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Abstract. In this paper a singular integral equation method is applied to calculate the distribution of stress intensity
factor along the crack front of a 3D rectangular crack. The stress field induced by a body force doublet in an
infinite body is used as the fundamental solution. Then, the problem is formulated as an integral equation with
a singularity of the form ofr−3. In solving the integral equation, the unknown functions of body force densities
are approximated by the product of a polynomial and a fundamental density function, which expresses stress
singularity along the crack front in an infinite body. The calculation shows that the present method gives smooth
variations of stress intensity factors along the crack front for various aspect ratios. The present method gives
rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary.

Key words: Body force method, elasticity, fundamental density function, numerical solution, polynomial, rectan-
gular crack, singular integral equation, stress intensity factor.

Nomenclature:
a, b = half width of a rectangular crack, area= the area of defects or cracks projected in the direction of the
maximum principal stress,(ξ, ψ, ζ ) = (x, y, z) coordinate where a body force doublet is applied,f (ξ, η) =
density of body force doublet,uz = displacement in thez direction,E = Young’s modulus,H = (1− 2ν)/4(1−
ν)2,R(θ) = a distance between a point(x, y) and a point on the prospective boundary of crack,Uz(x, y) = crack
opening displacement,ν = Poisson’s ratio.

1. Introduction

Three dimensional crack solutions have been used to evaluate the strength of structures be-
cause they usually contain some defects in the form of cracks, voids, inclusions or second-
phase particles. The fatigue limit of structural materials including defects is not the critical
stress below which no cracks appear around the defects, but the threshold stress where a
fatigue crack, which developed under the stress level around the defects, stops propagating. In
this sense an arbitrary shaped defect sometimes should be evaluated as a crack having the same
projected area of the defect. From this viewpoint Murakami et al. have proposed convenient
formulas useful for evaluating arbitrary shaped cracks with less than 10% estimated error. The
formula gives the maximum stress intensity factor appearing at a certain point along the crack
front in the following equations.

For surface cracks (Murakami and Nemat-Nasser, 1983; Murakami, 1985)

KI max= 0.65σ
√
π
√

area. (1)

For internal cracks (Murakami and Endo, 1983; Murakami et al., 1988)
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Figure 1. A rectangular crack in a infinite body.

KI max= 0.50σ
√
π
√

area, (2)

where ‘area’ is the area of defects or crack projected in the direction of the maximum principal
stress. Recently, Equation (1) is found to estimate the maximum stress intensity factor of a
semi-elliptical crack with less than 3% error (Noda and Miyoshi; 1996). Equation (2) is based
on the exact solution of an elliptical crack; however, it is necessary to evaluate the error when
Equation (2) is applied to different shape of ellipse because sometimes the shape of defects
are very different from ellipse.

From this viewpoint, this paper deals with a rectangular crack as a shape different from el-
lipse. There are some studies about a rectangular crack made by Weaver (1977), Mastrojannis
et al. (1979), Kassir (1981, 1982), Abe et al. (1982), Isida et al. (1982, 1983, 1991), and Mu-
rakami and Nemat-Nasser (1983). However, the variation of the stress intensity factor along
the crack front has not been indicated and also there is little discussion about the accuracy of
the results. For example, Isida et al. (1991) indicated that those previous results are different
about 4.8% on the average and 7.5% at the most.

In this analysis the problem is formulated as an integral equation with a singularity of the
form of r−3. In solving the integral equation, the unknown functions of body force densities
are approximated by the product of a polynomial and a fundamental density function. In the
previous papers boundary conditions are found to be satisfied within the error of 3× 10−3

throughout the crack surfaces (Noda-Miyoshi, 1995; Noda et al., 1999). Then, it will be shown
that the smooth variations of stress intensity factor along the crack front and highly satisfactory
boundary conditions throughout the crack surface.

2. Singular integral equation of the body force method

Consider an infinite body having a rectangular crack as shown in Figure 1 which is subjected
to uniform tensionσ xz at |z| → ∞.

On the idea of the body force method (Nisitani, 1967; Nisitani and Murakami, 1974), the
problem is reduced to determining the density of force doubletf (ξ, η), which is distributed
on the prospective boundary for crack in an infinite body without a crack.
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H

2π

∫∫
== f (ξ, η)

r3
1

dξ dη = −σ xz ,

r1 =
√
(x − ξ)2+ (y − η)2, H(1− 2ν)/4(1− ν)2,

S = {(ξ, η)∣∣− a 6 ξ 6 a,−b 6 η 6 b} ,
(3a)

Uz(x, y) = uz(x, y,+0) − uz(x, y,−0) = (1− 2v)(1+ v)
E(1− v) f (x, y). (3b)

The force doublet density(ξ, η) directly gives the crack opening displacement by Equa-
tion (3b). Equation (3) enforces the boundary condition at the imaginary boundary of a crack;
that isσz = 0. The integral in Equation (3) should be interpreted as a finite part integral
(Hadamard, 1923) in the regionS.

3. Numerical solution of singular integral equations

In the present analysis, polynomials have been used to approximate the unknown functions as
a continuous function. First, we put

f (ξ, η) = F(ξ, η)w(ξ, η),

w(ξ, η) = σ∞z
H

√
a2− ξ2

√
b2− η2.

(4)

Then, the integral Equation (3) becomes

1

2π

[∫∫
== F(ξ, η)

r3
1

√
a2− ξ2

√
b2− η2 dξ dη

]
= −1. (5)

Here,F(ξ, η) is now approximated in terms of polynomials as follows.

F(ξ, η) = α0+ α1η
2×1+ · · · + αn−1η

2(n−1) + αnη2n

+αn+1ξ
2×1+ αn+2ξ

2×1η2×1+ · · · + α2nξ
2×1η2n

+αl−n−1ξ
2n + αl−nξ2nη2×1+ · · · + αl−1ξ

2nη2n

=
l∑
i=0

αiGi(ξ, η), l = (n+ 1)(n+ 1)

G0(ξ, η) = 1,G1(ξ, η) = η2×1, · · · ,
Gn+1(ξ, η) = ξ2×1, . . . ,Gl−1(ξ, η) = ξ2nη2n

(6a)

ξ2n = x2n + 2nx2n−1(ξ − x)+
2n−2∑
i=0

{
(i + 1)ξ (2n−2−i)xi

}
(ξ − x)2

= b0(x)+ b1(x)(ξ − x)+ b2(ξ, x)(ξ − x)2

η2n = y2n + 2ny2n−1(η − y)+
2n−2∑
i=0

{
(i + 1)η(2n−2−i)yi

}
(η − y)2

= c0(y)+ c1(y)(η − y)+ c2(η, y)(η − y)2

(6b)
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Using the approximation method mentioned above, we obtain the following system of linear
equations for the determination of the coefficientsαi[i = 0,1,2, . . . , (n + 1)(n + 1)]. The
unknown coefficientsαi are then determined from (7a) by selecting a set of collocation points.

1

2π

l∑
i=0

αiAi = −1, (7a)

Ai =
∫∫
== Gi(ξ, η)

r3
1

√
a2− ξ2

√
b2− η2dξ dη (7b)

4. How to evaluate hypersingular integrals

In (7b), the integralAi has a hypersingularity of the formr−3 when x = ξ and y = η;
therefore, in order to evaluateAi the following expressions will be used (Noda and Miyoshi,
1995).

F1 =
√
a2 − ξ2 =

√
a2− x2 +

√
a2− ξ2−

√
a2 − x2

=
√
a2 − x2+ a2− ξ2− (a2− x2)√

a2− ξ2+√a2 − x2

=
√
a2 − x2− (ξ − x) ξ + x√

a2− ξ2+√a2− x2

=
√
a2 − x2−G(ξ − x),

G = ξ + x√
a2− ξ2+√a2 − x2

= x√
a2− x2

+ ξ + x√
a2 − ξ2+√a2− x2

− x√
a2− x2

= x√
a2− x2

+
√
a2− x2 (ξ + x)− x

(√
a2 − ξ2+√a2 − x2

)
√
a2− x2

(√
a2 − ξ2+√a2 − x2

)
= x√

a2− x2
+ ξ

√
a2− x2− x√a2− ξ2

√
a2− x2

(√
a2 − ξ2+√a2 − x2

)
= x√

a2− x2
+ ξ2

(
a2− x2

)− x2
(
a2 − ξ2

)
√
a2− x2

(√
a2 − ξ2+√a2 − x2

)
× 1(√

a2 − x2 + x√a2 − ξ2
)

= x√
a2− x2

+ (ξ − x) ξ + x√
a2− x2

(√
a2− ξ2+√a2 − x2

)
× 1(

ξ
√
a2 − x2+ x√a2− ξ2

) .

(8a)
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∴ F1 =
√
a2− x2 − (ξ − x) x√

a2− x2

−(ξ − x)2 ξ + x√
a2− x2

(√
a2− ξ2+√a2 − x2

)
× 1(

ξ
√
a2− x2+ x√a2− ξ2

) ,
F2 =

√
b2− y2 − (η − y) y√

b2− y2

−(η − y)2 η − y)√
b2− y2

(√
b2− η2+√b2 − y2

)
× 1(

η
√
b2− y2 + y√b2− η2

) ,
F1 = P0(x)− (ξ − x)P1(x)− (ξ − x)2P2(ξ, x),

F2 = Q0(y)− (η − y)Q1(y)− (η − y)2Q2(η, y),

P0(x) =
√
a2 − x2,Q0(y) =

√
b2− y2,

(8b)

P1(x) = x√
a2− x2

, P2(ξ, x) = ξ + x√
a2− x2

(√
a2 − ξ2+√a2 − x2

)
× a2(

ξ
√
a2− y2+ x√a2− ξ2

) ,
Q1(y) = y√

b2 − y2
,Q2(η, y) = η + y√

b2− y2
(√
b2− η2+√b2− y2

)
× b2(

η
√
b2− y2+ y√b2− η2

) ,
F1F2 = P0Q0(η − y)P0Q1− (η − y)2P0Q2

−(ξ − x)P1Q0+ (ξ − x)η − y)P1Q1

+(ξ − x)(η − y)2P1Q2− (ξ − x)2P2Q0

+(ξ − x)2(η − y)P2Q1+ (ξ − x)2(η − y)2P2Q2.

(8c)

In Equation (8), it should be noted thatP0(x), P1(x),Q0(y),Q1(y), b0(x), b1(x), c0(y), c1(y)

are independent ofξ, η. By using a polar coordinate and the relations(ξ − x) = r cosθ, (η−
y) = r sin θ shown in Figure 2, Equation (8) becomes√

a2− ξ2
√
b2− η2 = A0+ A1(θ)r + A2(r, θ)r

2,

ξ2n = B0i + B1i(θ)r + B2i(r, θ)r
2,

η2n = C0i + C1i(θ)r + C2i(r, θ)r
2,

(9)
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Figure 2. Change of integral parameter from(ξ, η) to (x, y).

A0 = P0(x)Q0(y),

A1 = −P0(x)Q1(y) sin θ − P1(x)Q0(y) cosθ,
A2 = −P2(ξ, x)Q0(y) cos2 θ + P1(x)Q1(y) sin θ cosθ

−P0(x)Q2(η, y) sin2 θ + P1(x)Q2 (η, y) cosθ sin2 θ

+P2(ξ, x)Q1(y) cos2 θ sin θ + P2(ξ, x)Q2(eta, y) cos2 θ, sin2 θ,

B0 = b0(x),

B1(θ) = b1(x) cosθ,

B2(r, θ) = b2(ξ, x) cos2 θ,

C0 = c0(y),

C1(θ) = c1(y) sin θ,

C2(r, θ) = c2(η, y) sin2 θ,

(10)

Then, we can also obtain the expression

Gi(ξ, η)
√
a2− ξ2

√
b2 − η2 = D0i +D1i(θ · r +D2i(r, θ) · r2

+D3i(r, θ) · r3 +D4i(r, θ) · r4

+D5i(r, θ) · r5 +D6i(r, θ) · r6

(11a)

where

D0i = A0 · B0 · C0,

D1i(θ) = A0 · B0 · C1+ A0 · B1 · C0+ A1 · B0 · C0,

D2i(r, θ) = A0 · B0 · C2+ A0 · B2 · C0+ A2 · B0 · C0

+A0 · B1 · C1+ A1 · B0 · C1+ A1 · B1 · C0,

D3i(r, θ) = A0 · B1 · C2+ A1 · B0 · C2+ A0 · B2 · C1

+A1 · B2 · C0+ A2 · B0 · C1+ A2 · B1 · C0+ A1 · B1 · C1,

D4i(r, θ) = A0 · B2 · C2+ A1 · B1 · C2+ A2 · B0 · C2

+A1 · B2 · C1+ A2 · B2 · C0+ A2 · B1 · C1,

(11b)
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D5i(r, θ) = A2 · B2 · C2+ A2 · B1 · C2+ A2 · B2 · C1,

D6i(r, θ) = A2 · B2 · C2.

By substituting (11) into (7b), we obtain

Ai =
∫ 2π

0

∫ R(θ)

0

[
D0i

r2
+ D1i(θ)

r

]
dr dθ

+
∫ 2π

0

∫ R(θ)

0

[
D2i(r, θ)+D3i(r, θ)r +D4i(r, θ)r

2 +D5i(r, θ)r
3

+D6i(r, θ)r
4
]

dr dθ

= Aai + Abi.

(12)

Here,Abi has no singularities and can be evaluated easily in numerical integration. On the
other hand,Aai has singularities; however, they are expressed simply in the formr−1 or r−2,
so they can be evaluated in a Hadamard sense as shown in (13).

Aai =
∫ 2π

0

[
− D0i

R(θ)
+D1i(θ) log (R(θ))

]
dθ. (13)

Here,R(θ) means a distance between a point(x, y) and a point on the prospective boundary
of crack as shown in Figure 2.

5. Numerical results and discussion

Numerical integrals have been performed using scientific subroutine library (FACOM SOL2
AQME etc.). In demonstrating the numerical results of stress intensity factor (SIF), the fol-
lowing dimensionless factorFI will be used. Here,FI is expressed on the basis of the SIF of
a 2D crack whose length is 2b.

FI =
KI (x, y)

∣∣
x=x,y=±b

σ∞z
√
πb

=
√
a2− x2F (x, y)

∣∣
x=x,y=±b. (14)

In this analysis, it is important to evaluate the integrals as shown in Equation (7b) accu-
rately. Figure 3 shows the values of integralAi/2π in (7b) whenGi(ξ, η) = 1,Gi(ξ, η) =
η2,Gi(ξ, η) = ξ2η2 for b/a = 1. In this analysis, the boundary condition for crack surface
σz = −1 will be satisfied by superposing those smooth functions as indicated in Figure 3.
Here, the rectangular shape is mapped into aa × a square; then, the boundary conditions
are considered at the intersection of them × m mesh as shown in Figure 4. In solving the
algebraic Equation (5) the least square method is applied to minimize the residual of stress at
the collocation points.

Tables 1–3 show the convergence of dimensionless stress intensity factorsFI along the
crack front with increasing parameter n whenb/a = 1.0, 0.25. As shown in Tables 1 and 2,
number of collocation points 10×10 are large enough because the results of 10×10 coincide
with the ones of 30×30 to the third digit in most cases. Figure 4 indicate the compliance of the
boundary conditions along the prospective crack surface with varying n in Equation (6). The
boundary condition becomes highly satisfied with increasingn and whenn=7 and collocation
points 10× 10 the error is less than 2× 10−4.
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Figure 3. Numerical values of Equation (6). (a)Gi(ξ, η) = 1, (b) Gi(ξ, η) = η2, (c)Gi(ξ, η) = ξ2η2.

Table 1. Convergence of the resultsFI (b/a = 1.0, number of collocation points 10× 10).

x/a

n
0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11

2 0.74652 0.74550 0.74228 0.73629 0.72651 0.71141 0.68865 0.65473 0.60403 0.52640 0.39793 0.00000

3 0.75652 0.75434 0.74788 0.73738 0.72305 0.70489 0.68221 0.65287 0.61184 0.54765 0.43045 0.00000

4 0.75235 0.75091 0.74636 0.73807 0.72522 0.70696 0.68254 0.65101 0.60980 0.55053 0.44384 0.00000

5 0.75375 0.75192 0.74645 0.73736 0.72436 0.70668 0.68293 0.65125 0.60908 0.55031 0.44973 0.00000

6 0.75336 0.75168 0.74654 0.73761 0.72448 0.70653 0.68273 0.65118 0.60879 0.54979 0.45253 0.00000

7 0.75341 0.75171 0.74652 0.73759 0.72450 0.70658 0.68277 0.65118 0.60859 0.54924 0.45361 0.00000
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Figure 4. Compliance of boundary condition. (a)n = 2, b/a = 1.0; (b)n = 5, b/a = 1.0; (c)n = 7, b/a = 1.0.

Table 2. Convergence of the resultsFI (b/a = 1.0, number of collocation points 30× 30).

x/a

n
0/31 3/31 6/31 9/31 12/31 15/31 18/31 21/31 24/31 27/31 30/31 31/31

2 0.74452 0.74358 0.74051 0.73455 0.72432 0.70768 0.68134 0.64013 0.57516 0.46790 0.25220 0.00000

3 0.75824 0.75541 0.74712 0.73394 0.71658 0.69544 0.66982 0.63655 0.58693 0.49824 0.28514 0.00000

4 0.75101 0.74981 0.74569 0.73721 0.72260 0.70042 0.67006 0.63135 0.58150 0.50368 0.30470 0.00000

5 0.75469 0.75218 0.74508 0.73423 0.71984 0.70044 0.67286 0.63343 0.57935 0.50197 0.31638 0.00000

6 0.75277 0.75124 0.74602 0.73589 0.72017 0.69898 0.67167 0.63442 0.58027 0.50017 0.32335 0.00000

7 0.75378 0.75157 0.74530 0.73528 0.72068 0.69975 0.67126 0.63372 0.58092 0.49957 0.32756 0.00000

Table 3. Convergence of the resultsFI (b/a = 0.25, number of collocation points 10× 10).

x/a

n
0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11

2 0.94553 0.94739 0.95260 0.95995 0.96732 0.97147 0.96764 0.94879 0.90396 0.81399 0.63574 0.00000

3 0.98570 0.98355 0.97748 0.96842 0.95765 0.94621 0.93402 0.91831 0.89071 0.83059 0.68344 0.00000

4 0.97351 0.97365 0.97351 0.97164 0.96618 0.95543 0.93835 0.91422 0.88034 0.82481 0.69573 0.00000

5 0.97759 0.97654 0.97364 0.96930 0.96347 0.95485 0.94070 0.91726 0.88014 0.82052 0.69865 0.00000

6 0.97626 0.97576 0.97395 0.97018 0.96380 0.95418 0.93994 0.91768 0.88113 0.81975 0.69956 0.00000

7 0.97681 0.97602 0.97375 0.96993 0.96395 0.95449 0.93985 0.91741 0.88144 0.81973 0.70014 0.00000
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Table 4. Dimensionless stress intensity factorsFI along crack front in Figure 1(n = 7).

x/a

b/a
0/11 (Isida:[8]) 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11

8.000 0.290 (–) 0.289 0.287 0.283 0.277 0.268 0.257 0.241 0.219 0.189 0.141 0.000

4.000 0.405 (–) 0.404 0.401 0.396 0.389 0.380 0.367 0.349 0.323 0.285 0.220 0.000

2.000 0.566 (–) 0.564 0.560 0.553 0.542 0.528 0.510 0.486 0.454 0.409 0.328 0.000

1.000 0.753 (0.756) 0.752 0.747 0.738 0.725 0.707 0.683 0.651 0.609 0.549 0.453 0.000

0.667 0.852 (–) 0.850 0.848 0.836 0.823 0.804 0.779 0.746 0.700 0.634 0.525 0.000

0.500 0.906 (0.907) 0.904 0.900 0.892 0.879 0.862 0.839 0.806 0.760 0.692 0.576 0.000

0.250 0.977 (0.977) 0.976 0.974 0.970 0.964 0.954 0.940 0.917 0.881 0.820 0.699 0.000

0.125 0.995 (0.995) 0.995 0.995 0.994 0.992 0.989 0.985 0.976 0.959 0.920 0.820 0.000

Figure 5. Variation of dimensionless stress intensity factors along the crack fronty = b.

Table 4 and Figure 5 show the variation ofFI along the crack front whenb/a = 8.0–
0.125. In Figure 5, Isida’s results forb/a = 1 are in close agreement with the present results;
however there is a difference nearx/a = 1. As shown in Figure 6, there are some differences
about the maximum SIF of a rectangular crack obtained by Isida et al. (1991), Kassir (1983),
Weaver (1977), and Mastrojannis et al. (1979). The difference is 4.8% on the average and
7.5% at the most. However, Isida’s results are found to be more reliable because they are in
close agreement with the present results within 0.4% error.

In Table 5 the accuracy of Murakami’s formula (2) for arbitrary shaped crack is exam-
ined. Table 5 indicates that Murakami’s formula gives approximate maximum values of stress
intensity factor for rectangular cracks within 8% error, and for elliptical cracks within 5%
error.

6. Conclusion

(1) A singular integral equation method was applied to calculate the stress intensity factor of
a rectangular crack. The problem was formulated as an integral equation on the idea of the
body force method. The unknown functions were approximated by the product of a funda-
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Table 5. Maximum stress intensity factorsFI max of
elliptical and rectangular cracks and the accuracy
of Murakami’s formula. [F∗I max = KI max

σ∞z
√
π
√

area
,

δ = (F∗I max− 0.50) × 100/F∗I max, *when b/a 6 0.2 area

= 20b2]. (a) Rectangular crack, (b) elliptical crack.

b/a FI max F∗I max δ (%)

1.000 0.753 0.5325 +6.1

0.667 0.852 0.5444 +8.2

0.500 0.906 0.5387 +7.2

0.250 0.977 0.4885 −2.4

0.125 0.995 0.4705∗∗ −6.3

b/a a/b FI max F∗
I max δ (%)

1.00 1.00 0.6366 0.4782 −4.6

0.75 1.33 0.7240 0.5061 +1.2

0.50 2.00 0.8257 0.5215 +4.1

0.25 4.00 0.9330 0.4955 −0.9

Figure 6. FI max vs.b/a for a rectangular crack in an infinite body.
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mental density function and a weight function. The calculation shows the method yields good
convergence and highly satisfactory boundary condition and also smooth variations of stress
intensity factor along the crack front.

(2) There are some differences among the previous results of the maximum SIF of a rectan-
gular crack, about 4.8% on the average and 7.5% at the most. However, Isida’s results coincide
with the present results within 0.4% error.

(3) Murakami’s formula (2) proposed for estimating arbitrary shaped cracks is found to
give maximum stress intensity factors of a rectangular crack within 8% error, and an elliptical
crack within 5% error.
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