = τnz max |a/d→0)

GI /GM a/d 0.0 0.0 0.2 0.4 0.6 0.8

N (deg.) τtzM0 (deg.) smax (deg.) smax (deg.) smax (deg.) smax (deg.) smax

6 0.180 ±2.000 0.180 1.000 0.0 1.018 0.0 1.093 0.0 1.305 0.0 1.951

0.0 7 0.180 ±2.000 0.180 1.000 0.0 1.018 0.0 1.095 0.0 1.31O 0.0 1.975

8 0.180 ±2.000 0.180 1.000 0.0 1.018 0.0 1.096 0.0 1.314 0.0 1.993

∞ ±2.000 1.000 1.020 1.104 1.340 2.109

6 0.180 ±1.333 0.180 1.000 0.0 1.006 0.0 1.029 0.0 1.086 0.0 1.215

05 7 0.180 ±1.333 0.180 1.000 0.0 1.006 0.0 1.030 0.0 1.087 0.0 1.217

8 0.180 ±1.333 0.180 1.000 0.0 1.006 0.0 1.030 0.0 1.088 0.0 1.219

∞ ±1.333 1.000 1.006 1.032 1.093 1.231

N (deg.) τnz0 (deg.) smax (deg.) smax (deg.) smax (deg.) smax (deg.) smax

6 0.180 ±1.333 ±90.0 1.000 ±90.1 0.995 ±90.6 0.983 ±91.6 0.967 ±92.9 0.952

2.0 7 0.180 ±1.333 ±90.0 1.000 ±90.1 0.995 ±90.6 0.982 ±91.7 0.966 ±92.9 0.951

8 0.180 ±1.333 ±90.0 1.000 ±90.1 0.995 ±90.6 0.982 ±91.7 0.965 ±92.9 0.950

∞ ±1.333 1.000 0.995 0.980 0.962 0.944

6 0.180 ±2.000 ±90.0 1.000 ±90.3 0.986 ±91.8 0.952 ±94.3 0.914 ±96.6 0.887

∞ 7 0.180 ±2.000 ±90.0 1.000 ±90.3 0.986 ±91.8 0.951 ±94.3 0.912 ±96.7 0.885

8 0.180 ±2.000 ±90.0 1.000 ±90.3 0.986 ±91.8 0.950 ±94.3 0.911 ±96.7 0.883

∞ ±2.000 1.000 0.984 0.946 0.903 0.872



Stress analysis of arbitrarily distributed elliptical inclusions89

Figure 4. Stress (τnz) distribution along boundaryi = 1 (a = 0.8,b = 0.9,x′ = 2.0,y′ = 0.0, τ∞zx = 0, τ∞yz = 1,

GI /GM = 105 in Fig. 3).

3. Numerical results and discussion

3.1. RESULTS OF TWO ELLIPTICAL INCLUSIONS

The interaction problem of equally shaped two elliptical inclusions in an infinite body under
uniform z-direction shear stressτ∞zx = 1, τ∞yz = 1 is shown in Fig. 3. The stress distribution
τnz is shown in Fig. 4 when the inclination angleψ1 is changed asψ1 = 0◦, 30◦, 60◦, 90◦. It is
found that the interaction effect is the largest when two inclusions are extremely close to each
other.

Next, we consider two cases, problems A and B, in Fig. 3. Problem A is two inclusions
when τ∞zx = 0, τ∞yz = 1, GI/GM = C, and problem B is two inclusions whenτ∞zx = 1,
τ∞yz = 0,GI/GM = 1/C, both having same geometry,a = 0.8, b = 0.9, x′ = 2.0, y′ = 1.0
(C is a constant andC > 1). Figures 5 and 6 show the stress distribution along the boundary
of inclusion i = 1. Evidently, in Fig. 5(a) and Fig. 6(b) stress distributionτnz of problem A
and stress distributionτtzM of problem B coincide with each other completely. In addition, in
Fig. 5(b) and Fig. 6(a) the absolute values ofτtzM of problem A and that ofτnz of problem B
coincide with each other completely.

3.2. RESULTS OF A ROW OF ELLIPTICAL INCLUSIONS

A row of elliptical inclusions in an infinite body under longitudinal shearτ∞zx , τ∞yz is shown
in Fig. 7. In the following analysis, the maximum stress along the matrix interface of the
central and outermost inclusion are calculated. Table 1 shows the values ofSmax at the central
inclusions and Table 2 shows the values ofSmax at the outermost inclusion (j = 1) when
τ∞zx = 0, τ∞yz = 1 with varying the number of inclusionN anda/d. WhenGI/GM < 1,
the values ofSmax mean the dimensionless factorSmax = τtzM max/τtzM0, whereτtzM max

denotes the maximum stress at each inclusion andτtzM0 denotes the maximum stress of a
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Figure 5. Stress distribution along boundaryi = 1 (a = 0.8, b = 0.9, x′ = 2.0, y′ = 0.0, ψ1 = 0◦, τ∞zx = 1,
τ∞yz = 0 in Fig. 3). (a)τnz, (b) τtzM .
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Figure 6. Stress distribution along boundaryi = 1 (a = 0.8, b = 0.9, x′ = 2.0, y′ = 0.0, ψ1 = 0◦, τ∞zx = 0,
τ∞yz = 1 in Fig. 3). (a)τnz, (b) τtzM .
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Figure 7. A row of elliptical inclusions.

Figure 8. Smax vs 1/N relation (a/b = 1, τ∞zx = 0, τ∞yz = 1,GI /GM = 0.5).

single circular inclusion. WhenGI/GM > 1, the values ofSmax mean dimensionless fac-
tor Smax = τnz max/τnz0, whereτnz max denotes the maximum stress at each inclusion and
τnz0 denotes the maximum stress of a single circular inclusion. For a row of circular holes,
present results and Nisitani’s results [7] coincide with each other completely. Fig. 8 shows
the relationship betweenSmax and 1/N whenGI/GM = 0.5, τ∞zx = 0, τ∞yz = 1 with vary-
ing the number of inclusionN anda/d. The values ofSmax mean the dimensionless factor
Smax = τtzM max/τtzM0, whereτtzM max denotes the maximum stress at each inclusion and
τtzM0 denotes the maximum stress of a single circular inclusion. The present results indicate
that the values ofSmax are nearly proportional to 1/N .

4. Conclusions

In this paper, the interaction effect of arbitrarily distributed elliptical inclusions are discussed
under longitudinal shear. The conclusions are summarized as follows:
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(1) The interaction problem of elliptical inclusions under longitudinal shear was formulated
in terms of singular integral equations with the Cauchy-type and logarithmic-type singu-
larities. To formulate the problem, the body force method was applied, where the Green’s
functions for a point force was used as the fundamental solutions.

(2) The unknown functions of the body force densities were approximated by a linear
combination of the fundamental density functions and weight functions. To satisfy the bound-
ary condition, four kinds of fundamental density functions were proposed. It was found that
smooth stress distributions were calculated along the boundary.

(3) Interaction of two elliptical inclusions in an infinite body underτ∞zx andτ∞yz was con-
sidered. It was found that the stress distribution ofτnz whenτ∞zx = 1, τ∞yz = 0,GI/GM = C
(C: constant,C > 1) and that ofτtzM whenτ∞zx = 0, τ∞yz = 1,GI/GM = 1/C coincide with
each other completely.

(4) For a row of circular inclusions, the maximum stress was found to be nearly propor-
tional to the reciprocal of the number of inclusions. By using the relationships, the extreme
values of maximum stress were estimated.
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