

Available online at www.sciencedirect.com

Mechanics of Materials 35 (2003) 1059-1076

www.elsevier.com/locate/mechmat

Analysis of an elliptical crack parallel to a bimaterial interface under tension

Nao-Aki Noda *, Ruri Ohzono, Meng-Cheng Chen

Department of Mechanical Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan Received 27 February 2002; received in revised form 21 October 2002

Abstract

In this paper an elliptical crack parallel to a bimaterial interface is considered. The solution utilizes the body force method and requires Green's functions for perfectly bonded elastic half planes. The formulation leads to a system of hypersingular integral equations whose unknowns are three modes of crack opening displacements. In the numerical calculation, fundamental density functions and polynomials are used to approximate unknown body force densities. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. The stress intensity factors are indicated in tables and figures with varying the shape of crack, distance from the interface, and elastic constants. The root area parameter proposed by Murakami is found to be effective for engineering use because different shaped cracks have almost the same values. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Elasticity; Crack; Bimaterial; Interface; Elliptical crack; Stress intensity factor; Body force method

1. Introduction

With increasing the use of composite materials in engineering structure, much attention has been paid to the strength of interface. Although a lot of researches have been made in terms of fracture mechanics approach regarding interface, most of them generally involve two-dimensional modeling (Erdogan and Aksogan, 1974; Cook and Erdogan, 1972; Isida and Noguchi, 1983). Little work has been carried out on the three-dimensional aspect of crack problems except those of specially shaped cracks (Willis, 1972; Erdogan and Arin, 1972; Kassir and Bregman, 1972; Shibuya et al., 1989; Nakamura, 1991; Yuuki and Xu, 1992). This is mainly due to the extreme difficulties of solving such problems by mathematics and mechanics, or to the substantial computation required in the numerical analyses.

This paper deals with a three-dimensional elliptical crack parallel to an interface as shown in Fig. 1. Previously, only the limiting cases as $a/b \rightarrow \infty$ were treated by Isida and Noguchi as a twodimensional solution (1983). Although in the previous study (Chen et al., 1999) the problem was

^{*} Corresponding author. Fax: +81-93-884-3124.

E-mail address: noda@mech.kyutech.ac.jp (N.-A. Noda).

^{0167-6636/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0167-6636(02)00327-7

Fig. 1. An elliptical crack parallel to a bimaterial interface $(x^2/a^2 + y^2/b^2 = 1, z = h)$.

formulated as a system of singular integral equations, there is no numerical solution indicated in tables and figures. In this study the equations will be solved accurately by using fundamental densities and polynomials to approximate unknown functions (Noda and Miyoshi, 1996). Here, the fundamental densities are chosen to express the stress fields due to an elliptical crack in an infinite body exactly. Then, the stress intensity factors will be indicated with varying the shape of crack, elastic constants of materials, and the distance between the crack and interface.

2. Singular integral equation of the body force method for a mixed mode surface crack

Consider an elliptical crack parallel to a bimaterial interface, under uniform tension σ_z^{∞} at infinity as shown in Fig. 1(a). Here, the elliptical crack has principal diameters 2a and 2b. The body force method is used to formulate the problem as a system of singular integral equations, whose unknowns are body force densities $f_{zz}(\xi, \eta)$, $f_{yz}(\xi, \eta)$, $f_{zx}(\xi, \eta)$. The body force densities are equivalent to crack opening displacements as shown in Eq. (1e). Here, (ξ, η, ζ) is a (x, y, z) coordinate where the body force is applied.

$$\frac{(1-2\nu)}{8\pi(1-\nu)^2} \left[\iint_S \frac{f_{zz}(\xi,\eta)}{r^3} d\xi d\eta + \int_S \frac{1}{4} K_{zz}^{f_{zz}}(\xi,\eta,x,y) f_{zz}(\xi,\eta) d\xi d\eta \right] \\
+ \frac{1}{8\pi(1-\nu)} \left[\int_S \frac{1}{2} K_{zz}^{f_{zz}}(\xi,\eta,x,y) f_{yz}(\xi,\eta) d\xi d\eta + \int_S \frac{1}{2} K_{zz}^{f_{zx}}(\xi,\eta,x,y) f_{zx}(\xi,\eta) d\xi d\eta \right] = -\sigma_z^{\infty}$$
(1a)

$$\frac{1}{8\pi(1-\nu)} \left[\iint_{S} \left\{ \frac{2(1-2\nu)}{r^{3}} + \frac{6\nu(y-\eta)^{2}}{r^{5}} \right\} f_{yz}(\xi,\eta) d\xi d\eta \\ + \iint_{S} \frac{6\nu(x-\xi)(y-\eta)}{r^{5}} f_{zx}(\xi,\eta) d\xi d\eta \\ + \int \int_{S} \frac{(1-2\nu)}{4(1-\nu)} K_{yz}^{f_{zz}}(\xi,\eta,x,y) f_{zz}(\xi,\eta) d\xi d\eta \\ + \int \int_{S} \frac{1}{2} K_{yz}^{f_{yz}}(\xi,\eta,x,y) f_{yz}(\xi,\eta) d\xi d\eta \\ + \int \int_{S} \frac{1}{2} K_{yz}^{f_{zx}}(\xi,\eta,x,y) f_{zx}(\xi,\eta) d\xi d\eta \right] = 0$$
(1b)

$$\frac{1}{8\pi(1-\nu)} \left[\iint_{S} \frac{6\nu(x-\xi)(\nu-\eta)}{r^{5}} f_{yz}(\xi,\eta) \,\mathrm{d}\xi \,\mathrm{d}\eta \right. \\ \left. + \iint_{S} \left\{ \frac{2(1-2\nu)}{r^{3}} + \frac{6\nu(x-\xi)^{2}}{r^{5}} \right\} f_{zx}(\xi,\eta) \,\mathrm{d}\xi \,\mathrm{d}\eta \\ \left. + \int_{S} \frac{1-2\nu}{4(1-\nu)} K_{zx}^{f_{zx}}(\xi,\eta,x,y) f_{zz}(\xi,\eta) \,\mathrm{d}\xi \,\mathrm{d}\eta \right. \\ \left. + \int_{S} \frac{1}{2} K_{zx}^{f_{yz}}(\xi,\eta,x,y) f_{yz}(\xi,\eta) \,\mathrm{d}\xi \,\mathrm{d}\eta \right. \\ \left. + \int_{S} \frac{1}{2} K_{zx}^{f_{zx}}(\xi,\eta,x,y) f_{zx}(\xi,\eta) \,\mathrm{d}\xi \,\mathrm{d}\eta \right] = 0$$
 (1c)

$$r = \sqrt{(x - \xi)^{2} + (y - \eta)^{2}}$$

$$S = \left\{ (\xi, \eta) \left| (\xi/a)^{2} + (\eta/b)^{2} \leqslant 1 \right\}$$
(1d)

$$U_{z}(x,y) = u_{z}(x,y+0) - u_{z}(x,y-0)$$

$$= \frac{(1-2v)(1+v)}{E(1-v)} f_{zz}(x,y)$$

$$U_{y}(x,y) = u_{y}(x,y+0) - u_{y}(x,y-0)$$

$$= \frac{2(1+v)}{E} f_{yz}(x,y)$$

$$U_{x}(x,y) = u_{x}(x,y+0) - u_{x}(x,y-0)$$

$$= \frac{2(1+v)}{E} f_{zx}(x,y)$$
(1e)

Eqs. (1a)–(1c) enforce boundary conditions at the prospective boundary *S* for crack; that is, $\sigma_z = 0$, $\tau_{yz} = 0$, $\tau_{zx} = 0$. Eq. (1) includes singular terms in the form of $1/r_1^3$, $1/r_1^5$ corresponding to the ones of an elliptical crack in an infinite body. Therefore the integration \mathbf{ff}_S should be interpreted in a sense of a finite part integral (Hadamard, 1923) in the region *S*. On the other hand, the integral $\int \int_S does$ not include singular terms. As an example, the notation $K_{zz}^{f_z}(\xi, \eta, x, y)$ refers to a function that satisfies the boundary condition for free surface. Correct equations are shown in (2) because of some misprints in the previous paper (Chen et al., 1999).

$$\begin{split} K_{zx}^{f_{zx}}(\xi,\eta,x,y) &= -2[(\kappa_{1}-1)+(\kappa_{1}+1)(\Lambda_{1}+\Lambda_{2}-2\Lambda)]/R^{3} \\ &+ 3\{4h^{2}[(\kappa_{1}-5)+2(\kappa_{1}+1)(3\Lambda_{1}-\Lambda_{2})] \\ &- (x-\xi)^{2}[(3-\kappa_{1})+2(\kappa_{1}+1)(\Lambda-\Lambda_{1}-\Lambda_{2})]\}/R^{5} \\ &+ 120[1-(\kappa_{1}+1)\Lambda_{1}]h^{2}[4h^{2}+3(x-\xi)^{2}]/R^{7} \\ &- 3360[1-(\kappa_{1}+1)\Lambda_{1}]h^{4}(x-\xi)^{2}/R^{9}, \end{split}$$
(2a)

$$\begin{split} K_{yz}^{J_{zz}}(\xi,\eta,x,y) \\ &= -3(x-\xi)(y-\eta)\{[(3-\kappa_1) \\ &+ 2(\kappa_1+1)(\Lambda-\Lambda_1-\Lambda_2)]/R^5 \\ &- 40[1-(\kappa_1+1)\Lambda_1]h^2(3/R^7-28h^2/R^9)\}, \end{split}$$

$$\begin{aligned} K_{zz}^{J_{zx}}(\xi,\eta,x,y) \\ &= -12h(x-\xi)\{(\kappa_1+1)(\Lambda_1-\Lambda_2)/R^5 \\ &- 20[1-(\kappa_1+1)\Lambda_1]h^2(3/R^7-28h^2/R^9)\}, \end{aligned}$$
(2c)

$$\begin{split} K_{zz}^{f_{zz}}(\xi,\eta,x,y) \\ &= -2[2 - (\kappa_1 + 1)(\Lambda_1 + \Lambda_2)]/R^3 \\ &+ 24h^2\{[(\kappa_1 + 1)(2\Lambda_1 - \Lambda_2) - 1]/R^5 \\ &- 80[1 - (\kappa_1 + 1)\Lambda_1]h^2(1/R^7 - 7h^2/R^9)\}, \end{split}$$

$$K_{yz}^{f_{yz}}(\xi,\eta,x,y) = K_{zx}^{f_{zx}}\{x \to y, \xi \to \eta\}$$
(2e)

$$K_{zx}^{f_{yz}}(\xi,\eta,x,y) = K_{yz}^{f_{zx}}\{x \leftrightarrow \xi, y \leftrightarrow \eta\}$$
(2f)

$$K_{zz}^{f_{zz}}(\xi,\eta,x,y) = K_{zz}^{f_{zx}}\{x \to y, \xi \to \eta\}$$
(2g)

$$K_{zx}^{f_{zz}}(\xi,\eta,x,y) = K_{zz}^{f_{zx}}\{x \leftrightarrow \xi, y \leftrightarrow \eta\}$$
(2h)

$$K_{yz}^{f_{zz}}(\xi,\eta,x,y) = K_{zz}^{f_{yz}}\{x \leftrightarrow \xi, y \leftrightarrow \eta\}$$
(2i)

In Eqs. (2e)–(2i), the notation $x \to y$ represents that x should be replaced by y. On the other hand, the one $x \leftrightarrow \xi$ represents that x should be replaced by y, and y should be replaced by x. Also, we have

$$\begin{split} \Lambda &= \mu_2 / (\mu_1 + \mu_2), \\ \Lambda_1 &= \mu_2 / (\mu_1 + \kappa_1 \mu_2), \\ \Lambda_2 &= \mu_2 / (\mu_2 + \kappa_2 \mu_1), \quad R^2 = r^2 + 4h^2, \\ \kappa_1 &= 3 - 4v_1, \quad \kappa_2 = 3 - 4v_2 \end{split}$$
(2j)

3. Numerical solution of singular integral equations

In the conventional body force method, the crack region is divided into several elements; then, fundamental density functions and step functions were used to approximate unknown functions. However, the use of step functions gives rise to singularities along the element boundaries, and it tends to deteriorate the accuracy and validity in sophisticated problems. In the present analysis, the following expressions have been used to approximate the unknown functions as continuous functions. First, we put

$$f_{zz}(\xi,\eta) = F_{zz}(\xi_{a},\eta_{b})w_{zz}(\xi_{a},\eta_{b})$$

$$f_{yz}(\xi,\eta) = F_{yz}(\xi_{a},\eta_{b})w_{yz}(\xi_{a},\eta_{b})$$

$$f_{zx}(\xi,\eta) = F_{zx}(\xi_{a},\eta_{b})w_{zx}(\xi_{a},\eta_{b})$$

$$w_{zz}(\xi_{a},\eta_{b}) = \frac{4(1-v)^{2}b\sigma_{z}^{\infty}}{(1-2v)E(k)}\sqrt{1-\xi_{a}^{2}-\eta_{b}^{2}}$$

$$w_{yz}(\xi_{a},\eta_{b}) = \frac{2b(1-v)k^{2}\tau_{yz}^{\infty}}{C(k)}\sqrt{1-\xi_{a}^{2}-\eta_{b}^{2}}$$

$$w_{zx}(\xi_{a},\eta_{b}) = \frac{2b(1-v)k^{2}\tau_{zx}^{\infty}}{B(k)}\sqrt{1-\xi_{a}^{2}-\eta_{b}^{2}}$$

$$B(k) = (k^{2}-v)E(k) + vk'^{2}K(k)$$

$$C(k) = (k^{2}+vk'^{2})E(k) - vk'^{2}K(k)$$

$$k' = b/a \leqslant 1 \quad k = \sqrt{1-(b/a)^{2}}$$

$$\xi_{a} = \xi/a \quad \eta_{b} = \eta/b$$

$$K(k) = \int_{0}^{\pi/2} \frac{d\lambda}{\sqrt{1-k^{2}\sin^{2}\lambda}}$$

$$E(k) = \int_{0}^{\pi/2} \sqrt{1-k^{2}\sin^{2}\lambda} d\lambda$$
(3)

Here, $w_{zz}(\xi_a, \eta_b)$, $w_{yz}(\xi_a, \eta_b)$, $w_{zx}(\xi_a, \eta_b)$ are called a fundamental density function of body force, which express the stress field due to an elliptical crack in an infinite body under uniform tension and shears σ_z^{∞} , τ_{yz}^{∞} , τ_{zx}^{∞} and lead to solutions with high accuracy. In this calculation, we put $\sigma_z^{\infty} = \tau_{yz}^{\infty} = \tau_{zx}^{\infty} = 1$. Using the expression (3), Eq. (1) is reduced to Eq. (4), where unknowns are $F_{zz}(\xi_a, \eta_b)$, $F_{yz}(\xi_a, \eta_b)$, $F_{zx}(\xi_a, \eta_b)$, which are called weight functions. The unknown functions are related to

$$\frac{b}{2\pi E(k)} \left[\iint_{S} \frac{F_{zz}(\xi_{a},\eta_{b})}{r^{3}} \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} d\xi d\eta \right. \\ \left. + \iint_{S} \frac{1}{4} K_{zz}^{fz}(\xi,\eta,x,y) F_{zz}(\xi_{a},\eta_{b}) \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} d\xi d\eta \right] \\ \left. + \frac{bk^{2}}{8\pi} \left[\frac{1}{C(k)} \iint_{S} K_{zz}^{fyz}(\xi,\eta,x,y) F_{zy}(\xi_{a},\eta_{b}) \right. \\ \left. \times \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} d\xi d\eta \right. \\ \left. + \frac{1}{B(k)} \iint_{S} K_{zz}^{fzx}(\xi,\eta,x,y) F_{zx}(\xi_{a},\eta_{b}) \right. \\ \left. \times \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} d\xi d\eta \right] = -\sigma_{z}^{\infty}$$

$$(4)$$

Since the problem is symmetric with respect to the *x*- and *y*-axis, the following expressions (5) can be applied to approximate three unknown functions $F_{zz}(\xi_a, \eta_b), F_{yz}(\xi_a, \eta_b), F_{zx}(\xi_a, \eta_b)$. Here, $F_{zz}(\xi_a, \eta_b)$ is an even function of both ξ_a and $\eta_b, F_{yz}(\xi_a, \eta_b)$ is even of ξ_a but odd of η_b , and $F_{zx}(\xi_a, \eta_b)$ is odd of ξ_a but even of η_b .

$$F_{zz}(\xi_{a},\eta_{b})$$

$$= \alpha_{0}\xi_{a}^{0}\eta_{b}^{0} + \alpha_{1}\xi_{a}^{0}\eta_{b}^{2} + \dots + \alpha_{n-1}\xi_{a}^{0}\eta_{b}^{2\cdot(n-1)} + \alpha_{n}\xi_{a}^{0}\eta_{b}^{2\cdot n}$$

$$+ \alpha_{n+1}\xi_{a}^{2}\eta_{b}^{0} + \alpha_{n+2}\xi_{a}^{2}\eta_{b}^{2} + \dots + \alpha_{2n-1}\xi_{a}^{2}\eta_{b}^{2\cdot(n-1)}$$

$$\vdots \qquad \vdots$$

$$+ \alpha_{l-n-1}\xi_{a}^{2\cdot n}\eta_{b}^{0}$$

$$= \sum_{i=0}^{l-1} \alpha_{i}G_{i}(\xi_{a},\eta_{b}) \qquad (5a)$$

$$F_{yz}(\xi_{a},\eta_{b}) = \beta_{0}\xi_{a}^{0}\eta_{b} + \beta_{1}\xi_{a}^{0}\eta_{b}^{3} + \dots + \beta_{n-1}\xi_{a}^{0}\eta_{b}^{2\cdot n-1} + \beta_{n}\xi_{a}^{0}\eta_{b}^{2\cdot n+1} + \beta_{n+1}\xi_{a}^{2}\eta_{b} + \beta_{n+2}\xi_{a}^{2}\eta_{b}^{3} + \dots + \beta_{2n-1}\xi_{a}^{2}\eta_{b}^{2\cdot n-1} \vdots \vdots + \beta_{l-n-1}\xi_{a}^{2\cdot n}\eta_{b}^{0} = \sum_{i=0}^{l-1}\beta_{i}Q_{i}(\xi_{a},\eta_{b})$$
(5b)

$$F_{zx}(\xi_{a},\eta_{b}) = \gamma_{0}\xi_{a}\eta_{b}^{0} + \gamma_{1}\xi_{a}\eta_{b}^{2} + \dots + \gamma_{n-1}\xi_{a}\eta_{b}^{2\cdot(n-1)} + \gamma_{n}\xi_{a}\eta_{b}^{2\cdot n} + \gamma_{n+1}\xi_{a}^{3}\eta_{b}^{0} + \gamma_{n+2}\xi_{a}^{3}\eta_{b}^{2} + \dots + \gamma_{2n-1}\xi_{a}^{3}\eta_{b}^{2\cdot(n-1)} \vdots \vdots \\+ \gamma_{l-n-1}\xi_{a}^{2\cdot n+1}\eta_{b}^{0} = \sum_{i=0}^{l-1}\gamma_{i}R_{i}(\xi_{a},\eta_{b})$$
(5c)

$$l = \frac{(n+1)(n+2)}{2}$$

$$G_{0}(\xi_{a},\eta_{b}) = 1$$

$$G_{1}(\xi_{a},\eta_{b}) = \eta_{b}^{2}, \dots, G_{n+1}(\xi_{a},\eta_{b}) = \xi_{a}^{2}, \dots,$$

$$G_{l-1}(\xi_{a},\eta_{b}) = \xi_{a}^{2\cdot n}$$

$$Q_{0}(\xi_{a},\eta_{b}) = \eta_{b}$$

$$Q_{1}(\xi_{a},\eta_{b}) = \eta_{b}^{3}, \dots, Q_{n+1}(\xi_{a},\eta_{b}) = \xi_{a}^{2}\eta_{b}, \dots,$$

$$Q_{l-1}(\xi_{a},\eta_{b}) = \xi_{a}^{2\cdot n}\eta_{b}$$

$$R_{0}(\xi_{a},\eta_{b}) = \xi_{a}$$

$$R_{1}(\xi_{a},\eta_{b}) = \xi_{a}\eta_{b}^{2}, \dots, R_{n+1}(\xi_{a},\eta_{b}) = \xi_{a}^{3}, \dots,$$

$$R_{l-1}(\xi_{a},\eta_{b}) = \xi_{a}^{2\cdot n+1}$$
(5d)

Using the approximation method mentioned above, we obtain the following system of algebraic equations for the determination of unknown coefficients $\alpha_0 \sim \alpha_i$, $\beta_0 \sim \beta_i$, $\gamma_0 \sim \gamma_i$ [i = 1, 2, ..., l, l = (1/2)(n+1)(n+2)], which can be determined by selecting a set of collocation points.

$$\sum_{i=0}^{l} \left[\alpha_{i} \left(A_{zz,i}^{f_{zz}} + B_{zz,i}^{f_{zz}} \right) + \beta_{i} B_{zz,i}^{f_{yz}} + \gamma_{i} B_{zz,i}^{f_{xz}} \right] = -1$$

$$\sum_{i=0}^{l} \left[\alpha_{i} B_{yz,i}^{f_{zz}} + \beta_{i} \left(A_{yz,i}^{f_{yz}} + B_{yz,i}^{f_{yz}} \right) + \gamma_{i} \left(A_{yz,i}^{f_{zx}} + B_{yz,i}^{f_{zx}} \right) \right] = 0$$

$$\sum_{i=0}^{l} \left[\alpha_{i} B_{zx,i}^{f_{zz}} + \beta_{i} \left(A_{zx,i}^{f_{yz}} + B_{zx,i}^{f_{yz}} \right) + \gamma_{i} \left(A_{zx,i}^{f_{zx}} + B_{zx,i}^{f_{zx}} \right) \right] = 0$$
(6a)

The number of unknowns in Eq. (6a) are 3(l+1). As examples, $A_{zz,i}^{f_{zz}}$, $B_{zz,i}^{f_{zz}}$, $B_{zz,i}^{f_{zz}}$, $B_{zz,i}^{f_{zz}}$ are expressed as follows:

$$\begin{split} A_{zz,i}^{f_{zz}} &= \frac{b}{2\pi E(k)} \, \text{ff}_{S} \, \frac{G_{i}(\xi_{a},\eta_{b})}{r^{3}} \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} \, \mathrm{d}\xi \, \mathrm{d}\eta \\ B_{zz,i}^{f_{zz}} &= \frac{b}{8\pi E(k)} \, \iint_{S} \, K_{zz}^{f_{zz}}(\xi,\eta,x,y) G_{i}(\xi_{a},\eta_{b}) \\ & \times \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} \, \mathrm{d}\xi \, \mathrm{d}\eta \\ B_{zz,i}^{f_{yz}} &= \frac{bk^{2}}{8\pi C(k)} \, \iint_{S} \, K_{zz}^{f_{yz}}(\xi,\eta,x,y) Q_{i}(\xi_{a},\eta_{b}) \\ & \times \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} \, \mathrm{d}\xi \, \mathrm{d}\eta \\ B_{zz,i}^{f_{xx}} &= \frac{bk^{2}}{8\pi B(k)} \, \iint_{S} \, K_{zx}^{f_{xx}}(\xi,\eta,x,y) R_{i}(\xi_{a},\eta_{b}) \\ & \times \sqrt{1 - \xi_{a}^{2} - \eta_{b}^{2}} \, \mathrm{d}\xi \, \mathrm{d}\eta \end{split}$$

In Eq. (6b) the integral $B_{zz,i}^{f_{zz}}$ can be evaluated numerically because of no singularities in the integral. However $A_{zz,i}^{f_{zz}}$ cannot be evaluated by ordinary numerical procedure because they have hypersingularities of the form r^{-3} when $x = \xi$ and $y = \eta$ (Hadamard, 1923). Therefore a similar method as shown in previous papers is applied (Noda and Miyoshi, 1996).

Fig. 2 shows boundary collocation points. The boundary conditions are considered at the intersection of the mesh on the (x_a, y_b) plane in the region of $x_a^2 + y_a^2 < 1$, $x_a^2 \ge 0$, $y_a^2 \ge 0$, where $x_a = x/a$, $y_b = y/b$. Fig. 2(a) shows 10×10 mesh whose width is 0.1, and Fig. 2(b) shows 50×50 mesh whose width is 0.02.

4. Numerical results and discussion

4.1. Dimensionless stress intensity factors

Numerical calculations have been carried out for changing *n* in Eq. (5) when $a/b = 1, 2, 4, 16, \infty$ and $v_1, v_2 = 0$ -0.5. Numerical integrals have been performed using scientific subroutine library (FACOM SSL II DAQE etc.). In demonstrating the numerical results of stress intensity factor $K_{\rm I}$, $K_{\rm II}$, $K_{\rm III}$ the following dimensionless factor $F_{\rm I}$, $F_{\rm II}$, $F_{\rm III}$ will be used.

Fig. 2. Boundary collocation points. (a) 10×10 mesh (b) 50×50 mesh.

$$F_{\rm I}(\beta) = \frac{K_{\rm I}(\beta)}{\sigma_z^{\infty}\sqrt{\pi b}} = \frac{F_{zz}}{E(k)} \left[\sin^2 \beta + \left(\frac{b}{a}\right)^2 \cos^2 \beta \right]^{1/4}$$

$$F_{\rm II}(\beta) = \frac{K_{\rm II}(\beta)}{\sigma_z^{\infty}\sqrt{\pi b}}$$

$$= \left(F_{zx} \frac{k' \cos \beta}{B(k)} + F_{yz} \frac{\sin \beta}{C(k)} \right) \frac{k^2}{\left(1 - k^2 \cos^2 \beta\right)^{1/4}}$$

$$F_{\rm III}(\beta) = \frac{K_{\rm III}(\beta)}{\sigma_z^{\infty}\sqrt{\pi b}}$$

$$= \left(-F_{zx} \frac{\sin \beta}{B(k)} + F_{yz} \frac{k' \cos \beta}{C(k)} \right) \frac{\left(1 - v\right)k^2}{\left(1 - k^2 \cos^2 \beta\right)^{1/4}}$$
(7)

In the following discussion, the maximum stress intensity factors $F_{I}(\beta)$, $F_{II}(\beta)$ appearing at $\beta = \pi/2$ will be mainly considered. In addition, the results using Murakami's $\sqrt{\text{area}}$ parameter will be also discussed (Murakami and Endo, 1983; Murakami and Nemat-Nasser, 1983; Murakami, 1985; Murakami and Isida, 1985; Murakami et al., 1988). Here, "area" is the area of crack.

$$F_{\rm I}^* = \frac{K_{\rm I}}{\sigma_z^{\infty} \sqrt{\pi \sqrt{\operatorname{area}}}} = \left(\frac{b}{\pi a}\right)^{1/4} \times F_{\rm I}$$

$$F_{\rm II}^* = \frac{K_{\rm II}}{\sigma_z^{\infty} \sqrt{\pi \sqrt{\operatorname{area}}}} = \left(\frac{b}{\pi a}\right)^{1/4} \times F_{\rm II} \tag{8}$$

$$F_{\rm III}^* = \frac{K_{\rm III}}{\sigma_z^{\infty} \sqrt{\pi \sqrt{\operatorname{area}}}} = \left(\frac{b}{\pi a}\right)^{1/4} \times F_{\rm III}$$

4.2. Convergence and accuracy of the results

Tables 1 and 2 show convergence of stress intensity factors $F_{\rm I}(\beta)$, $F_{\rm II}(\beta)$ at $\beta = \pi/2$ when a/b = 1, a/b = 16, v_1 , $v_2 = 0.3$ and $\mu_2/\mu_1 = 0$. Table 1(a) indicates that 10×10 boundary collocation points in Fig. 2(a) have convergence to the fourth digit when $h/2b \ge 0.3$. The convergence becomes worse as $h/2b \rightarrow 0$ and $a/b \rightarrow \infty$ due to the large effect of interface. On the other hand, Table 1(b) indicates that 50×50 boundary collocation points in Fig. 2(b) have convergence to the fourth digit when a/b = 1, and to the third digit when a/b = 16.

In the following calculation, the collocation points of 10×10 will be used when b/a > 0.2, and the ones of 50×50 will be used when $b/a \le 0.2$.

In Table 3, the present results are compared with the solution of Sahin and Erdogan (1997) when a/b = 1, $v_1 = 0.3$, $\mu_2/\mu_1 = 0$. The results coincide with each other to the fourth digit when $h/2b \ge 0.1$. Fig. 3 indicates the compliance of the boundary conditions along the prospective crack surface. For h/2b = 0.1 the remaining stress σ_z is less than 0.8×10^{-2} , and the remaining stresses τ_{yz} , τ_{zx} are less than 0.6×10^{-3} when n = 7. For $h/2b = 0.2 \sigma_z$ is less than 0.8×10^{-4} , and τ_{yz} , τ_{zx} are less than 0.6×10^{-5} .

4.3. Effect of Poisson's ratio

Table 4 shows the results of different Poisson's ratio. The results vary depending on Poisson's ratio by about 11% when a/b = 16, h/2b = 0.4;

a/b		п	h/2b						
			0.1	0.2	0.3	0.4	0.5	1.0	2.0
1	F_{I}	4	2.469	1.300	0.9867	0.8508	0.77816	0.66731	0.64142
		5	2.473	1.299	0.9868	0.8508	0.77816	0.66731	0.64142
		6	2.495	1.299	0.9868	0.8508	0.77816	0.66731	0.64142
	F_{II}	4	1.087	0.346	0.1613	0.08787	0.05196	0.00696	0.00058
		5	1.099	0.346	0.1613	0.08787	0.05196	0.00696	0.00058
		6	1.110	0.346	0.1613	0.08787	0.05196	0.00696	0.00058
16	F_{I}	4	5.96	2.902	2.0748	1.7085	1.5062	1.1590	1.04000
		5	5.98	2.897	2.0757	1.7090	1.5064	1.1589	1.04000
		6	6.03	2.896	2.0748	1.7087	1.5063	1.1589	1.04000
	F_{II}	4	2.98	0.993	0.4912	0.2874	0.1838	0.03624	0.00521
		5	3.01	0.990	0.4917	0.2876	0.1837	0.03623	0.00521
		6	2.99	0.992	0.4913	0.2874	0.1838	0.03623	0.00521

Table 1 Convergence of the results F_1 , F_{II} when $\mu_2/\mu_1 = 0$, $\beta = \pi/2$, ν_1 , $\nu_2 = 0.3$

Number of collocation points 10×10 .

Table 2 Convergence of the results $F_{\rm I}$, $F_{\rm II}$ when $\mu_2/\mu_1 = 0$, $\beta = \pi/2$, ν_1 , $\nu_2 = 0.3$

a/b		n	h/2b	
			0.1	0.2
1	$F_{\rm I}$	4	2.463	1.299
		5	2.463	1.299
		6	2.461	1.299
	F_{II}	4	1.105	0.3457
		5	1.106	0.3457
		6	1.105	0.3457
16	F_{I}	4	5.956	2.898
		5	5.932	2.892
		6	5.943	2.898
	F_{II}	4	3.025	0.9902
		5	3.016	0.9904
		6	3.023	0.9903

Number of collocation points 50×50 .

however, the results vary about 5% when a/b = 1, h/2b = 0.4. The effect is not very large even when Poisson's ratios are changed extremely from $(v_1, v_2) = (0, 0.5)$ to $(v_1, v_2) = (0.5, 0)$. Therefore in the following calculations we simply assume v_1 , $v_2 = 0.3$. Fig. 4 shows examples of the effect of Poisson's ratio. When a/b = 1, h/2b = 0.4, $\mu_2/\mu_1 = 0$, the results vary only about 0.1% and increase with increasing v_1 . On the other hand,

Table 3 Results of a penny-shaped crack in a semi-infinite body

h/2b	F_{I}		F_{II}	
	Sahin– Erdogan	Present analysis	Sahin– Erdogan	Present analysis
5	0.6369	0.6369	0.0000	0.0000
2		0.6414		0.0006
1	0.6673	0.6673	0.0070	0.0070
0.5	0.7781	0.7782	0.0520	0.0520
0.4		0.8507		0.8787
0.375	0.8763	0.8766	0.1013	0.1013
0.3		0.9868		0.1613
0.25	1.1061	1.1061	0.2297	0.2297
0.2		1.2991		0.3457
0.125	1.9620	1.9611	0.7704	0.7700
0.1		2.461		1.105
0.05	5.5317	5.50	3.2759	3.24

when a/b = 16, h/2b = 0.4, $\mu_2/\mu_1 = \infty$, F_I varies by about 7% and becomes largest at $v_1 = 0.18$.

4.4. Stress intensity factor of an elliptical crack parallel to a bimaterial interface

Table 5 (Panels a–c) shows the maximum stress intensity factors $F_{\rm I}$, $F_{\rm II}$, $F_{\rm I}^*$, $F_{\rm II}^*$ at $\beta = \pi/2$ when $a/b = 1, 2, 4, 16, \infty, \mu_2/\mu_1 = 0, 0.5, 2, \infty$, and $h/2b = 0.1-\infty$. Also, the maximum $F_{\rm III}$, $F_{\rm III}^*$ values are indicated with their position in the range

Fig. 3. Compliance of boundary condition $\sigma_z^{\infty} \cong 0$, $\tau_{yz}^{\infty} \cong 0$, $\tau_{zx}^{\infty} \cong 0$ in Fig. 1 when n = 7, a/b = 1, v_1 , $v_2 = 0.3$. (a) $\sigma_z^{\infty} \cong 0$, $\tau_{yz}^{\infty} \cong 0$, $\tau_{zx}^{\infty} \cong 0$ when h/2b = 0.1. (b) $\sigma_z^{\infty} \cong 0$, $\tau_{yz}^{\infty} \cong 0$ when h/2b = 0.2.

Table 4 Dimensionless stress intensity factors $F_{\rm I}$, $F_{\rm II}$ in Fig. 1

$F_{1} \qquad v_{1} = 0.0 \\ v_{2} = 0.0 \\ v_{1} = 0.5 \\ v_{2} = 0.5 \\ v_{1} = 0.0 \\ v_{2} = 0.5 \\ v_{1} = 0.0 \\ v_{2} = 0.5 \\ v_{2} = 0.0 \\ v_{1} = 0.3 \\ v_{2} = 0.3 \\ F_{II} \qquad v_{1} = 0.0 \\ v_{2} = 0.0 \\ v_{1} = 0.5 \\ v_{2} = 0.0 \\ v_{3} = 0.0 \\ v_{4} = 0.0 \\ v_{5} = 0.0$		a/b = 16				a/b = 1		
		$a/b = 16$ $h/2b = 0.4$ $\mu_2/\mu_1 = 0$ $\mu_2/\mu_1 =$ 1.7090 1.0857 1.7092 1.1316 1.7090 1.0352 1.7090 1.0352 1.7092 1.1628 1.7090 1.1073 0.288 0.0371 0.287 0.0530 0.287 0.0683 0.287 0.0446				h/2b = 0.1,	h/2b = 0.4,	h/2b = 1.0,
		$\mu_2/\mu_1 = 0$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1=2.0$	$\mu_2/\mu_1 = \infty$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1 = 0.5$
F_{I}	$v_1 = 0.0$	1.7090	1.0857	0.9251	0.798	0.7243	0.6710	0.6429
	$v_2 = 0.0$							
	$v_1 = 0.5$	1.7092	1.1316	0.8938	0.760	0.7563	0.6901	0.6465
	$v_2 = 0.5$							
	$v_1 = 0.0$	1.7090	1.0352	0.8794	0.798	0.6544	0.6586	0.6415
	$v_2 = 0.5$	1 7002	1 1 ()	0.01(0	0.7(0	0.0002	0.0071	0 (172
	$v_1 = 0.5$	1.7092	1.1628	0.9168	0.760	0.8093	0.6971	0.6472
	$v_2 = 0.0$	1 7000	1 1072	0.0134	0.800	0 7207	0.6800	0.6446
	$v_1 = 0.3$ $v_2 = 0.3$	1.7090	1.1075	0.9134	0.800	0.7397	0.0800	0.0440
	$v_2 = 0.5$							
$F_{\rm II}$	$v_1 = 0.0$	0.288	0.0371	-0.0280	-0.084	0.0513	0.0141	0.0014
	$v_2 = 0.0$							
	$v_1 = 0.5$	0.287	0.0530	-0.0362	-0.082	0.0507	0.0214	0.0022
	$v_2 = 0.5$							
	$v_1 = 0.0$	0.288	0.0119	-0.0509	-0.084	-0.0201	0.0104	0.0011
	$v_2 = 0.5$	0.005	0.000	0.0045	0.000	0.1054	0.0040	0.0004
	$v_1 = 0.5$	0.287	0.0683	-0.0247	-0.082	0.1074	0.0249	0.0024
	$v_2 = 0.0$	0.207	0.0446	0.0200	0.075	0.0520	0.0176	0.0010
	$v_1 = 0.3$	0.287	0.0446	-0.0308	-0.0/5	0.0520	0.0176	0.0018
	$v_2 = 0.3$							

1066

Fig. 4. (a) Effect of Poisson's ratio when a/b = 1, h/2b = 0.4, $\mu_2/\mu_1 = 0$. (b) Effect of Poisson's ratio when a/b = 16, h/2b = 0.4, $\mu_2/\mu_1 = \infty$.

 $\beta = \pi/20-\pi/4$. The results of $a/b = \infty$ is obtained from a two-dimensional program used in the previous study (Oda et al., 1998). If $h/2b \le 0.5$, $\mu_2/\mu_1 \le 0.1$, the $F_{\rm II}$ value is larger than 10% of the $F_{\rm I}$ value, and cannot be ignored. In other cases, however, the value of $F_{\rm II}$ is only several percent or less of the value of $F_{\rm I}$. The $F_{\rm III}$ values are less than the values of $F_{\rm II}$. In Table 5 (Panel c), the largest value of $F_{\rm III} = 0.1547$ when $\mu_2/\mu_1 = 0$, h/2b = 0.1, a/b = 2.

In Table 5 (Panels a–c), the ratios of the results of a/b = 1 and $a/b = \infty$ are also shown as $(a/b = 1)/(a/b = \infty)$. The ratio of $F_{\rm I}$ is 0.41–0.69. On the other hand, the ratio of $F_{\rm I}^*$ is 0.97–1.10 \cong 1 unless $h/2b \leq 1.0$, $\mu_2/\mu_1 \leq 0.1$. Fig. 5 shows $F_{\rm I}$, $F_{\rm II}$ vs. h/2b, and Fig. 6 shows $F_{\rm I}^*$, $F_{\rm II}^*$ vs. h/2b when $\mu_2/\mu_1 = 0, \infty$. It is seen $F_{\rm I}^*$, $F_{\rm II}^*$ is insensitive to a/b. The $\sqrt{\text{area}}$ parameter $F_{\rm I}^*$ is found to be effective for engineering use because the effect of a/b on $F_{\rm I}^*$ is small. In other words, different shaped cracks have almost the same values of F_{I}^{*} .

Figs. 7–9 show the distribution of the stress intensity factors $F_{\rm I}$, $F_{\rm II}$, $F_{\rm III}$ when h/2b = 0.1, 0.5, ∞ . The maximum values of $F_{\rm I}$, $F_{\rm II}$ appearing at $\beta = \pi/2$ becomes greatly influenced by the interface according to $h/2b \rightarrow 0$ especially for large value of a/b.

5. Conclusion

In this study an elliptical crack parallel to a bimaterial interface was considered. The stress intensity factors were calculated systematically with varying the aspect ratio of crack, elastic constants of materials, and the distance between the crack and interface. The conclusion can be made as follows.

a/b	$\overline{F_{\mathrm{I}}}$	<u>F1</u> <u>F1</u>														
	$\begin{array}{l} \mu_2/\ \mu_1 \\ = 0 \end{array}$	$\mu_2/\mu_1 = 0.01$	$\mu_2/\mu_1 = 0.05$	$\mu_2/\mu_1 = 0.1$	$\mu_2/\mu_1 = 0.3$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1 = 1.0$	$\mu_2/\mu_1 = 2.0$	$\begin{array}{l} \mu_2/\mu_1 \\ = 0 \end{array}$	$\mu_2/\mu_1 = 0.01$	$\mu_2/\mu_1 = 0.05$	$\begin{array}{l} \mu_2/\mu_1 \\ = 0.1 \end{array}$	$\mu_2/\mu_1 = 0.3$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1 = 1.0$	$\mu_2/\mu_1 = 2.0$
Panel a																
h/2b = 0.1																
1	2.461	2.067	1.447	1.175	0.8457	0.7397	0.5699	0.4779	1.8485	1.5526	1.0869	0.8826	0.6352	0.5556	0.4281	0.3590
2	4.830					0.9756	0.7295	0.5975	3.0507					0.6132	0.4608	0.3774
4	5.692					1.1041	0.8221	0.6694	3.0232					0.5864	0.4366	0.3555
10	5.94	1 2803	2 5728	1 0072	1 3733	1.1/5	0.875	0.7122	2.8105	2 0283	1 2166	0.9444	0.6494	0.5550	0.4138	0.3308
100	5.75	4.2075	2.3720	1.9972	1.5755	1.105	0.002	0.7175	2.0150	2.0205	1.2100	0.7444	0.0474	0.5574	0.4171	0.5570
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.4136	0.4819	0.5624	0.5878	0.6157	0.6253	0.6461	0.6665	0.6570	0.7655	0.8934	0.9346	0.9781	0.9932	1.0263	1.0590
h/2b = 0.2																
1	1.2991	1.2477	1.1001	0.9875	0.7926	0.7160	0.5837	0.5105	0.9758	0.9372	0.8263	0.7417	0.5953	0.5378	0.4384	0.3834
2	2.3369					0.9554	0.7424	0.6299	1.4760					0.6034	0.4689	0.3979
4	2.7735					1.0829	0.8355	0.7033	1.4731					0.5752	0.4438	0.3735
$10 \rightarrow \infty$	2.898	2 6764	2 1307	1 7958	1 3216	1.152	0.890	0.749	1.3704	1 2656	1.0075	0.8492	0 6249	0.5447	0.4209	0.3542
1.00	2.9052	2.0701	2.1507	1.7950	1.5210	1.1571	0.0700	0.7510	1.5750	1.2000	1.0075	0.0172	0.0219	0.0102	0.1210	0.5500
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.4472	0.4662	0.5163	0.5499	0.5997	0.6176	0.6510	0.6765	0.7296	0.7405	0.8201	0.8734	0.9526	0.9810	1.0340	1.0746
h/2b = 0.3																
1	0.9868	0.9695	0.9125	0.8604	0.7483	0.6958	0.5945	0.5355	0.7412	0.7282	0.6854	0.6463	0.5621	0.5226	0.4465	0.4022
2	1.6567					0.9347	0.7535	0.6551	1.0464					0.5904	0.4759	0.4138
4	1.9806					1.0321	0.8468	0.729	1.0519					0.5641	0.4498	0.3872
$\rightarrow \infty$	2.075	2 0046	1 7766	1 5950	1 2677	1.129	0.9023	0.770	0.9812	0 9479	0.8401	0 7542	0 5995	0.5359	0.4207	0.3009
/ 00	2.0007	2.0040	1.7700	1.5950	1.2077	1.1505	0.9090	0.7620	0.9040	0.9479	0.0401	0.7542	0.5775	0.5574	0.4270	0.5702
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.4742	0.4835	0.5136	0.5394	0.5903	0.6122	0.6540	0.6841	0.7533	0.7682	0.8159	0.8569	0.9376	0.9725	1.0389	1.0864
h/2b = 0.4																
1	0.8507	0.8424	0.8134	0.7848	0.7159	0.6800	0.6043	0.5565	0.6390	0.6327	0.6110	0.5895	0.5377	0.5108	0.4539	0.4180
2	1.3540					0.9143	0.7641	0.6777	0.8552					0.5775	0.4826	0.4280
4	1.6254					1.0417	0.8573	0.7520	0.8633					0.5533	0.4553	0.3994
16	1.7090	1 (7(4	1 6647	1 4457	1 2100	1.1073	0.9134	0.800	0.8129	0 7027	0.7252	0.0000	0.57(0	0.5236	0.4319	0.3783
$\rightarrow \infty$	1./138	1.6/64	1.5547	1.4457	1.2180	1.1145	0.9204	0.8073	0.8104	0.7927	0.7352	0.6836	0.5760	0.5270	0.4352	0.3817
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.4964	0.5025	0.5231	0.5429	0.5878	0.5939	0.6566	0.6893	0.7885	0.7982	0.8311	0.8623	0.9335	0.9693	1.0429	1.0951
h/2b = 0.5																
1	0.7881	0.7733	0.7561	0.7385	0.6935	0.6684	0.6120	0.5741	0.5920	0.5808	0.5679	0.5547	0.5209	0.5021	0.4597	0.4312
2	1.1879					0.8963	0.7742	0.6995	0.7503					0.5661	0.4890	0.4418
4	1.4278					1.0234	0.8674	0.7734	0.7583					0.5436	0.4607	0.4108
16	1.5063	1 4000	1 4122	1 2412	1.17()	1.0881	0.9240	0.8233	0.7123	0.7040	0.((82	0 (242	0.5564	0.5145	0.4369	0.3893
$\rightarrow \infty$	1.5110	1.4888	1.4132	1.3412	1.1/00	1.0952	0.9311	0.8302	0./145	0.7040	0.6683	0.6342	0.5564	0.51/9	0.4403	0.3926

Dimensionless stress intensity factors when v_1 , $v_2 = 0.3$ in Fig. 1. Panel a: E_1 , E_2^* at $\beta = \pi/2$. Panel b: E_2 , E_2^* at $\beta = \pi/2$. Panel c: E_{22} , E_{23}^* , at $\beta = \pi/2$.

Table 5

$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.5216	0.5194	0.5414	0.5506	0.5894	0.6103	0.6573	0.6915	0.8286	0.8250	0.8498	0.8746	0.9362	0.9695	1.0441	1.0983
$h/2b = 1.0$ 1 2 4 16 $\rightarrow \infty$ $(a/b - 1)/2$	0.66731 0.91536 1.08299 1.1589 1.16332 0.57363	0.66644	0.66328 1.14002 0.58183	0.65990 1.12093 0.58871	0.65044 1.06976 0.60799	0.64461 0.84817 0.96904 1.03320 1.03975 0.61997	0.62992 0.80735 0.90318 0.96027 0.96772 0.65093	0.61883 0.77768 0.85624 0.90720 0.91518 0.67618	0.50123 0.57816 0.57520 0.54801 0.55010 0.91162	0.50058 0.54771 0.91395	0.49821 0.53908 0.92419	0.49567 0.53006 0.93512	0.48856 0.50586 0.96580	0.48418 0.53572 0.51468 0.48857 0.49167	0.47315 0.50994 0.47902 0.45408 0.45761	0.46482 0.49067 0.45477 0.42899 0.43276
	0.57505	0.57555	0.58185	0.56671	0.00799	0.01997	0.05095	0.07018	0.91102	0.91393	0.92419	0.93512	0.90580	0.96477	1.0559	1.07408
$h/2b = 2.0$ 1 2 4 16 $\rightarrow \infty$ $(a/b = 1)/$	0.64142 0.84108 0.96518 1.04000 1.04507 0.61376	0.64130 1.04383 0.61437	0.64082 1.03927 0.61659	0.64030 1.03437 0.61902	0.63883 1.02055 0.62594	0.63790 0.82982 0.94118 1.00538 1.01196 0.63036	0.63552 0.82225 0.92529 0.98233 0.98978 0.64208	0.63367 0.81643 0.91311 0.96418 0.97201 0.65192	0.48179 0.53124 0.51263 0.49179 0.49418 0.97493	0.48170 0.49360 0.97589	0.48134 0.49144 0.97945	0.48095 0.48912 0.98330	0.47984 0.48259 0.99430	0.47914 0.52413 0.49989 0.47541 0.47853 1.00127	0.47736 0.51935 0.49145 0.46452 0.46804 1.01991	0.47597 0.51567 0.48498 0.45593 0.45964 1.03552
$(a/b = \infty)$																
$\begin{array}{l} h/2b = \infty \\ 1 \\ 2 \\ 4 \\ 16 \\ \rightarrow \infty \\ (a/b = 1)/ \\ (a/b = \infty) \end{array}$	0.63662 0.82572 0.93297 0.99275 1.00000 0.63662	0.47818 0.52154 0.49552 0.46944 0.47287 1.01123														
Panel b	_									_						
$h/2b = 0.1$ 1 2 4 16 $\rightarrow \infty$	F _{II} 1.105 2.378 2.874 3.02 3.303	0.8462	0.4509 0.8634	0.2877 0.5259	0.1063	0.0520 0.0735 0.0855 0.092 0.093	-0.0344 -0.0485 -0.0569 -0.0616 -0.0622	-0.0847 -0.1190 -0.1397 -0.152 -0.153	0.8300 1.5020 1.5265 1.4281 1.5619	F [*] _{II} 0.6356 0.9202	0.3387 0.4083	0.2161	0.0798 0.0897	0.0391 0.0464 0.0454 0.0435 0.0440	-0.0258 -0.0306 -0.0302 -0.0291 -0.0293	-0.0636 -0.0752 -0.0742 -0.0719 -0.0723
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.3345	0.4348	0.5222	0.5471	0.5604	0.5591	0.5548	0.5536	0.5314	0.6907	0.8295	0.8689	0.8896	0.8886	0.8805	0.8797
h/2b = 0.2 1 2	0.3457 0.7456	0.3171	0.2362	0.1758	0.0754	0.0378 0.0577	-0.0250 -0.0367	-0.0607 -0.0882	0.2597 0.4709	0.2382	0.1774	0.1320	0.0566	0.0284 0.0364	-0.0188 -0.0232	-0.0456 -0.0557

1069

Table 5 ((continued)	
1 4010 5 1	continuction	

a/h	$F_{\rm II}$								F_{Π}^*							
u j U	$\frac{\mu_2}{\mu_2} \mu_1 = 0$	$\mu_2/\mu_1 = 0.01$	$\mu_2/\mu_1 = 0.05$	$\mu_2/\mu_1 = 0.1$	$\begin{array}{l}\mu_2/\mu_1\\=0.3\end{array}$	$\mu_2/\mu_1 = 0.5$	$\mu_2/\mu_1 = 1.0$	$\mu_2/\mu_1 = 2.0$	$\frac{\mu_2}{\mu_1} = 0$	$\mu_2/\mu_1 = 0.01$	$\mu_2/\mu_1 = 0.05$	$\begin{array}{l}\mu_2/\mu_1\\=0.1\end{array}$	$\begin{array}{l}\mu_2/\mu_1\\=0.3\end{array}$	$\begin{array}{l}\mu_2/\mu_1\\=0.5\end{array}$	$\mu_2/\mu_1 = 1.0$	$\begin{array}{l}\mu_2/\mu_1\\=2.0\end{array}$
4	0.9327					0.0678	-0.0434	-0.1048	0.4954					0.0360	-0.0230	-0.0557
16	0.9903					0.0731	-0.0473	-0.1150	0.4683					0.0346	-0.0224	-0.0544
$\rightarrow \infty$	0.9940	0.8671	0.5688	0.3908	0.1509	0.0737	-0.0477	-0.1161	0.4700	0.4100	0.2690	0.1848	0.0714	0.0349	-0.0226	-0.0549
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.3478	0.3657	0.4153	0.4498	0.4997	0.5129	0.5241	0.5228	0.5526	0.5810	0.6595	0.7143	0.7927	0.8137	0.8319	0.8306
h/2b = 0.3																
1	0.1613	0.1531	0.1261	0.1016	0.0499	0.0263	-0.0184	-0.0450	0.1212	0.1150	0.0947	0.0763	0.0375	0.0198	-0.0138	-0.0338
2	0.3512					0.0442	-0.0290	-0.0693	0.2218					0.0279	-0.0183	-0.0438
4	0.4570					0.0535	-0.0350	-0.0838	0.2427					0.0284	-0.0186	-0.0445
16	0.491					0.058	-0.038	-0.092	0.2322					0.0274	-0.0180	-0.0435
$\rightarrow \infty$	0.4936	0.4572	0.3495	0.2648	0.1162	0.0586	-0.0387	-0.0937	0.2334	0.2162	0.1653	0.1252	0.0549	0.0277	-0.0183	-0.0443
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.3268	0.3349	0.3608	0.3837	0.4294	0.4488	0.4755	0.4803	0.5193	0.5319	0.5729	0.6094	0.6831	0.7148	0.7541	0.7630
h/2h = 0.4																
n/2v = 0.4	0.0879	0.0844	0.0723	0.0605	0.0322	0.0176	_0.0130	-0.0326	0.0660	0.0634	0.0543	0.0454	0.0242	0.0132	_0.0008	-0.0245
2	0.1941	0.00	0.0725	0.0005	0.0522	0.0322	-0.0130	-0.0520	0.1226	0.0054	0.0545	0.0454	0.0242	0.0132	-0.0098	-0.0243 -0.0341
4	0.2631					0.0322	-0.0223	-0.0672	0.1397					0.0216	-0.0148	-0.0357
16	0.287					0.0446	-0.0308	-0.075	0.1357					0.0210	-0.0146	-0.0355
$\rightarrow \infty$	0.2890	0.2735	0.2231	0.1783	0.0861	0.0450	-0.0311	-0.0761	0.1367	0.1293	0.1055	0.0843	0.0407	0.0213	-0.0147	-0.0360
$(a/b = 1)/(a/b = \infty)$	0.3042	0.3086	0.3241	0.3393	0.3740	0.3911	0.4180	0.4284	0.4828	0.4903	0.5147	0.5386	0.5946	0.6197	0.6667	0.6806
$(u/v = \infty)$																
h/2b = 0.5																
1	0.0520	0.0502	0.0438	0.0373	0.0208	0.0116	-0.0090	-0.0230	0.0391	0.0377	0.0329	0.0280	0.0156	0.0087	-0.0068	-0.0173
2	0.1167					0.0227	-0.0166	-0.0410	0.0737					0.0143	-0.0105	-0.0260
4	0.1649					0.0301	-0.0216	-0.0530	0.0876					0.0160	-0.0115	-0.0281
16	0.1838					0.0336	-0.0243	-0.0602	0.0869					0.0159	-0.0115	-0.0285
$\rightarrow \infty$	0.1849	0.1767	0.1490	0.1228	0.0632	0.0339	-0.0246	-0.0610	0.0874	0.0836	0.0705	0.0581	0.0299	0.0160	-0.0116	-0.0288
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.2812	0.2841	0.2940	0.3037	0.3291	0.3422	0.3658	0.3770	0.4474	0.4510	0.4667	0.4819	0.5217	0.5438	0.5862	0.6007
h/2b = 1.0	0.00/0/	0.00(77	0.00005	0.00520	0.00214	0.00103	0.00153	0.00406	0.00522	0.00500	0.00454	0.00207	0.00000	0.00127	0.00114	0.00205
1	0.00696	0.006//	0.00605	0.00529	0.00314	0.00182	0.00152	-0.00406	0.00523	0.00509	0.00454	0.00397	0.00236	0.0013/	-0.00114	-0.00305
2	0.01003					0.00414	0.00340	-0.00889	0.01044					0.00261	-0.00215	-0.00562
4	0.02801					0.00682	0.00550	-0.01426	0.01488					0.00362	-0.00292	-0.00/5/
10	0.03623	0.025(1	0.02151	0.02721	0.01570	0.00878	0.00713	-0.018/1	0.01713	0.01694	0.01400	0.01207	0.00742	0.00415	-0.00337	-0.00885
$\rightarrow \infty$	0.036/5	0.03561	0.03151	0.02/21	0.015/0	0.00895	0.00728	-0.01921	0.01/38	0.01684	0.01490	0.0128/	0.00742	0.00423	-0.00344	-0.00908
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$	0.18939	0.19012	0.19200	0.19441	0.20000	0.20335	0.20879	0.21135	0.30092	0.30226	0.30470	0.30847	0.31806	0.32388	0.33139	0.33590

N.-A. Noda et al. | Mechanics of Materials 35 (2003) 1059-1076

1070

$h/2b = 2.0$ 1 2 4 16 $\rightarrow \infty$ $(a/b = 1)/$ $(a/b = \infty)$	0.00059 0.00142 0.00276 0.00521 0.00548 0.10766	0.00057 0.00532 0.10714	0.00051 0.00477 0.10692	0.00045 0.00418 0.10766	0.00027 0.00250 0.10800	0.00016 0.00038 0.00073 0.00138 0.00145 0.11034	0.00013 0.00032 0.00062 0.00117 0.00124 0.10484	-0.00036 -0.00086 -0.00164 -0.00314 -0.00339 0.10619	0.00044 0.00090 0.00147 0.00246 0.00259 0.16988	0.00043 0.00252 0.17063	0.00038 0.00226 0.16814	0.00034 0.00198 0.17172	0.00020 0.00118 0.16949	0.00012 0.00024 0.00039 0.00065 0.00069 0.17391	-0.00010 -0.00020 -0.00033 -0.00055 -0.00059 0.16949	-0.00027 -0.00054 -0.00087 -0.00148 -0.00160 0.16875
$h/2b = \infty$ 1 2 4 16 $\rightarrow \infty$ $(a/b = 1)/$ $(a/b = \infty)$	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000							
Panel c	F_{III}								$F^*_{ m III}$							
	$\mu_2/\mu_1 = 0$	β	$\mu_2/\mu_1 = 0.5$	β	$\mu_2/\mu_1 = 2.0$	β	$\mu_2/\mu_1 = \infty$	β	$\frac{\mu_2/\mu_1}{=0}$	β	$\mu_2/\mu_1 = 0.5$	β	$\mu_2/\mu_1 = 2.0$	β	$\mu_2/\mu_1 = \infty$	β
$h/2b = 0.1$ 1 2 4 16 $\rightarrow \infty$ $(a/b = 1)/$ $(a/b = \infty)$	0.0000 0.1547 0.1453 0.0484	38 29 17	0.0000 0.0061 0.0098 0.0079	30 19 9	0.0000 -0.0052 -0.0079 -0.0064	33 21 10	0.0000 -0.0146 -0.0222 -0.0183	33 22 10	0.0000 0.0977 0.0772 0.0229	38 29 17	0.0000 0.0039 0.0052 0.0037	30 19 9	0.0000 -0.0033 -0.0042 -0.0030	33 21 10	0.0000 -0.0092 -0.0118 -0.0087	33 22 10
$h/2b = 0.2$ 1 2 4 16 $\rightarrow \infty$ $(a/b = 1)/$ $(a/b = \infty)$	0.0000 0.1019 0.1003 0.0329	41 34 22	0.0000 0.0081 0.0117 0.0069	33 24 14	0.0000 -0.0058 -0.0088 -0.0059	33 24 13	0.0000 -0.0155 -0.0241 -0.0169	34 24 13	0.0000 0.0644 0.0410 0.0156	41 34 22	0.0000 0.0051 0.0062 0.0032	33 24 14	0.0000 -0.0037 -0.0048 -0.0028	33 24 13	0.0000 -0.0098 -0.0129 -0.0080	34 24 13
$h/2b = 0.3$ 1 2 4 16 $\rightarrow \infty$	0.0000 0.0729 0.0771 0.0261	44 38 20	0.0000 0.0900 0.0118 0.0066	38 30 15	0.0000 -0.0063 -0.0090 -0.0058	37 29 14	0.0000 -0.0162 -0.0243 -0.0168	37 29 14	0.0000 0.0461 0.0410 0.0123	44 38 20	0.0000 0.0057 0.0063 0.0031	38 30 15	0.0000 -0.0040 -0.0048 -0.0027	37 29 14	0.0000 -0.0102 -0.0129 -0.0079	37 29 14

 $\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$

N.-A. Noda et al. | Mechanics of Materials 35 (2003) 1059–1076

Table 5 (co	ontinued)
-------------	-----------

_	
	5
-	à.
- N	3

a/b	$F_{ m III}$								F_{III}^*							
	$\begin{array}{l} \mu_2/\mu_1 \\ = 0 \end{array}$	β	$\mu_2/\mu_1 = 0.5$	β	$\mu_2/\mu_1 = 2.0$	β	$\mu_2/\mu_1 = \infty$	β	$\begin{array}{l} \mu_2/\mu_1 \\ = 0 \end{array}$	β	$ \mu_2/\mu_1 = 0.5 $	β	$\mu_2/\mu_1 = 2.0$	β	$\mu_2/\mu_1 = \infty$	β
h/2b = 0.4																
1	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
2	0.0539	45	0.0087	41	-0.0062	40	-0.0159	40	0.0340	45	0.0055	41	-0.0039	40	-0.0100	40
4	0.0621	41	0.0111	34	-0.0086	33	-0.0234	33	0.0330	41	0.0059	34	-0.0046	33	-0.0124	33
16	0.0212	26	0.0056	19	-0.0050	17	-0.0147	18	0.0100	26	0.0026	19	-0.0024	17	-0.0069	18
$ \rightarrow \infty $ $ (a/b = 1)/ (a/b = \infty) $																
h/2b = 0.5																
1	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000		0.0000	
2	0.0404	46	0.0077	44	-0.0057	44	-0.0147	42	0.0255	46	0.0049	44	-0.0036	44	-0.0093	42
4	0.0512	43	0.0102	38	-0.0080	37	-0.0218	36	0.0272	43	0.0054	38	-0.0043	37	-0.0115	36
16	0.0178	28	0.0047	24	-0.0043	23	-0.0128	23	0.0084	28	0.0022	24	-0.0020	23	-0.0060	23
$\rightarrow \infty$																
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$																
h/2b = 1.0																
1	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
2	0.01104	45	0.00276	45	-0.00228	45	-0.00608	45	0.00695	45	0.00175	45	-0.00144	45	-0.00384	45
4	0.02243	48	0.00554	47	-0.00462	46	-0.02695	44	0.01191	48	0.00294	47	-0.00246	46	-0.01112	44
16	0.00998	36	0.00280	35	-0.00262	35	-0.00799	36	0.00472	36	0.00132	35	-0.00124	35	-0.00378	36
$\rightarrow \infty$																
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$																
h/2b = 2.0																
1	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
2	0.00146	43	0.00039	42	-0.00033	42	-0.00089	42	0.00092	43	0.00024	42	-0.00021	42	-0.00056	42
4	0.00564	46	0.00150	46	-0.00129	46	-0.00351	45	0.00300	46	0.00080	46	-0.00068	46	-0.00186	45
16	0.00499	45	0.00142	45	-0.00132	45	-0.00395	45	0.00236	45	0.00067	45	-0.00062	45	-0.00187	45
$\rightarrow \infty$																
$\begin{array}{l} (a/b=1)/\\ (a/b=\infty) \end{array}$																
$h/2b = \infty$																
1	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
2	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
4	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
16	0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000		0.00000	
$\rightarrow \infty$																
$(a/b = 1)/(a/b = \infty)$																

Fig. 5. (a) Variation of F_1 , F_{II} in Fig. 1 when $\mu_2/\mu_1 = 0$, ν_1 , $\nu_2 = 0.3$. (b) Variation of F_1 , F_{II} in Fig. 1 when $\mu_2/\mu_1 = \infty$, ν_1 , $\nu_2 = 0.3$.

- (1) The problem is formulated as a system of singular integral equations correctly. In the numerical calculation, fundamental density functions and polynomials are used to approximate unknown body force densities. The results show that the present method have convergence to the fourth digit when a/b =1-16 and $h/2b \ge 0.1$ in Fig. 1 (see Tables 1 and 2).
- (2) The stress intensity factors are indicated in tables and figures with varying the shape of crack a/b = 1-∞, distance from the interface h/2b = 0.1-∞, and elastic constants μ₂/μ₁ =

 $0-\infty$ when v_1 , $v_2 = 0.3$ (see Table 5). The effect of Poisson's ratio is not very large, i.e. by about 11% when a/b = 16, h/2b = 0.4 and by about 5% when a/b = 1, h/2b = 0.4.

(3) The $\sqrt{\text{area}}$ parameter F_{I}^* is found to be effective for engineering use because the effect of crack shape a/b on F_{I}^* is small. In other words, different shaped cracks have almost the same values of F_{I}^* (see Figs. 5 and 6 and Table 5). The maximum values of F_{I} , F_{II} appearing at $\beta = \pi/2$ becomes greatly influenced by the interface according to $h/2b \rightarrow 0$ especially for large value of a/b (see Figs. 7–9).

Fig. 6. (a) Variation of F_{I}^{*} , F_{II}^{*} in Fig. 1 when $\mu_{2}/\mu_{1} = 0$, v_{1} , $v_{2} = 0.3$. (b) Variation of F_{I}^{*} , F_{II}^{*} in Fig. 1 when $\mu_{2}/\mu_{1} = \infty$, v_{1} , $v_{2} = 0.3$.

Fig. 7. Variation of F_{I} , F_{II} , F_{III} in Fig. 1 when a/b = 1, $\mu_2/\mu_1 = 0$, v_1 , $v_2 = 0.3$.

Fig. 8. Variation of F_{I} , F_{II} , F_{III} in Fig. 1 when a/b = 2, $\mu_2/\mu_1 = 0$, v_1 , $v_2 = 0.3$.

Fig. 9. Variation of F_{I} , F_{II} , F_{III} in Fig. 1 when a/b = 4, $\mu_2/\mu_1 = 0$, v_1 , $v_2 = 0.3$.

Acknowledgements

This research has been partly supported by JSPS postdoctoral fellowship and Kyushu Institute of Technology fellowship for foreign researchers.

References

Chen, M.-C., Noda, N.-A., Tang, R.-J., 1999. Application of finite-part integrals to planar interfacial fracture problems in three-dimensional bimaterials. ASME J. Appl. Mech. 66, 885–890.

- Cook, T.S., Erdogan, F., 1972. Stresses in bonded materials with a crack perpendicular to the interface. Int. J. Engng. Sci. 10, 677–697.
- Erdogan, F., Aksogan, O., 1974. Bonded half planes containing an arbitrarily oriented crack. Int. J. Solids Struct. 10, 569– 585.
- Erdogan, F., Arin, K., 1972. Penny-shaped interface crack between an elastic layer and a half-space. Int. J. Solids Struct. 8, 93–109.
- Hadamard, J., 1923. Lectures on Caunchy's Problem in Linear Partial Differential Equations. Yale University Press, New Haven, CT.
- Isida, M., Noguchi, H., 1983. An arbitrary array of cracks in bonded semi-infinite bodies under in-plane loads. Trans. Jpn. Soc. Mech. Engrs. 49 (437), 36–45 (in Japanese).

- Kassir, M.K., Bregman, A.M., 1972. The stress intensity factor for a penny-shaped crack between two dissimilar materials. ASME J. Appl. Mech. 39, 301–308.
- Murakami, Y., 1985. Analysis of stress intensity factors of modes I, II and III inclined surface cracks of arbitrary shape. Engng. Fract. Mech. 22 (1), 101–114.
- Murakami, Y., Endo, M., 1983. Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Engng. Fract. Mech. 17 (1), 1–15.
- Murakami, Y., Isida, M., 1985. Analysis of an arbitrarily shaped surface crack and stress field at crack front near surface. Trans. Jpn. Soc. Mech. Engrs. 51 (464), 1050–1056 (in Japanese).
- Murakami, Y., Nemat-Nasser, S., 1983. Growth and stability of interacting surface flaws of arbitrary shape. Engng. Fract. Mech. 17 (3), 193–210.
- Murakami, Y., Kodama, S., Konuma, S., 1988. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high strength steel. Trans. Jpn. Soc. Mech. Engrs. 54, 688–696 (in Japanese).

- Nakamura, T., 1991. Three-dimensional stress fields of elastic interfaces cracks. ASME J. Appl. Mech. 58, 939–946.
- Noda, N.-A., Miyoshi, S., 1996. Variation of stress intensity factor and crack opening displacement of a semi-elliptical surface crack. Int. J. Fract. 75, 19–48.
- Oda, K., Noda, N.-A., Hashim, M.J., 1998. Analysis of interaction between interface cracks and internal cracks using singular integral equation of body force method. In: Damage and Fracture Mechanics. Computational Mechanics Publications, Southampton, pp. 34–42.
- Shibuya, T. et al., 1989. Stress analysis of the vicinity of an elliptical crack at the interface of two bounded half-spaces. JSME Int. J. 32, 485–491.
- Sahin, A., Erdogan, F., 1997. The axisymmetric crack probrem in a semi-infinite nonhomogeneous medium. US Army Research Office Grant no. DAAH 04-95-1-0232.
- Willis, J.R., 1972. The penny-shaped crack on an interface. Quart. J. Mech. Appl. Math. 25, 367–385.
- Yuuki, R., Xu, J.-Q., 1992. A BEM analysis of a threedimensional interfacial crack of bimaterials. Trans. JSME 58, 19–46 (in Japanese).