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Summary This paper deals with the stress concentration problem of an ellipsoidal inclusion of
revolution in a semi-infinite body under biaxial tension. The problem is formulated as a system of
singular integral equations with Cauchy-type or logarithmic-type singularities, where unknowns
are densities of body forces distributed in the r- and z-directions in semi-infinite bodies having the
same elastic constants as the ones of the matrix and inclusion. In order to satisfy the boundary
conditions along the ellipsoidal boundary, four fundamental density functions proposed in [24,
25] are used. The body-force densities are approximated by a linear combination of fundamental
density functions and polynomials. The present method is found to yield rapidly converging
numerical results for stress distribution along the boundaries even when the inclusion is very
close to the free boundary. The effect of the free surface on the stress concentration factor is
discussed with varying the distance from the surface, the shape ratio and the elastic modulus ratio.
The present results are compared with the ones of an ellipsoidal cavity in a semi-infinite body.

Keywords Stress concentration, Body-force method, Ellipsoidal inclusion, Singular integral
equation, Numerical analysis, Semi-infinite body

1
Introduction
Structural materials usually contain some defects in the form of cracks, cavities, and inclusions.
For various metals, the size, shape, and distribution of microdiscontinuities have been inves-
tigated e.g. in [1, 2]. To evaluate their defects on the strength, it is fundamental to know the
stress concentration of elliptical and ellipsoidal inclusions, which cover many particular cases,
such as linear, circular, and spherical defects. In earlier studies, ellipsoidal inclusions have been
studied by several researchers, [3–6]. Also, interactions among elliptical and ellipsoidal
inclusions have been discussed in [7–17]. Several elasticity problems involving a half-space
with a spheroidal inclusion have been studied in [18–22]. However, there has been little dis-
cussion about ellipsoidal inclusions in a half-space.

In this study, therefore, stress concentration of an ellipsoidal inclusion of revolution in a
semi-infinite body under bi-axial tension is considered. An ellipsoidal inclusion can be re-
garded as a general model of the defect because many kinds of defects can be expressed by
changing the elastic modulus ratio and the shape ratio of the inclusion. The body-force method,
[23], is used here to formulate the problem as a system of singular integral equations. Then, the
unknown body-force densities are approximated by a linear combination of fundamental
density functions and polynomials [24–26]. The results will be compared with the ones in [18–
22] by setting the elastic modulus of the inclusion EI ¼ 0, see Fig. 1. It will be shown that the
present method gives smooth variations of interface stresses along the boundary.

2
Analysis and numerical procedure
Consider a semi-infinite body under biaxial tension having an ellipsoidal inclusion as shown in
Fig. 1. The body force method is used to formulate the problem as a system of singular integral
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equations. In this analysis fundamental solutions are stress (KFr
nn; KFz

nn; KFr
nt ; KFz

nt ) and dis-
placement fields (KFr

ur ; KFz
ur ; KFr

uz; KFz
uz) at an arbitrary point (r; h; z) when ring forces are acting in

the r- and z-directions at (q; u; f) in a semi-infinite body. Here, (q; u; f) is a point in the
(r; h; z) coordinate system, where ring forces are applied:

q ¼ a cos a; f ¼ d þ b sin a; r ¼ a cos w; z ¼ d þ b sin w:

A semi-infinite body "M" and an infinite body "I" are considered, each of which having the
same elastic constants as those of the matrix (EM; mM) and the inclusion (EI ; mI). Denote by
rnM; sntM; urM; uzM the stresses and displacements which appear along the prospective ellip-
tical boundaries in the semi-infinite body "M". In a similar way, denote by rnI ; sntI ; urI ; uzI the
stresses and displacements which appear along the prospective elliptical boundaries in the
infinite body "I". Then, the boundary conditions, that is

rtM � rtI ¼ 0; sntM � sntI ¼ 0; urM � urI ¼ 0; uzM � uzI ¼ 0;

can be expressed as

� 1

2
q�rM wð Þ cos w0 þ q�zM wð Þ sin w0

� �
� 1

2
q�rI wð Þ cos w0 þ q�zI wð Þ sin w0

� �

þ
Z p=2

�p=2

KFr
nnM a;wð Þq�rM að Þdsþ

Z p=2

�p=2

KFz
nnM a;wð Þq�zM að Þds

�
Z p=2

�p=2

KFr
nnI a;wð Þq�rI að Þds�

Z p=2

�p=2

KFz
nnI a;wð Þq�zI að Þds

¼ � r1z sin2 w0 þ r1r cos2 w0

� �
;

1

2
q�rM wð Þ sin w0 � q�zM wð Þ cos w0

� �
þ 1

2
q�rI wð Þ sin w0 � q�zI wð Þ cos w0

� �

þ
Z p=2

�p=2

KFr
ntM a;wð Þq�rM að Þdsþ

Z p=2

�p=2

KFz
ntM a;wð Þq�zM að Þds

�
Z p=2

�p=2

KFr
ntI a;wð Þq�rI að Þds�

Z p=2

�p=2

KFz
ntI a;wð Þq�zI að Þds

¼ � r1z � r1r
� �

sin w0 cos w0; ð1Þ

Fig. 1. An ellipsoidal inclusion in a semi-infinite body under biaxial tension
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Z p=2

�p=2

KFr
urM a;wð Þq�rM að Þdsþ

Z p=2

�p=2

KFz
urM a;wð Þq�zM að Þds

�
Z p=2

�p=2

KFr
urI a;wð Þq�rI að Þds�

Z p=2

�p=2

KFz
urI a;wð Þq�zI að Þds

¼ � r1r � mM r1h þ r1z
� �� �

r=EM;

Z p=2

�p=2

KFr
uzM a;wð Þq�rM að Þdsþ

Z p=2

�p=2

KFz
uzM a;wð Þq�zM að Þds

�
Z p=2

�p=2

KFr
uzI a;wð Þq�rI að Þds�

Z p=2

�p=2

KFz
uzI a;wð Þq�zI að Þds

¼ � r1z � mM r1r þ r1h
� �� �

z=EM; ð2Þ

where

�p
2
� w � p

2
; �dq ¼ a sin ada; df ¼ b cos ada; ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 aþ b2 cos2 a

p
da;

and w0 is the angle between the r-axis and the normal direction of an ellipsoidal inclusion at
(r; z). The unknowns are the body force densities q�rMðaÞ; q�zMðaÞ; q�rIðaÞ; q�zIðaÞ distributed in
the bodies M and I in the r- and z- directions along the circumference, which is specified by the
angle a.

Equation (1) includes Cauchy-type singular terms, and Eq. (2) includes logarithm-type
singular terms. Therefore for Eq. (1) the integral should be taken in a sense of Cauchy’ s of
principal value when w ¼ a. The first and second terms of Eq. (1) represent the stress due to the
body force distributed on the imaginary boundary, which is composed of the internal or
external points that are infinitesimally apart from the initial boundary, [23]. Taking KFr

nnM a;wð Þ
for example, the notation means the normal stress rnM induced at the point where a ring force
in the r-direction is acting on the imaginary boundary in the body "M". These can be derived by
integrating Mindlin’s solution, [27], in the h-direction. The fundamental stress and displace-
ment fields are shown in the Appendix, where ring forces are acting in the r- and z-directions in
a semi-infinite body.

In previous papers, [24, 25], numerical solutions for the singular integral equations of
the body-force method were discussed. It was found that in the conventional body-force
method, unknown body-force densities sometimes do not converge with increasing the
number of collocation points. To overcome this difficulty, eight fundamental densities were
introduced in [24, 25]. The meaning of the new fundamental densities was discussed in [26].
On the basis of these studies, the unknown body-force densities are approximated in this
analysis as a linear combination of fundamental density functions and weight functions as
follows:

q�rMðaÞ ¼ qr3MðaÞwr3ðaÞ þ qr4MðaÞwr4ðaÞ;
q�zMðaÞ ¼ qz1MðaÞwz1ðaÞ þ qz2MðaÞwz2ðaÞ;
q�rIðaÞ ¼ qr3IðaÞwr3ðaÞ þ qr4IðaÞwr4ðaÞ;
q�zIðaÞ ¼ qz1IðaÞwz1ðaÞ þ qz2IðaÞwz2ðaÞ: ð3Þ

Here, the fundamental density functions, [24, 25], are defined as

wr3ðaÞ ¼ nrðaÞ;wr4ðaÞ ¼ nrðaÞ sin a;

wz1ðaÞ ¼
nzðaÞ
sin a

;wz4ðaÞ ¼ nzðaÞ; ð4Þ
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with

nrðaÞ ¼
b cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 aþ b2 cos2 a

p ;

nzðaÞ ¼
a sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 aþ b2 cos2 a

p : ð5Þ

In these equations, wr3ðaÞ; wz2ðaÞ are exact densities to express the stress field due to an
ellipsoidal inclusion in an infinite body.
On the other hand, the weight functions are approximated by polynomials as:

qr2MðaÞ ¼
XM=2

n¼1

anMtnðaÞ; qr2IðaÞ ¼
XM=2

n¼1

anItnðaÞ;

qz1MðaÞ ¼
XM=2

n¼1

cnMtnðaÞ; qz1IðaÞ ¼
XM=2

n¼1

cnItnðaÞ;

qr4MðaÞ ¼
XM=2

n¼1

bnMtnðaÞ; qr4IðaÞ ¼
XM=2

n¼1

bnItnðaÞ;

qz2MðaÞ ¼
XM=2

n¼1

dnMtnðaÞ; qz2IðaÞ ¼
XM=2

n¼1

dnItnðaÞ:

tnðaÞ ¼ cos 2 n� 1ð Þaf g: ð6Þ

where M is the number of the collocation points in the range �p=2 � a � p=2.
Using the approximation method mentioned above, we obtain the following system of linear

equations for the determination of the coefficients anM � dnI :

hL ¼
p
M

L� 0:5ð Þ � p
2

2 � L � M; ð7Þ

XM=2

n¼1

�
anMAnM þ bnMBnM þ cnMCnM þ dnMDnM

þ anIAnI þ bnIBnI þ cnICnI þ dnIDnI

�

¼ � r1z sin2 u0 þ r1r cos2 u0

� �
; ð8Þ

XM=2

n¼1

�
anMEnM þ bnMFnM þ cnMGnM

þ dnMHnM þ anIEnI þ bnIFnI þ cnIGnI þ dnIHnI

�

¼ � r1z � r1r
� �

sin u0 cos u0; ð9Þ

XM=2

n¼1

�
anMInM þ bnMJnM þ cnMKnM þ dnMLnM

þ anIInI þ bnIJnI þ cnIKnI þ dnILnI

�

¼ � r1r � mM r1h þ r1z
� �� �

r=EM; ð10Þ

XM=2

n¼1

�
anMMnM þ bnMNnM þ cnMOnM þ dnMPnM

þ anIMnI þ bnINnI þ cnIOnI þ dnIPnI

�

¼ � r1z � mM r1r þ r1h
� �� �

z=EM; ð11Þ
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AnM ¼ �
1

2
tnðuÞ cos2 u0 þ

Z p=2

�p=2

KFr
nnM a;uð ÞtnðuÞb cos ada: ð12Þ

The number of unknown coefficients is 4 M. The collocation points are set as given by Eq. (7).
The stresses at an arbitrary point are represented by a linear combination of the coefficients
anM; . . . ; dnI and the influence coefficients corresponding to AnM; . . . ; PnI , [25, 26]. Using the
numerical procedure presented above, we obtain the stress distribution along the interface and
will discuss the maximum stress in Sec 3.

3
Results and discussion

3.1
Convergence and satisfaction of the boundary stresses
Table 1 shows the convergence of interface stresses rtM; rnM; sntM; rtI ; rnI ; sntI at w ¼ �90,
comp. Fig. 1, with increasing values of the collocation number M. Table 2 shows the mismatch
of the boundary values: rtM � rtI , sntM � sntI , urM � urI , uzM � uzI at w ¼ �90 with increasing
number M. The present results show good convergence to the fifth digit when M ¼ 20. Also the
boundary mismatch values are confirmed to be less than 10)4 in the whole range
�90 � w � 90. The same examination has been made for other calculations. Good convergence
and high matching of boundary values are confirmed for all results with EI=EMð0�1Þ, and b/
d in the range (0–0.9).

The accuracy of the present analysis can be confirmed in Table 3. Here, two spheroidal
cavities in an infinite body under uniaxial tension, see Fig. 2, were treated by the same method

Table 1. Convergence of the interface stresses at w ¼ �90, comp. Fig. 1, (a/b = 1, b/d = 0.9, EI=EM ¼ 2,
mM ¼ mI ¼ 0:3)

M rtM rtI rnM rnI sntM sntI

8 0.5247 1.5997 0.1448 0.1976 0.0128 0.0132
12 0.5080 1.5539 0.1451 0.1376 0.0132 0.0131
20 0.5024 1.5530 0.1396 0.1395 0.0130 0.0130
22 0.5024 1.5530 0.1396 0.1396 0.0130 0.0130

Table 2. Mismatch of the boundary stresses and displacements at w ¼ �90 (a/b = 1, b/d = 0.9,
EI=EM ¼ 2, mM ¼ mI ¼ 0:3)

M rtM � rtI sntM � sntI urM � urI uzM � uzI

8 )5.3 · 10)2 )3.6 · 10)4 )3.9 · 10)5 6.3 · 10)3

12 7.6 · 10)3 )2.1 · 10)4 )1.0 · 10)5 5.8 · 10)4

20 1.1 · 10)4 1.4 · 10)5 )2.7 · 10)7 5.3 · 10)7

22 )6.1 · 10)6 1.1 · 10)5 3.4 · 10)8 3.7 · 10)7

Table 3. Stress concentration factor of two spheroidal cavities in an infinite body (a/b = 1.0), comp. Fig. 2

a/d rh max KtA KtB

(deg.) Ktmax

0 )90�+90 2.0455 2.0455 2.0455
0.1 )2 2.0455 2.0454 2.0454
0.2 )10 2.0462 2.0448 2.0454
0.3 )14 2.0481 2.0427 2.0456
0.4 )17 2.0521 2.0378 2.0464
0.5 )24 2.0598 2.0307 2.0481
0.6 )31 2.0742 2.0295 2.0512
0.7 )41 2.1022 2.0655 2.0561
0.8 )90 2.2295 2.2295 2.0624
0.9 )90 2.7724 2.7724 2.0713
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and compared with the results in [15]. Both results coincide with each other to the fourth digit.
However, the present solution gives the accurate results even for a/d ¼ 0.9 where larger
interaction takes now.

3.2
Results for a spheroidal cavity (EI=EM=0; a=b=1)
Table 4 shows the maximum stress in comparison with the results in [20] for different ratios
b=d. Here, the maximum stress rt ¼ rh appearing at the point B (w ¼ �90) is indicated. The
results in [20] coincide with the present results in most cases although they have some error of
about 3% when b=d ¼ 0:9.

3.3
Results of an ellipsoidal cavity (EI==EM=0)
Table 5 shows the maximum stress when mM ¼ 0:3, for different shape ratios a=b and different
ratios b=d. The results in [21] coincide with the present results in most cases although they
have some errors about 2% when a=b ¼ 1; b=d ¼ 0:667. Table 6 shows the stress (rt ¼ rh) at
points B (w ¼ �90) and C (w ¼ 90) for different a=b and b=d. It is found that results [21] have
errors within about 11% when b=d ¼ 0:8. The present results are reliable because the boundary
conditions are satisfied as shown in Table 2.

3.4
Results for an ellipsoidal inclusion
If EI=EM < 1, interface stresses rh in the matrix need to be considered because they are larger

than other stresses. Also, if EI=EM > 1, interface stresses rn have to be discussed because they
may cause interface debonding. Figures 3–5 show interface stresses rh (EI=EM ¼ 0; 0:5) and rn

(EI=EM ¼ 2;1) for different ratios a=b and b=d. It is seen that when EI=EM ¼ 0:5 the effect of

Fig. 2. Two spheroidal cavities in an infinite body
(a=b ¼ 1:0)

Table 4. Maximum stress due to a spheroidal cavity at B, comp. Fig. 1 (EI=EM ¼ 0, mM ¼ 0:25, a/b = 1,
w ¼ �90)

b/d Present Ref [20]

0 2.087 2.087
0.2 2.092 2.092
0.4 2.145 2.145
0.6 2.332 2.332
0.7 2.506 2.506
0.8 2.759 2.760
0.9 3.173 3.270
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free surface is comparatively smaller than the case of EI=EM ¼ 0. With increasing b=d, the
stress rn generally increases near w ¼ �90; however, when b=d! 1, stress distribution near
w ¼ �90 becomes complicated due to the effect of free surface, S. e.g., b=d ¼ 0:9 in Fig. 4 (b).
Also, it is found that the maximum stress rn at w ¼ 0 is almost independent of b=d, although
the stress in the range w � �30 varies largely, depending on b=d.

Table 7 shows the magnitude and position of the maximum stress in the matrix . As shown
in Table 7, the maximum stresses rh appear at w ¼ �90 in most cases. On the other hand, the
maximum stresses rn appear at w ¼ 0. With increasing value of b=d, the maximum stresses
increases when EI=EM ¼ 0, 0.5. However, when b=d! 1, the maximum stresses sometimes
become smaller. Also maximum stress sometimes appears near w ¼ �70, instead w ¼ �90.
When EI=EM < 1, the maximum stress rh varies more than twice in the range b=d ¼ 0� 0:9.
On the other hand, when EI=EM > 1, the variation of the maximum stress rh is only 8% at the
most. When EI=EM > 1, the effect of the free surface is comparatively small because the
maximum stress appears at w ¼ 0.

Recently, in paper [28] by using inclusion models of MnS and Al2O3 in the matrix it was
explained why the S-N curve for high-strength steels consists of two straight lines. The FEM
analysis indicated that in rotating-fatigue tests fracture is likely to occur from a surface origin
at high stress level and from an internal inclusion at low stress level. Figure 6 shows the stress
concentration due to a spheroidal inclusion in an infinite body under uniaxial and biaxial
tension. Also, Table 8 with Fig. 7 shows the maximum stress due to the inclusions in a semi-
infinite body under biaxial tension. In Figs. 6, 7 and Table 8 we assume the following data, [29]:
matrix of high strength steel: EM ¼ 210 GPa, mM=0.3; MnS : EI ¼ 100 GPa, mI ¼ 0:3; Al2O3 :
EI ¼ 400 GPa, mI ¼ 0:25; aspect ratio of the inclusion: a=b ¼ 1

As shown in Table 8, it is seen that the variation of the maximum stress is less than 7% in the
range b=d ¼ 0� 0:9. The effect of the free surface is not very large in this region under uniform
biaxial tension.

Table 6. Maximum stress due to ellipsoidal cavities at B, comp. Fig. 1 (w ¼ �90) and C (w ¼ 90)
(EI=EM ¼ 0, mM ¼ 0:3)

b/d a/b
w(deg.)

0.25 0.5

)90� 90� )90� 90�

0 Present 2.737 2.737 2.536 2.536
Ref. [21] – – – –

0.2 Present 2.738 2.737 2.538 2.537
Ref. [21] 2.741 2.740 2.539 2.538

04 Present 2.749 2.729 2.552 2.540
Ref. [21] 2.744 2.741 2.553 2.541

0.6 Present 2.808 2.687 2.617 2.541
Ref. [21] 2.758 2.742 2.615 2.544

0.8 Present 3.169 2.429 2.829 2.539
Ref. [21] 2.810 2.743 2.829 2.547

0.9 Present 4.777 1.210 3.104 2.535
Ref. [21] – – – –

Table 5. Maximum stress due to ellipsoidal cavities at B, comp. Fig. 1 (EI=EM ¼ 0, mM ¼ 0:3, w ¼ �90)

b/d a/b 0.286 0.333 0.4 0.5 0.667 1.0

0.333 Present 2.713 2.679 2.624 2.545 2.420 2.216
Ref [21] 2.712 2.671 2.624 2.544 2.425 2.227

0.4 Present 2.715 2.680 2.629 2.552 2.434 2.245
Ref [21] 2.714 2.674 2.627 2.550 2.434 2.245

0.5 Present 2.732 2.690 2.643 2.575 2.471 2.326
Ref [21] 2.724 2.689 2.648 2.583 2.488 2.350

0.667 Present 2.755 2.731 2.701 2.663 2.620 2.581
Ref [21] 2.753 2.740 2.716 2.686 2.651 2.618 35



4
Conclusions
In this study, an ellipsoidal inclusion of revolution in a semi-infinite body under biaxial tension
is considered using the body-force method. The following conclusions can be made:

1) The problem is solved using the body-force method coupled with a singular integral
equations formulation. In order to satisfy the boundary conditions, the unknown functions
are approximated by a linear combination of fundamental density functions and polyno-
mials. The present method is found to yield rapidly converging numerical results and
smooth stress distribution along the boundary (s. Tables 1, 2).

2) Expressions for stresses and displacements ring forces acting in the r- and z-directions in a
semi-infinite body can be used as a fundamental solution for the body-force method and
boundary element method (s. Appendix).

3) For spheroidal inclusions of MnS and Al2O3 in high strength steel, the effect of free surface on
the stress concentration is found to be not very large (s. Table 8). For ellipsoidal cavities
(EI=EM ¼ 0), the present results coincide with those of [20] in most cases (s. Tables 4–6).

4) When EI=EM < 1, the maximum stress is rh appearing at w ¼ �90, which in most cases
varies more than twice in the range b=d ¼ 0� 0:9. On the other hand, when EI=EM > 1, the

Fig. 3a, b. Interface stress for a=b ¼ 1=2 (a) rh for EI=EM < 1; (b) rn for EI=EM > 1
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maximum stresses is rn appearing at w ¼ 0, which varies only 8% at the most. In the latter
case, the effect of the free surface is comparatively small (s. Table 7, Fig. 4).

Appendix
The fundamental stress and displacement fields are given by the following equations when ring
forces are acting in the r- and z-directions in a semi-infinite body:

KFr
nn ¼ rFr

n ¼ rFr
r cos2 wþ rFr

z sin2 wþ 2sFr
rz cos w sin w;

KFz
nn ¼ rFz

n ¼ rFz
r cos2 wþ rFz

z sin2 wþ 2sFz
rz cos w sin w;

KFr
nt ¼ sFr

nt ¼ rFr
z � rFr

r

� �
cos w sin wþ 2sFr

rz cos2 w� sin2 w
� �

;

KFz
nt ¼ sFz

nt ¼ rFz
z � rFz

r

� �
cos w sin wþ 2sFz

rz cos2 w� sin2 w
� �

: ðA1Þ

Fig. 4a, b. Interface stress for a=b ¼ 1 a rh for EI=EM < 1; b rn for EI/EM>1
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KFr
ur ¼ UFr

r ¼ A

�
r2

mð3� 4mÞI1;1 � rqI3;0 � r2 þ q2
� �

I3;1 þ rqI3;2

� �

þ r2
mJ1;1 � ð3� 4mÞ rqJ3;0 � r2 þ q2

� �
J3;1 þ rqJ3;2

� �
þ 2zfJ3;1

� 6zf
r2

m

rqJ5;0 � r2 þ q2
� �

J5;1 þ rqJ5;2

� �
�

þA

Z p

0

4ð1� mÞð1� 2mÞ
R2 þ zþ fð Þ cos u� r cos u� qð Þ r � q cos uð Þ

R2 R2 þ zþ fð Þ

� �
du; ðA2Þ

KFr
uz ¼ UFr

z ¼ A

�
�ðz� fÞ qI3;0 � rI3;1

� �
� ð3� 4mÞðz� fÞ qJ3;0 � rJ3;1

� �

þ 6zf
r2

m

ðzþ fÞ qJ5;0 � rJ5;1

� �
�
� A

Z p

0

4ð1� mÞð1� 2mÞ q� r cos uð Þ
R2 R2 þ zþ fð Þ du; ðA3Þ

KFz
ur ¼ UFz

r ¼ A

�
ðz� fÞ rI3;0 � qI3;1

� �
þ ð3� 4mÞðz� fÞ rJ3;0 � qJ3;1

� �

þ 6zf
r2

m

ðzþ fÞ rJ5;0 � qJ5;1

� ��
� A

Z p

0

4ð1� mÞð1� 2mÞ
R2 R2 þ zþ fð Þ r � q cos uð Þdu; ðA4Þ

Fig. 5a, b. Interface stress for a=b ¼ 2 a rh for EI=EM < 1; b rn for EI=EM > 1
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Table 7. Position and maximum stress in the matrix due to an ellipsoidal inclusion, comp. Fig. 1

a/b b/d EI=EM ¼ 0 EI=EM ¼ 0:5 EI=EM ¼ 2 EI=EM ¼ 1

w (deg.) rh w (deg.) rh w (deg.) rn w (deg.) rn

1/2 0 ±90 2.537 ±90 1.449 0 1.208 0 1.533
1/3 )90 2.545 )90 1.450 )0.1 1.207 )0.1 1.532
1/2 )90 2.575 )90 1.454 )0.1 1.207 )0.1 1.529
2/3 )90 2.663 )90 1.468 0 1.206 0 1.524
0.8 )90 2.832 )90 1.508 0.4 1.205 0.7 1.518
0.9 )90 3.076 )90 1.549 1.0 1.204 1.2 1.511

1 0 ±90 2.182 ±90 1.384 0 1.275 0 1.775
1/3 )90 2.216 )90 1.388 0.1 1.274 0.2 1.770
1/2 )90 2.326 )90 1.404 0.3 1.274 0.7 1.761
2/3 )90 2.579 )90 1.448 0.6 1.273 1.3 1.752
0.8 )90 2.948 )90 1.468 0.8 1.268 1.7 1.732
0.9 )90 3.385 )90 1.405 0.8 1.261 1.9 1.716

2 0 ±90 1.773 ±90 1.279 0 1.392 0 2.288
1/3 )90 1.890 )90 1.296 0.3 1.390 0.2 2.259
1/2 )90 2.137 )90 1.335 0.5 1.387 0.4 2.227
2/3 )90 2.519 )90 1.349 0.7 1.380 0.5 2.184
0.8 )90 3.014 )70 1.318 0.9 1.373 0.8 2.151
0.9 )90 3.669 )90 1.387 1.0 1.369 1.0 2.134
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Fig. 7. A spheroidal inclusion of MnS or Al2O3 in the matrix of a high-strength steel
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where

In;m ¼
Z p=2

0

cosm u

e1 � cos uð Þn=2
du;

Jn;m ¼
Z p=2

0

cosm u

e2 � cos uð Þn=2
du;

A ¼ q
8pG 1� mð Þr3

m

;

Table 8. Position and maximum stress due to a spheroidal inclusion of MnS or Al2O3 in the matrix of a
high-strength steel, comp Fig. 7

b/d MnS Al2O3

w (deg.) rh w (deg.) rn

0 ±90 1.408 0 1.217
0.1 )90 1.408 0 1.217
0.3 )90 1.412 0.1 1.217
0.4 )90 1.418 0.2 1.216
0.5 )90 1.431 0.3 1.216
0.8 )90 1.503 0.8 1.216
0.9 90 1.431 0.9 1.21042



B ¼ q
4pG 1� mð Þr3

m

e1 ¼ 1þ r � qð Þ2þ z� fð Þ2

2rq
;

e2 ¼ 1þ r � qð Þ2þ zþ fð Þ2

2rq
;

rm ¼
ffiffiffiffiffiffiffi
2rq

p
;

R2
2 ¼ r2 þ q2 þ zþ fð Þ2�2rq cos u:

Here, In;m and Jn;m ðn ¼ 3; 5; 7; m ¼ 0; 1; 2; 3Þ can be expressed by using complete elliptic
integrals, [30, 31].
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