近似計算法による円板状き裂の周期配列の応力拡大係数の解析 (薄肉バルブシート用接合材料の強度評価)

(平成10年11月27日 原稿受付)

九州工業大学工学部機械知能工学科	野	田	尚	昭
ヤマハ発動機	安	達	修	平
九州工業大学大学院	柳	下		誠
九州大学工学部	村	上	敬	宜

Stress Intensity Factor of Coplanar Periodic Penny Shaped Cracks

(Strength Evaluation of Bonded Interface between the Sintered Steel and the Aluminium Cast Alloy)

> by Nao-Aki NODA Shuhei ADACHI Makoto YAGISHITA Yukitaka MURAKAMI

Abstract

This paper deals with an interaction problem of coplaner periodic penny shaped cracks under tension. Here , square and hexagonal arrays of cracks are assumed. Nisitani's simple calculation method, which is based on the physical meaning of interaction effect, is applied to calculate the stress intensity factors with varying the spacing of cracks. The accuracy of the method is also confirmed by solving several sample problems and comparing the results with exact solutions. Then, it is found that the method has less than about 1 percent error when the relative crack size a / d is less than 0.4 in 2D problems and 0.6 in 3D problems. In periodic penny shaped cracks the interaction effect is less than 7 percent if the relative crack size a / d is less than 0.6.

1.緒 言

自動車産業では環境への配慮から構造材料の軽量化が いっそう強く要求されるようになっている。エンジンの 高性能化・高効率化のため、バルブシートの部分をでき るだけ薄肉にすることが、シリンダヘッドの形状設計上 望ましい。この目的のため、薄肉バルブシート用の新材 料として開発が進められている、鉄系焼結材料/アルミ ニウム合金の接合構造では、鉄系焼結材料中の硬質粒子 とアルミニウム合金との接合面が欠陥として作用し、ア ルミ合金側に破壊が生じる可能性がある。その強度評価 のためには、図1に示すような材料内部の同一平面上に 円板状き裂が周期的に配列する場合の応力拡大係数を知 る必要がある。しかし、このような場合の解は応力拡大 係数のハンドブック⁽¹⁾にも見当たらない。そこで本研究 では、干渉効果の物理的意味に基づいた近似計算法⁽²⁾に よってこれを求めた。計算は、正方配列(図1(a))と六 方配列(図1(b))の2通りの規則配列について行った。 また、(1)2次元2き裂、(2)2円板き裂、(3)2球かの問 題も同様に近似計算法で解析し厳密解との比較により、 解析に用いた近似計算法の精度を検証した。

2. 近似計算法の概略とその精度について

2.1 近似計算法の概略

切欠きやき裂の干渉問題の近似計算法⁽²⁾では干渉効果 を以下のように考える。

(1) 切欠き(またはき裂)の干渉効果は,注目する切 欠きが,他の切欠によって乱された応力場に存在するた めに生ずると考える。

(2) 他の切欠き(またはき裂)①によって乱された応 力場とは、切欠き①がないときの応力場に、切欠き①の 存在によって新たに生じる応力場のことである。

(3) すなわち,切欠き(またはき裂)①があるときの 応力場から切欠き①がないときの応力場を引いたものを

付加応力場と呼び、有効に利用する。

これらの考え方は, 西谷によって提案, 説明されてお り, 有力な応力解析法である体積力法の基礎となってい る。そして, これらの考えに基づけば, 干渉効果を簡単 にしかも精度良く求めることができる。近似計算法⁽²⁾の 具体的内容を2次元2き裂の干渉効果(図2)を例とし て述べれば以下のようになる。

図2に示すように、き裂①の位置で σ_{∞} の応力を消すと ②のき裂の位置には $\beta \sigma_{\infty}$ なる応力が生ずる(近似計算で あるから、き裂の全長に亘って β は一定とみなす)。この $\beta \sigma_{\infty}$ が付加応力場と考えられる。この付加応力場はき裂 が内圧を受ける場合の応力場に等しい。

したがって、②の位置では $(1 + \beta)\sigma_{\infty}$ を消さねばならない。②で $(1 + \beta)\sigma_{\infty}$ を消せば①で $\beta(1 + \beta)\sigma_{\infty}$ が生ずる。このようにして順々に①および②の位置で応力を消せば、最終的には各き裂の位置で、次式で示す応力を打ち消したことになる。

き裂①で

き裂②で

$$(1+\beta)\sigma_{\infty}+\beta^{2}(1+\beta)\sigma_{\infty}+\cdots$$
$$=\frac{(1+\beta)\sigma_{\infty}}{1-\beta^{2}}=\frac{\sigma_{\infty}}{1-\beta}\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(2)$$

当然ながら両者は一致する。

この結果は、最初から①、②の位置でσ∞とは異なる T という応力を打ち消す必要があると考えれば容易に求ま る。すなわち、

$$\sigma_{\infty} + \beta T = T$$

$$\therefore \qquad T = \frac{\sigma_{\infty}}{1 - \beta}$$

$$(3)$$

$$(4)$$

結局,このときの応力拡大係数 K₁は次のようになる。

応力拡大係数を無次元で表示すれば

$$F_I = \frac{K_I}{\sigma_{\infty}\sqrt{\pi b}} = \frac{1}{1-\beta}$$
(6)

となる。

2.2 近似計算の精度の確認

以上の計算を用いて(1)2次元2き裂,(2)2円板き裂,

(3)2 球かの問題を解析し厳密解との比較により,解析に 表2

用いる近似計算法の精度を検証する。

a / l	Simple A	Simple B	Erdogan
0.1	1.0014	1.0004	1.0013
0.2	1.0063	1.0017	1.0057
0.3	1.0162	1.0047	1.0138
0.4	1.0339	1.0105	1.0272
0.5	(1.0646)	(1.0211)	1.0480
0.6	(1.1196)	(1.0410)	1.0804
0.7	(1.2296)	(1.0819)	1.1333
0.8	(1.5189)	(1.1830)	1.2289
0.9	(3.8351)	(1.6281)	1.4539
		B	A

表1 2次元2き裂の結果 $F_I = K_I / (\sqrt{\pi b})$ at B

表1は2次元き裂の応力拡大係数 F_l を2種類の近似計 算法(Simple A と Simple B)で求めた結果を Erdogan の厳密解⁽³⁾と比較して示す。ここで Simple A は,式(1), (2)の β を表1の図の点 A で考える場合であり, Simple B は点 B で考える場合である。この場合は Simple A が 精度が良いようである。 $a/l \leq 0.4$ で誤差1%以内である ことがわかる。

表2 2個の円板状き裂の結果 $M_I = K_I / (2/\pi \sigma_{\infty} \sqrt{\pi a})$ at B

a / l	Simple A	Simple B	Nisitani, Murakami
0.1	1.0000	1.0000	
0.2	1.0002	1.0003	
0.3	1.0007	1.0012	
0.4	1.0018	1.0035	
0.5	1.0035	1.0088	1.007
0.6	1.0063	1.0204	
0.625	1.0072	1.0251	1.018
0.7	(1.0103)	(1.0469)	
0.8	(1.0161)	(1.1171)	1.068
0.9	(1.0242)	(1.4202)	

表2は同様に2円板き裂の問題で,同様にして求めた 近似計算法の結果と西谷・村上の体積力法の結果を比較 したものである。3次元き裂の場合は干渉効果が小さい ので近似計算法の適用範囲は2次元き裂の場合より大き い。a/1=0.625で誤差1%,a/1=0.8で誤差5%である。

表3 2個の球かの結果 $K_t = \sigma \max / \sigma_{\infty}$ at B

a / l	Simple	Miyamoto	Noda- Matsuo at B (at A)
0	2.022	2.022	2.0217
0.1	2.021	2.021	2.0209
0.2	2.016	2.016	2.0157
0.3	2.003	2.002	2.0028
0.4	1.983	1.986	1.9830(1.9832)
0.5	1.959	1.969	1.9573(1.9584)
0.6	1.941	ν.	1.9306(1.9338)
0.7	(1.944)		1.9062(1.9124)
0.8	(1.994)		1.8854(1.8951)
0.9	(2.147)		1.8676(1.8810)

表3は2球かの干渉問題を近似計算(Simple)で求 めたものを宮本の解⁽⁴⁾,野田・松尾の解⁽⁵⁾と比較して示 す。野田・松尾の解は厳密解と考えられるので近似計算 法の精度は、 $a/l \leq 0.6$ で誤差1%程度の精度を有するこ とがわかる。以上の考察から、2次元問題で $a/l \leq 0.4$ 程 度、3次元問題で $a/l \leq 0.6$ 程度が近似計算法の誤差1% 以内の範囲であると考えられる。

3. 円板状き裂の周期配列の近似計算法

図1(a)のように配列された円板状き裂の応力拡大係数 は、前節の β (式(1),(2))を求めれば以下のようにして 計算できる。ここで β は、注目するき裂以外の仮想き裂 面において自由表面をつくるときの注目するき裂Aに生 じる σ_z である。

いま,注目するき裂 A 以外のき裂において自由表面を つくるときのき裂 A への影響 β を求める,一様内圧 p_0 を 受ける半径 a の円板状き裂周辺の $r = \rho$ (rはき裂中心 からの距離) での応力 σ_z は⁽⁶⁾

$$[\sigma_{z}]_{z=0} = -\frac{2p_{0}}{\pi} \left[\sin^{-1} \left(\frac{a}{\rho} \right) - \frac{a}{(\rho^{2} - a^{2})^{\frac{1}{2}}} \right] \cdots (7)$$

表4	式(10)のβ	の収束性	(図1	の問題(a))
----	---------	------	-----	---------

M,N	β (a/l=0.1)	β (a/l=0.3)	β (a/l=0.5)	β (a/l=0.7)	β (a/l=0.9)
10	0.00022567	0.0061596	0.029166	0.082941	0.18563
20	0.00023266	0.0063475	0.030036	0.085330	0.19071
30	0.00023507	0.0064123	0.030336	0.086153	0.19246
50	0.00023695	0.0064648	0.030580	0.086822	0.19388
100	0.00023848	0.0065046	0.030765	0.087328	0.19496
200	0.00023948	0.0065263	0.030856	0.087591	0.19552
500	0.00023975	0.0065293	0.030866	0.087601	0.19555
1000	0.00023975	0.0065293	0.030866	0.087601	0.19555
5000	0.00023975	0.0065293	0.030866	0.087601	0.19555

中心座標 (*ml*, *nl*)のき裂についてき裂 A となる位置 これより,周期配列の応力拡大係数は [原点(0,0)] との距離 ρ は

よって

$$\beta = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \sigma_z \qquad (except \ m = n = 0) \quad \cdots (9)$$

式(9)のβを求めるためβを有限項で近似すると

$$\beta \simeq \sum_{m=-M}^{M} \sum_{n=-N}^{N} \sigma_{z} \qquad (except \ m=n=0) \quad \cdots (10)$$

として M = N=10,20,…と変化させ、a/l=0.1,0.2… と変化させたときの結果を表4に示す。表4より M=N= 500で有効数字5桁まで収束することがわかる。よって, この場合の Tは式(4)より

で求まる。得られる応力拡大係数の結果を表5に示す。

表5 図1の問題(a)の応力拡大係数

·	πa		
a	:/l	$\beta(M, N = 5000)$	M _I
).1	0.00023975	1.0002
).2	0.0019256	1.0019
).3	0.0065293	1.0066
).4	0.015616	1.0159
0).5	0.030866	1.0318
0).6	0.054158	1.0573
0).7	0.087601	(1.0960)
0	.8	0.13369	(1.1543)
0	.9	0.19555	(1.2431)

表6 式(II)のβの収束性(図1の問題(b))

-		and the second				
	M,N	β (a/l=0.1)	β (a/l=0.3)	β (a/l=0.5)	β (a/1=0.7)	β (a/l=0.9)
Γ	10	0.00027533	0.0075230	0.035695	0.10184	0.22906
	20	0.00028398	0.0077564	0.036776	0.10481	0.23537
	30	0.00028696	0.0078370	0.037149	0.10584	0.23755
l	50°	0.00028939	0.0079026	0.037453	0.10667	0.23932
	100	0.00029123	0.0079523	0.037683	0.10730	0.24066
	200	0.00029216	0.0079774	0.037799	0.10762	0.24134
	500	0.00029272	0.0079925	0.037869	0.10781	0.24175
	1000	0.00029291	0.0079975	0.037892	0.10787	0.24188
	5000	0.00029306	0.0080015	0.037911	0.10793	0.24199
	10000	0.00029308	0.0080021	0.037913	0.10793	0.24201
	20000	0.00029309	0.0080023	0.037915	0.10794	0.24201
	30000	0.00029309	0.0080024	0.037915	0.10794	0.24202
	50000	0.00029309	0.0080025	0.037915	0.10794	0.24202

図1(b)のように配列された円板状き裂の応力拡大係数 も同様にして計算できる。 $M = N = 10, 20, \dots と変化$ させ、 $a/l = 0.1, 0.2, \dots と変化させたときの結果を表$ 6に示す。表6より<math>M = N = 5000程度で収束する。六 方配列ではき裂Aに近いき裂が同じa/lで正方配列に比 べて多いので、 β の計算に多くの項数が必要となる。表 5と同様に六方配列について計算した応力拡大係数 M_I の結果を表7に示す。前節の考察から、表5と表7 oM_I の値で誤差1%以上と考えられる場合には()をつけ て示した。

> 表7 図1の問題(b)の応力拡大係数 $(M_I = K_I / K_{I0}, K_{I0} = 2/\pi \sqrt{\pi a})$

a/l	$\beta(M, N = 50000)$	M _I
0.1	0.00029309	1.0003
0.2	0.0023545	1.0024
0.3	0.0080025	1.0081
0.4	0.019159	1.0195
0.5	0.037915	1.0394
0.6	0.066610	1.0714
0.7	0.10794	(1.1210)
0.8	0.16510	(1.1977)
0.9	0.24202	(1.3193)

4. 結 言

(1) 近似計算法⁽²⁾の精度と有効範囲を,厳密解の知られている問題で検討すると、2次元問題では、切欠きまたはき裂の相対寸法 a/l ≤0.4で誤差1%程度以内であると考えられる(表1)。

(2) 一方,3次元問題では近似計算法の精度と有効範囲は切欠き,またはき裂の相対寸法 a/l ≤0.6で誤差1%
 程度以内であると考えられる(表2,3)。

(3) 近似計算法により、これまで解析例のない円板状 き裂の正方配列と六方配列を解析した結果、き裂の干渉 効果は $a/l \leq 0.6$ で7%程度以下である(表5,7)。 文 献

- Murakami, Y. (Ed.) ,STRESS INTENSITY FACTORS HANDBOOK Vol. 1 - Vol. 3 (1987) ,Pergamon Press.
- (2) 西谷弘信,切欠き干渉効果の近似計算法とその応用,日本機械 学会誌,71-589 (1968) 209-221.
- (3) Erdogan, F., On the Stress Distribution in Plates with Collinear Cutsunder Arbitrary Loads, Proc. 4thU.S. Nat. Congr. Appl. Mech., (1962), pp. 547-553.
- (4) 宮本博,2 球かの干渉効果(第一報 理論解析),日本機械学 会論文集,23-131 (1957) 431-436.
- (5) Noda, N.-A. and Matsuo, T., Singular Integral Equation Method in the Analysis of Interaction between Cracks and Defects, Fracture Mechanics : 25 th Volume. ASTM STP 1220, F.Erdogan, Ed., ASTM, Philadelphia, 1995.
- (6) Sneddon, I.N., Fourier Transforms (1951) , McGraw-Hill, p. 494-498.