Transactions of the Japan Society of Mechanical Engineers 任意の材料組合せに対する縁界面き裂を有する接合半無限板の面内曲げにおける応力 拡大係数

--Manuscript Draft--

受付番号:	TRANS-JSME-D-11-00692			
標題:	任意の材料組合せに対する縁界面き裂を有する接合半無限板の面内曲げにおける応力 拡大係数			
論文種別:	一般論文			
セクション/カテゴリ:	A編			
責任著者:	野田 尚昭 ノダ ナオアキ, 工学博士 九州工業大学 北九州市戸畑区仙水町, 福岡県 JAPAN			
責任著者(英語):				
責任著者の組織名:	九州工業大学			
責任著者の組織名(英語):				
筆頭著者:	蘭 欣 ラン キン			
筆頭著者(英語):				
全著者:	蘭 欣 ラン キン			
	道中 健吾 ミチナカ ケンゴ			
	野田 尚昭 ノダ ナオアキ, 工学博士			
	張 玉チョウ ギョク			
全著者(英語):				
抄録:	本論文では,接合半無限板中の縁き裂が面内曲げ荷重を受ける問題を接合半無限板中 の縁き裂が引張りを受ける問題と比較して考察した.得られた結果を図示しまとめた ほか面内曲げ荷重を受ける問題を引張りを受ける問題と比較すると応力拡大係数が一 致する場合と一致しない場合があることが明らかとなった.このことはき裂のない接 合端部の特異性の有無から証明できる.			

任意の材料組合わせに対する縁界面き裂を有する 接合半無限板の面内曲げにおける応力拡大係数

蘭 欣^{*1}, 道中 健吾^{*2}, 野田 尚昭^{*3}, 張 玉^{*4}

Stress Intensity Factor of an Edge Interface Crack in a Bonded Finite Plate Subjected to Bending under Arbitrary Material Combination

Xin LAN, Kengo MICHINAKA, Nao-Aki NODA*5 and Yu ZHANG

^{*5} Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui-Cho, Tobata-Ku, Kitakyushu-Shi, Fukuoka, Japan

Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary material combinations. This paper deals with an edge interface crack in a bonded finite plate and a semi-infinite plate. Then, the effects of material combination on the stress intensity factors are discussed. To obtain the interface stress intensity factor very accurately, a useful method is presented on the basis of the stress values at the crack tip calculated by the finite element method. Then, the stress intensity factors are indicated in charts under arbitrary material combinations for the bonded structure subjected to bending loading conditions and tension. For the edge interface crack, it is found that the dimensionless stress intensity factors are not always finite depending on Dundurs' parameters α and β .

Key Words : Elasticity, Stress Intensity Factor, Fracture Mechanics, Finitu Element Method, Edge Interface Crack, Finite Plate

1. 緒 言

半無限板中の縁き裂の問題は、内部き裂に対して縁き裂がどの程度危険であるか?即ち実用上重要な表面き裂の最も基本的でかつ重要な問題である。図1に示す2つの基本問題の応力拡大係数を比べると、図1(a)が図1(b)の半分のき裂長さであるにもかかわらず12%以上危険であることがわかる.一方、界面き裂の問題(図2)に対しては、このような最も基本的な引張りを受ける半無限板中の縁き裂の問題に対しても信頼できる結果は示されていなかった.そこで著者らは、任意の材料組合せに対して信頼できる結果をさきの研究で与えた⁽¹⁾. その結果を図3に示す.図3に示すように無次元化応力拡大係数 F_I は材料組合せに依存して $a/W \rightarrow 0$ で $F_I \rightarrow \infty$, $F_I = f$ 限、 $F_I \rightarrow 0$ となるけれども $F_I(a/W)^{1-2}$ は常に定数となることを示している.ここでんは図4のき裂のない接合板の特異性指数 $\sigma_y \propto 1/r^{1-2}(r \rightarrow \infty)$ であり、 $F_I \rightarrow \infty$, $F_I = f$ 限、 $F_I \rightarrow 0$ となることは、界面き裂のない接合板

E-mail: noda@mech.kyutech.ac.jp

^{*}原稿受付 0000年00月00日

^{*1} 学正員,九州工業大学大学院工学研究科(〒804-8550 北九州市戸畑区仙水町1-1)

^{*2}学生員,九州工業大学大学院工学府機械知能工学専攻

^{*3}正員,九州工業大学工学研究院

^{*4}学正員,九州工業大学大学院工学研究科

本研究では、このような接合板に面内曲げが作用する問題(図 2(b))を考察する. 図 5(a)、(b)に示すような均質 接合板が引張りまたは面内曲げを受ける場合には $a/W \rightarrow 0$ で K_I が等しくなり $K_I = 1.1215\sigma\sqrt{\pi a}$ で表せる. 一 方,縁界面き裂を有する接合有限板の曲げ(図 6)ではき裂のない接合板の問題(図 4(b),(c))で接合端部の σ_y の特異 性の強さ⁽²⁾のが異なるため $a/W \rightarrow 0$ の極限でも K_I は必ずしも等しくならない. そこで本論文では、まず図 6(b) の $a/W \rightarrow 0$ の極限の値を考察し、図 6(a)の $a/W \rightarrow 0$ の極限の値との違いを明確にする.

2. 解析方法の概略

2・1 第0節点法について 本研究で用いる解析方法は、(1)解析対象の有限要素法(FEM)解析によって得られるき裂先端近傍の応力ないし変位の解析結果をそのまま利用し、(2)厳密解の知られている基準問題との比をとることにより応力拡大係数を決定する手法である⁽⁴⁾⁻⁽⁶⁾.この方法では、有限要素法解析の誤差は主としてき裂先端近傍のメッシュに依存することを利用している.つまり、2つの異なる問題[(1)解析対象と(2)基準問題]をき裂先端近傍で同じメッシュを用いて解析すれば、それらの応力拡大係数がき裂先端の第0節点の応力を用いて評価できる.界面き裂問題への第0節点の適用についての詳細はさきに示しているので^{(4),(6)}省略する.

図7に、本研究で用いる縁界面き裂の形状とき裂先端近傍の要素分割の例を示す.界面き裂の解析では、き裂 周りのメッシュをある程度細かくすることが必要である.界面き裂の基準問題として、図8に示す接合無限板の 解が厳密解として知られているので、それを利用する.

2.2 外挿による正確な応力拡大係数の与え方

有限要素法(FEM)は、要素が有限であることによる誤差が 生じる. FEM モデルの最小要素サイズが十分小さいとき、この誤差は中央界面き裂の問題^{(7),(8)}では基準問題(図 8)の誤差とほぼ等しいので無視できる.しかし、この方法を適用して図 6(b)の a/W が大きい場合を解析すると FEM モデルのメッシュの最小要素寸法の影響が大きいためそのまま深い縁き裂の問題に適用できないことが明 らかとなった.図9には均質材の縁き裂でa/W=0.9のときの最小要素サイズとF,の関係を示す.図9から深い 縁き裂の問題では、最小要素サイズを小さくしていってもF,の値は一定にならないことがわかる.しかし、図9 に示すように最小要素サイズ e_{min} を0に外挿すると F_I =12.45となり、さきの研究の結果 F_I =12.46⁽⁹⁾⁽¹⁰⁾と比較 するとその誤差は 0.08%で一致する. よって、最小要素サイズ $e_{min} \rightarrow 0$ を外挿によって求めることにより高精 度の解析結果が得られることがわかる.一方, a/W が小さいときは, 図9と異なりF,の値の変化は小さいけれど も本論文では外挿によって $e_{min} \rightarrow 0$ の F_l F_n の値を正確に求めた.以下では次式で定義される無次元化応力拡大 係数 F_I , F_{II} を用いて結果を示す. 図 10 に本研究で考察した α, β の範囲を示す. ここで α, β は式(9)で定義され る Dundurs の複合材料パラメーターでありポアソン比vと横弾性係数Gにより表せる.

$$K_{I} + iK_{II} = \left(F_{I} + iF_{II}\right)\sigma\sqrt{\pi a}\left(1 + 2i\varepsilon\right), \frac{1}{2\pi}ln\left(\frac{1-\beta}{1+\beta}\right)$$

$$1) = G_{I}\left(\kappa_{2} - 1\right) - G_{2}\left(\kappa_{1} - 1\right) = \frac{3-\nu_{I}}{2\pi}\left(-1-\frac{1}{2\pi}\right) = 2\pi i \left(-1-\frac{1}{2\pi}\right) = 2\pi i \left(-1-\frac{1}{2\pi}\right)$$
(9)

 $\alpha = \frac{G_1(\kappa_2 + 1) - G_2(\kappa_1 + 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)}, \beta = \frac{G_1(\kappa_2 - 1) - G_2(\kappa_1 - 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)}, \kappa_j = \frac{3 - \nu_j}{1 + \nu_j} (plane \ stress), \ 3 - 4\nu_j (plane \ strain), \ (j=1,2)$

図 2(a),(b),図 6(a),(b)の問題で、上下の2種類の材料を逆にするとき、上の式より、 α, β の値がマイナスになる. 即ち、 $\alpha \rightarrow$ $-\alpha$, $\beta \rightarrow -\beta$ となる. しかしながら、上下材料を入れ替えた場合の応力拡大係数は $F_I \rightarrow F_I$, $F_{II} \rightarrow -F_{II}$ となるので本解析 では $\alpha \ge 0$ の範囲を対象とする.

3. き裂長さと応力拡大係数の関係

本研究では、まず接合有限板中の縁界面き裂(図 6(b))の応力拡大係数を考察し、それを基にして接合半無限板の応 力拡大係数(図 2)を考察する. 図 11 に図 6(b)の接合有限板の縁き裂の問題でβ=0.3 と固定して、α=0.4~0.95 の場合のF $\mathcal{E}_{F_{H}}$ の値をa/Wに対して示す. 同様の検討を他の α, β にも行うことにより、図2の縁界面き裂を有する接合半無限板の 応力拡大係数F,, F は式(10)のようになることがわかる.

$$\begin{array}{ll}
\alpha(\alpha - 2\beta) > 0 &: & F_I, F_{II} \to \infty \\
\alpha(\alpha - 2\beta) = 0 &: & F_I, F_{II} & \overline{\Lambda \mathbb{R}} \\
\alpha(\alpha - 2\beta) < 0 &: & F_I, F_{II} \to 0
\end{array} \tag{10}$$

図12(a)は図11を両対数グラフに整理した結果である.これより図6(b)の問題の F_{I}, F_{II} とa/Wは $a/W < 10^{-3}$ で $F_{I} \propto (a/W)^{S}$, $F_{u} \propto (a/W)^{s}$ の関係があることが示される. 図 12(b)に接合有限板が引張りを受ける場合の結果を示し、図 13 に変数 S の 数値を示す. $F_I \to \infty, F_{II} \to \infty$ の場合でも実際のき裂の進展には、 K_I, K_I そのものが重要であるので図 14 に K_I, K_I の結果を示す. 図 14 よりで $a/W \rightarrow 0$ $F_I \rightarrow \infty, F_I \rightarrow \infty$ となる場合でも $K_I \rightarrow 0, K_I \rightarrow 0$ となることがわか る. すなわち, 界面縁き裂(図 6(b))の応力拡大係数は a/W の増加に伴って単調に増加する(図 14).

Fig.11 (a) F_I (b) F_{II} for cracked bonded plate

4. 片側界面き裂を有する接合有限板の曲げと引張りの比較

4・1 き裂のない接合有限板端部の特異応力場 前章の結果をき裂の無い接合板の問題より考察する.界面き裂がない接合無限板(図4参照)の接合端部($r \rightarrow 0$)の特異応力の有無に関して、以下の判定条件が知られている⁽¹⁾⁽¹²⁾.

$$\alpha(\alpha - 2\beta) > 0: \lambda < 1 特異性あり
 \alpha(\alpha - 2\beta) = 0: \lambda = 1 応力有限 (11)
 \alpha(\alpha - 2\beta) < 0: \lambda > 1 応力 0$$

ここで λ は界面端の応力特異性指数であり、界面端部近傍の応力は $\sigma_y \propto 1/x^{1-\lambda}$ と表される. 図4の接合端部における特異応力場は常に次式のように1個の実数パラメータKだけによって表される⁽²⁾.

$$\sigma_{\theta} = r^{\lambda - 1} f_{\theta \theta}(\theta) K, \quad \tau_{r\theta} = r^{\lambda - 1} f_{r\theta}(\theta) K \tag{12}$$

これは、図4の特異応力場の強さがパラメータKに比例することを意味している.パラメータKが求まれば、式(12)を通じて接合角部における特異応力場が具体的に求まる.ここでλは以下の特性方程式の解である.

$$\left[\sin^{2}\left(\frac{\pi}{2}\lambda\right)-\lambda^{2}\right]^{2}\beta^{2}+2\lambda^{2}\left[\sin^{2}\left(\frac{\pi}{2}\lambda\right)-\lambda^{2}\right]\alpha\beta+\lambda^{2}\left(\lambda^{2}-1\right)\alpha^{2}+\frac{\sin^{2}\left(\lambda\pi\right)}{4}=0$$
(13)

この方程式は $\alpha(\alpha - 2\beta) > 0$ で一つの実根 $\lambda < 1$ をもつ. このとき界面の特異応力 σ_{θ} の強さ K_{σ} は次式によって定義される. $K_{\sigma} = \lim_{n \to \infty} \left[r^{1-\lambda} \times \sigma_{\theta|\theta=\pi/2} \right]$ (14)

また, K_{σ} と式(12)中のKは, 1対1の関係にあり, K_{σ} が求まれば, Kは次式によって求めることができる.これは, 固有関数展開法によって求められた結果である.

$$K = K_{\sigma} / \{4\lambda \cos(\lambda \pi / 2) [(\lambda + 1 - \lambda \beta) \cos(\lambda \pi) + (\lambda + 1)(2\lambda \beta - 1) - \lambda \beta + 2\lambda^{2} (\lambda + 1)(\alpha - \beta)]\}$$
(15)

図 15 に、図 4 (b), (c)の接合端部の K_{σ} の無次元値 $F_{\sigma} = K_{\sigma}/(\sigma W^{1-\lambda})$ の解析結果を示す^{(2), (3)}.図 15 の縦軸より 板幅Wの特異応力場 σ_{θ} と板幅Wの特異応力場 σ_{θ} の特異応力場に以下の関係があることがわかる.

$$\frac{\sigma_{\theta}}{\sigma_{\theta}'} = \left(\frac{W}{W'}\right)^{1-\lambda} \tag{16}$$

(1 =)

また、図 15 よりき裂のない接合有限板が引張り荷重を受ける問題(図 4(b))と面内曲げ荷重を受ける問題(図 4(c)) を比較すると式(17)に示すような関係があることがわかる.

4・2 接合有限板中の縁界面き裂の応力拡大係数の漸近解 式(16)より図 6(b)の $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ と a/Wの関係を図 16(a)に接合半無限板中の縁き裂が面内曲げ荷重を受ける問題(図 6(b))と図 16(b)に引張りを受ける問題(図 6(a))の $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ を示す. 図 16(a),(b)より面内曲げ荷重を受ける問題(図 6(b))と引張りを受ける問題(図 6(a))を比較すると図 17(a),(b),(c)のような関係が成立する. $\alpha(\alpha - 2\beta) > 0$ (図 17(a))の場合, $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ の値は面内曲げ荷重(図 6(b))を受ける問題が大きくなる. $\alpha(\alpha - 2\beta) = 0$ (図 17(b))の場合, $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ の値は一致する. $\alpha(\alpha - 2\beta) < 0$ (図 17(c))の場合, $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ の値は, 引張り 荷重を受ける問題(図 6(a))が大きくなる. また, 図 16(a),(b)から $F_{I} \cdot (a/W)^{I-\lambda}$, $F_{II} \cdot (a/W)^{I-\lambda}$ の値は $a/W < 10^{-3}$ でその 数値は $\alpha = 0.4$ 以外で 3 桁以上一致し一定となることがわかり, $\alpha = 0.4$ のときもa/Wが 0 に近づくにつれて一 定となることがわかる. すなわち $a/W < 10^{-3}$ で以下の関係が成立する.

$$F_{I} \cdot (a/W)^{1-\lambda} = C_{I}$$

$$F_{I} \cdot (a/W)^{1-\lambda} = C_{I}$$
(18)
(19)

ここで、 C_{I}, C_{u} は定数であり、表 2 及び表 3 にそれぞれ数値を示す.また、図 18(a),(b)に接合半無限板中の縁き 裂が面内曲げ荷重を受ける問題(図 6(b))と引張りを受ける問題(図 6(a))の定数 C_{I}, C_{u} を図示する.表 2,3 および図 18(a),(b)より面内曲げ荷重を受ける問題(図 6(b))と引張りを受ける問題(図 6(a))を比較すると $\alpha(\alpha - 2\beta) = 0$ (下線部 分)で $a/W \rightarrow 0$ の場合の引張りと面内曲げ荷重を受ける問題(図 6(a),(b))では定数 C_{I}, C_{u} の値は一致することがわかる. $\alpha(\alpha - 2\beta) > 0$ の場合、定数 C_{I}, C_{u} の値は引張り荷重を受ける問題(図 6(a))が大きくなり、 $\alpha(\alpha - 2\beta) < 0$ の場合、 定数 C_{I}, C_{u} の値は面内曲げ荷重(図 6(b))を受ける問題が大きくなることがわかる.

α	β =-0.2	β =-0.1	β=0	$\beta = 0.1$	$\beta = 0.2$	β=0.3	$\beta = 0.4$	$\beta = 0.45$
0	1	1	1	1	1			
0.05	0.98378	0.99035	0.99800	1.00613	1.01403			
0.1	0.96593	0.97774	0.99205	1.00831	1.02512			
0.15	0.94684	0.96269	0.98253	1.00626	1.03279			
0.2	0.92685	0.94571	0.96987	1	1.03604	1.07562		
0.3		0.90752	0.93713	0.97605	1.02764	1.09640		
0.4		0.86549	0.89741	0.94025	1	1.09130		
0.5		0.82096	0.85320	0.89662	0.95796	1.05584		
0.6		0.77459	0.80597	0.84801	0.90711	1		
0.7			0.75644	0.79606	0.85104	0.93477	1.11741	
0.75			0.73090	0.76909	0.82169	0.90048	1.05468	
0.8			0.70481	0.74151	0.79163	0.86554	1	
0.85			0.67824	0.71331	0.76091	0.83006	0.94923	1.08125
0.9			0.65105	0.68448	0.72953	0.79410	0.90075	1
0.95			0.62320	0.65496	0.69745	0.75761	0.85364	0.93488
1			0.59461	0.62466	0.66461	0.72053	0.80731	0.87624

Table1Values of λ for Eq.(13)

		_	Table 2 Va	lues of C_I for	or Fig.2 (b)		_	
		$F_{I} \cdot (a/W)^{1-}$	$\lambda^{\lambda} = C_I, K_I +$	$iK_{II} = \sigma \sqrt{\pi a}$	$(F_I + iF_{II})(1$	$+2i\varepsilon$),		
		$: C_{I} =$	$= F_{I} (\lambda = 1) f$	or Fig.17(a),	(): extrap	polated value		
	1	L ·	- ()-					
α	$\beta = 0.2$	$\beta = 0.1$	$\beta = 0$	$\beta = 0.1$	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	$\beta = 0.45$
0 05	(1.065)	(1.107)	$\frac{(1.1215)}{1.100}$	(1.107)	(1.065)			
0.05	0.977	1.057 1.000	1.109	1.157 1.153	(1.130) 1 195			
0.1	0.808	0.939	1.001 1.037	1.100 1 1 4 6	1.130 1 247			
0.10	0.000	0.878	0.982	1 119	1.217 1 277	(1 830)		
0.3	0.110	0.760	0.861	$\frac{1.110}{1.014}$	1.248	(1.787)		
0.4		0.655	0.742	0.880	1.113	1.674		
0.5		0.557	0.636	0.749	0.939	1.423		
0.6		(0.467)	0.542	0.634	0.774	1.103	(3.000)	
0.7			0.461	0.535	0.636	0.845	2.125	
0.75			0.423	0.491	0.576	0.743	1.435	
0.8			0.387	0.451	0.523	0.655	1.086	(2.700)
0.85			0.351	0.414	0.474	0.580	0.870	1.728
0.9			(0.313)	0.379	0.430	0.515	0.718	1.075
$0.95 \\ 1$			(0.262) (0.217)	(0.34') (0.328)	(0.389)	(0.45')	(0.605)	(0.801)
1			(0.211)	(0.020)	(0.010)	(0.010)	(0.000)	(0.100)
			Table 3 Va	lues of Cf	or Fig 6 (b)			
	Ĺ	$E_{-} \cdot (a/W)^{1-\lambda}$	Table 3 Va = $C - K_{2} + il$	lues of C_{Π} for $K_{-} = \sigma_{2} \sqrt{\pi a}$	or Fig.6 (b) $F_{-} + iF_{-}$)(1-	+ 2is)		
	F	$F_{II} \cdot (a/W)^{1-\lambda}$	Table 3 Va = C_{II} , K_I + iI	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} \left(\frac{1}{2} - \frac{1}{2} \frac{1}{2} \right)$	or Fig.6 (b) $F_I + iF_{II}$ (1+	+2iε),		
		$F_{II} \cdot (a/W)^{1-\lambda}$: $C_{II} = I$	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for	lues of C_{Π} for $K_{\Pi} = \sigma \sqrt{\pi a} \left(r Fig.17(b) \right)$	or Fig.6 (b) $F_I + iF_I \left(1 + iF_I\right)$	+2iɛ), plated value		
α	$\begin{bmatrix} H \\ - \\ \beta = -0.2 \end{bmatrix}$		Table 3 Va = C_{II} , K_{I} + ih F_{II} (λ = 1) for β =0	lues of C_{Π} for $K_{\Pi} = \sigma \sqrt{\pi a} \left(\frac{1}{\mu} + Fig.17(b), \frac{1}{\mu} \right)$	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo $\beta = 0.2$	+ 2 $i\varepsilon$), plated value $\beta = 0.3$	β=0.4	β=0.45
α 0.05	$\begin{bmatrix} H \\ - \\ \beta = -0.2 \\ (-0.203) \\ (-0.203) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) 0.0000	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} \left(r Fig.17(b), \frac{\beta = 0.1}{(0.108)} \right)$	or Fig.6 (b) $F_{I} + iF_{II}$)(1+ (): extrapo $\beta = 0.2$ (0.265) (0.265)	+ $2i\varepsilon$), plated value $\beta = 0.3$	β=0.4	β=0.45
$\begin{array}{c} \alpha \\ 0 \\ 0.05 \\ 0.1 \end{array}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$ \begin{array}{c} F_{II} \cdot (a/W)^{1-\lambda} \\ \underline{} & \vdots & C_{II} = I \\ \hline \beta = -0.1 \\ \hline (-0.109) \\ -0.127 \\ -0.140 \\ \end{array} $	Table 3 Va = C_{II} , K_I + <i>i</i> F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} \left(\frac{1}{r Fig.17(b)}, \frac{\beta = 0.1}{0.086} \right)$	or Fig.6 (b) $F_{I} + iF_{II}$)(1+ (): extrapo $\beta = 0.2$ (0.265) (0.230) 0.195	+ 2i ε), plated value $\beta = 0.3$	β=0.4	β=0.45
$\begin{array}{c} \alpha \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \end{array}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$ \begin{array}{c} F_{II} \cdot (a/W)^{1-\lambda} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Table 3 Va = C_{II} , K_{I} + <i>i</i> h F_{II} (λ = 1) for β =0 (0.000) -0.026 -0.051 -0.072	lues of C_{Π} for $K_{II} = \sigma \sqrt{\pi a} ($ r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo $\beta = 0.2$ (0.265) (0.230) 0.195 0.167	+2i ε), plated value $\beta = 0.3$	β=0.4	β=0.45
$ \begin{array}{c} \alpha \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 $	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$ \begin{array}{c} F_{II} \cdot (a/W)^{1-\lambda} \\ \underline{} & \vdots & C_{II} = I \\ \hline \beta = -0.1 \\ \hline (-0.109) \\ -0.127 \\ -0.140 \\ -0.149 \\ -0.155 \\ \end{array} $	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} ($ r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo $\beta = 0.2$ (0.265) (0.230) 0.195 0.167 0.141	+ $2i\varepsilon$), plated value $\beta = 0.3$ (0.430)	β=0.4	β=0.45
$ \begin{array}{c} \alpha \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ \end{array} $	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.157	Table 3 Va = C_{II} , K_I + <i>i</i> I F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} ($ r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 <u>0.004</u> -0.044	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo (0.265) (0.230) 0.195 0.167 0.141 0.074	$\beta = 0.3$ (0.430) (0.338)	β=0.4	β=0.45
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \end{matrix}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.155 -0.157 -0.153	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} ($ r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 <u>0.004</u> -0.044 -0.077	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo (0.265) (0.230) 0.195 0.167 0.141 0.074 0.008	(0.430) (0.222	β=0.4	β=0.45
$ \begin{array}{c} $	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= : C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.155 -0.157 -0.153 -0.143	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} (C_{II} + \sigma \sqrt{\pi a})$ r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.077 -0.094	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo (0.265) (0.230) 0.195 0.167 0.141 0.074 0.008 -0.039	+ $2i\varepsilon$), plated value $\beta = 0.3$ (0.430) (0.338) 0.222 0.102	β=0.4	β=0.45
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \end{matrix}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.155 -0.157 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + ih F_{II} (λ = 1) for β =0 (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a} (C_{II} + Fig.17(b), C_{II} + Fig.17(b), C_{II} + C$	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapo (0.265) (0.230) 0.195 0.167 0.141 0.074 0.008 -0.039 -0.066	+ $2i\varepsilon$), plated value $\beta = 0.3$ (0.430) (0.338) 0.222 0.102 0.013	β=0.4 (0.330)	β=0.45
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \end{matrix}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.157 -0.153 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.077 -0.094 -0.101 -0.101	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapt (): ext	$\beta = 0.3$ (0.430) (0.338) 0.222 0.102 0.013 -0.034	β=0.4 (0.330) 0.202	β=0.45
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \end{matrix}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= : C_{II} = I$ $\beta = 0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.153 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + iI F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113 -0.108	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.044 -0.077 -0.094 -0.101 -0.101 -0.100	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapt (): extrapt (0.265) (0.230) 0.195 0.167 0.141 0.074 0.008 -0.039 -0.066 -0.078 -0.081	$\beta = 0.3$ (0.430) (0.338) 0.222 0.102 0.013 -0.034 -0.047	β=0.4 (0.330) 0.202 0.078	β=0.45
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \end{matrix}$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= : C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.155 -0.157 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + <i>i</i> I F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113 -0.108 -0.103	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.077 -0.094 -0.101 -0.101 -0.100 -0.097	$\begin{array}{c} \text{ pr Fig.6 (b)} \\ F_I + iF_{II} \left(1 + iF_{II} \right) \left(1 + i$	$\beta = 0.3$ (0.430) (0.338) (0.222 0.102 0.034 -0.047 -0.056	$\beta = 0.4$ (0.330) 0.202 0.078 <u>0.020</u>	β=0.45 (0.200)
$\begin{matrix} \alpha \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.85 $	$\begin{bmatrix} F \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.155 -0.157 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + <i>il</i> F_{II} (λ = 1) for β =0 (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113 -0.108 -0.103 -0.097	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.044 -0.077 -0.094 -0.101 -0.100 -0.097 -0.094	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapol (0.265) (0.230) 0.195 0.167 0.141 0.074 0.008 -0.039 -0.066 -0.078 -0.081 -0.082 -0.082	$\beta = 0.3$ (0.430) (0.338) (0.222 (0.102) (0.034) (0.034) (0.034) (0.047) (0.056) (0.061)	$\beta = 0.4$ (0.330) 0.202 0.078 0.020 -0.010	β=0.45 (0.200) 0.112
$\begin{matrix} a \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.95 \\$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.157 -0.153 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + <i>il</i> F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113 -0.124 -0.108 -0.103 -0.097 (-0.089) (-0.077)	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.077 -0.094 -0.101 -0.101 -0.100 -0.097 -0.094 -0.091 -0.087	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapt (): ext	$\beta = 0.3$ (0.430) (0.338) 0.222 0.102 0.034 -0.047 -0.056 -0.061 -0.064 -0.065	$\beta = 0.4$ (0.330) 0.202 0.078 <u>0.020</u> -0.010 -0.029 -0.020	$\beta = 0.45$ (0.200) 0.112 0.024
$\begin{matrix} \alpha \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.$	$\begin{bmatrix} B \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$F_{II} \cdot (a/W)^{1-\lambda}$ $= C_{II} = I$ $\beta = -0.1$ (-0.109) -0.127 -0.140 -0.149 -0.155 -0.153 -0.153 -0.143 (-0.133)	Table 3 Va = C_{II} , K_I + <i>il</i> F_{II} ($\lambda = 1$) for $\beta = 0$ (0.000) -0.026 -0.051 -0.072 -0.089 -0.113 -0.123 -0.124 -0.120 -0.113 -0.124 -0.120 -0.108 -0.103 -0.097 (-0.089)	lues of C_{II} for $K_{II} = \sigma \sqrt{\pi a}$ (r Fig.17(b), $\beta = 0.1$ (0.108) 0.086 0.060 0.032 0.004 -0.044 -0.077 -0.094 -0.101 -0.101 -0.100 -0.097 -0.094 -0.094 -0.094 -0.094 -0.091 -0.092	or Fig.6 (b) $F_I + iF_{II}$)(1+ (): extrapt (): ext	$\beta = 0.3$ (0.430) (0.338) (0.222 0.102 0.034 -0.047 -0.056 -0.061 -0.064	$\beta = 0.4$ (0.330) 0.202 0.078 0.020 -0.010 -0.029	$\beta = 0.45$ (0.200) 0.112 0.024

4. 結 言

本論文では、図 2(b)に示すような接合半無限板中の縁き裂が面内曲げ荷重を受ける問題を接合半無限板中の縁 き裂が引張りを受ける問題(図 2(a))と比較して考察した.得られた結果をまとめると以下のようになる.

(1) 面内曲げ荷重を受ける界面縁き裂(長さ a)を有する接合有限板(幅 W)の無次元化応力拡大係数 F_I, F_I は $a/W \rightarrow 10^{-3}$ で $F_I \cdot (a/W)^{1-\lambda} = C_I, F_I \cdot (a/W)^{1-\lambda} = C_I$ と表される.ここで、 C_I, C_I は材料組み合わせによって決まる定数で表 2、3 に示される.また、 λ は接合界面端部の特異性指数(表 1)である.

(2) 面内曲げ荷重を受ける問題(図 6(b))を引張を受ける問題(図 6(a))と比較すると表 2,3 および図 18(a),(b)より $\alpha(\alpha-2\beta)=0$ (下線部分)で $a/W \rightarrow 0$ の場合の引張りと面内曲げ荷重を受ける問題(図 6(a),(b))では定数 C_{I},C_{II} の値は一致 する. $\alpha(\alpha-2\beta)>0$ の場合,定数 C_{I},C_{II} の値は引張り荷重を受ける問題(図 6(a))が大きくなり, $\alpha(\alpha-2\beta)<0$ の 場合,定数 C_{I},C_{II} の値は面内曲げ荷重(図 6(b))を受ける問題が大きくなる.

文 献

(1)野田尚昭, 蘭欣, 道中健吾, 張玉, 小田和広, "任意の材料組合せを考慮した縁界面き裂を有する接合半無限板の応力拡大係数", 日本機械学会A編, Vol. 76, No. 770 (2010), pp. 1270-1227.

(2)陳玳珩,西谷弘信,"板状接合試験片における特異応力場の強さ",日本機械学会A編, Vol. 59, No. 567 (1993), pp. 2682-2686.

(3) 野田尚昭, 白尾亮司, 李俊, 杉本淳典, "強化繊維の引抜きにおける繊維端部の特異応力場の強さ", 日本機 械学会A編, Vol. 72, No. 721 (2006), pp. 1397-1404.

(4)小田和広,神杉一吉,野田尚昭,"比例法による界面き裂の応力拡大係数解析",日本機械学会A編, Vol. 75, No. 752 (2009), pp. 476-482.

(5) 寺西高広, 西谷弘信, "FEM を用いた任意形状板材における応力拡大係数の高精度決定法", 日本機械学会A編, Vol. 65, No. 638 (1999), pp. 2032-2037.

(6) 西谷弘信, 寺西高広, 福山慶介, "第ゼロ節点法による異種接合材の応力拡大係数解析", 日本機械学会A編, Vol. 69, No. 684 (2003), pp. 1203–1208.

(7)野田尚昭,張玉,高石謙太郎,蘭欣, "任意の材料組合せに対する界面き裂の応力拡大係数(き裂の相対 長さの影響)",材料, Vol. 59, No. 12, (2010), pp. 900-907.

(8)野田尚昭,張玉, 蘭欣,高石謙太郎,小田和広, "遠方で一軸引張りを受ける接合板中の界面き裂の応力拡大係数",日本機械学会A編,Vol. 72,No. 772,(2010),pp.1587 1595.

(9)野田尚昭, 荒木清己, Fazil ERDOGAN, "片側き裂を有する二層複合板の応力拡大係数", 日本機械学会A編, Vol. 57, No. 537 (1991), pp. 1102-1109.

(10) Kaya, A.C., Erdogan, F., On the Solution of Integral Equations with Strongly Singular Kernels, *Quarterly of Applied Mathematics*, Vol. 1, No. 45 (1987), pp. 105-122.

(11) Bogy, D.B., Edge-Bonded Dissimilar Orthogonal Elastic Wedges under Normal and Shear Loading, *Transaction of the ASME, Journal of Applied Mechanics*, Vol. 35, (1968), pp. 460-466.

(12) Bogy, D.B., Two Edge-Bonded Elastic Wedges of Different and Wedge Angles under Surface Tractions, *Transaction of the ASME, Journal of Applied Mechanics*, Vol. 38, (1971), pp. 377-386.