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Abstract

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to consider singular stresses at the
end of fibers because they cause crack initiation, propagation, and final failure. The singular stress field is controlled by
generalized stress intensity factor (GSIF) defined at the fiber end. In this study, periodic and zigzag arrays of cylindrical
inclusions under longitudinal tension are considered in comparison with the results for a single fiber. The unit cell
region is approximated as an axi-symmetric cell; then, the body force method is applied, which requires the stress
and displacement fields due to ring forces in infinite bodies having the same elastic constants as those of the matrix
and inclusions. The given problem is solved on the superposition of two auxiliary problems under different boundary
conditions. To obtain the GSIF accurately, the unknown body force densities are expressed as piecewise smooth func-
tions using fundamental densities and power series. Here, the fundamental densities are chosen to represent the sym-
metric stress singularity, and the skew-symmetric stress singularity. The GSIFs are systematically calculated with
varying the elastic modulus ratio and spacing of fibers. The effects of volume fraction and spacing of fibers are discussed
in fiber-reinforced plastics.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to consider singular
stresses at the end of fibers because they cause crack initiation, propagation, and final failure (Nisitani
et al., 1993). Consider a cylindrical inclusion with a local polar coordinate as shown in Fig. 1 as a model
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Fig. 1. Generalized stress intensity factors for a single fiber when m1 ¼ mM ¼ 0:3ðF I;k1 ¼ KI;k1=ðr0
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of fiber. Then, the singular stress around the corner of an inclusion can be expressed by the following equa-
tions (Chen and Nisitani, 1993; Noda et al., 2003). Here, the generalized stress intensity factors KI,k1, KII,k2

can be regarded as an extension of the ordinary stress intensity factors, which are usually defined for cracks,
to inclusion corners.
rh;i ¼
KI;k1

r1�k1
f I
h;iðhÞ þ

KII;k2

r1�k2
f II
h;iðhÞ ði ¼ 1; 2Þ ð1Þ
For matrix (i = 1): �3p/4 6 h 6 3p/4
f I
h;1ðhÞ ¼

k1ffiffiffiffiffiffi
2p

p
ða� bÞ
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Here,
C1 ¼
ð1� bÞ sin k1cf g þ ð1� aÞ sin k1ðp� cÞf g þ k1ða� bÞ sin c

ð1þ bÞ sin k1ð2p� cÞf g þ ð1þ aÞ sin k1ðc� pÞf g þ k1ða� bÞ sin c

C2 ¼
ð1� bÞ sin k2cf g þ ð1� aÞ sin k2ðp� cÞf g � k2ða� bÞ sin c

ð1þ bÞ sin k2ð2p� cÞf g þ ð1þ aÞ sin k2ðc� pÞf g � k2ða� bÞ sin c

ð2cÞ
a ¼ GI jM þ 1ð Þ � GM jI þ 1ð Þ
GI jM þ 1ð Þ þ GM jI þ 1ð Þ ; b ¼ GI jM � 1ð Þ � GM jI � 1ð Þ

GI jM þ 1ð Þ þ GM jI þ 1ð Þ ð2dÞ
where
ji ¼
3� mið Þ
1þ mið Þ ðfor plane stressÞ;

ji ¼ 3� 4mi ðfor plane strainÞ; ði ¼ M; IÞ
ð2eÞ
In these equations, a, b are Dundurs parameters (Dundurs, 1967), and (GM, mM) and (GI, mI) are shear
modulus and Poisson�s ratio of the matrix and inclusion, respectively. Quite a few studies have been made
for singular stresses at the fiber ends (Christman et al., 1989; Tvergaard, 1990). However, little attention
has been paid to the generalized stress intensity factors as shown in Eq. (1) because usually it is very dif-
ficult to obtain them by using ordinary numerical procedure using such as finite element techniques. Fig. 1
shows generalized stress intensity factors at a fiber end when a single fiber is in matrix (Noda et al., 2003).
In Fig. 1, k1, k2 are the root of the following eigenequation (Bogy and Wang, 1971; Chen and Nisitani,
1993).

For mode I
D1ða; b; c; kÞ ¼ ða� bÞ2k2ð1� cos 2cÞ þ 2kða� bÞ sin cfsin kcþ sinð2p� cÞg

þ 2kða� bÞb sin cfsin k 2p� cð Þ � sin kcg þ ð1� a2Þ � ð1� b2Þ cos 2kp

þ ða2 � b2Þ cosf2kðc� pÞg ¼ 0 ð3Þ
Fig. 2. Singular stress fields near the tip of a V-notch.
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For mode II
Fig
D2ða; b; c; kÞ ¼ ða� bÞ2k2ð1� cos 2cÞ þ 2kða� bÞ sin cfsinð2p� cÞ þ sin kcg
� 2kða� bÞb sin cfsin kð2p� cÞ � sin kcg þ ð1� a2Þ � ð1� b2Þ cos 2kp
þ ða2 � b2Þ cosf2kðc� pÞg ¼ 0 ð4Þ
Here, k1 is a real root of Eq. (1), and k2 is a real root of Eq. (2). In the vicinity of inclusion corners, plane
strain conditions can be assumed. Then, in this paper, we can put c = 3p/2 (see Fig. 2 and the corner of
cylindrical inclusion in Fig. 1).

Since actual composites usually have many fibers, in this paper, periodic and zigzag arrays of cylindrical
inclusions under longitudinal tension are considered as models of many fibers (see Fig. 3). Then, the unit
cell region is approximated as an axi-symmetric cell as shown in Fig. 3(c), where the body force method of
analysis (Nisitani, 1967) will be applied.
. 3. Unit cell model for 3D arrays of inclusions: (a) periodic array, (b) zigzag array and (c) axi-symmetric approximation.
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Here, the body force method is based on superposition of the stress field due to point force. Then, the
problem is formulated as a system of singular integral equations, where the unknown functions are the den-
sities of body forces distributed in infinite bodies having the same elastic constants as those of the matrix
and inclusions. The unknown functions are expressed as piecewise smooth functions using two types of fun-
damental densities and power series, where the fundamental densities are chosen to express singular stresses
field exactly. Then, generalized stress intensity factors KI;k1 and KII;k2 at the fiber end are systematically
calculated with varying the elastic ratio GI/GM, and aspect ratio of the unit cell lz2/lr2 and volume fraction
of fibers V f ¼ l2r1lz1

� �
= l2r2lz2
� �

(see Fig. 4).
Fig. 4. (a) A cylindrical inclusion in a unit cell (ur0: average displacement at r = lr2, uz0: constant displacement at z = lz2). (b) Body
force distributed around the corner A (similar body force also distributed around the corner B).
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2. Singular integral equations of the body force method

In the previous study, the generalized stress intensity factors at a fiber end of a single fiber was studied
(Noda et al., 2003). In this paper, therefore, the method of analysis for arrays of fibers will be discussed.
Here, a zigzag array of cylindrical inclusions is taken as an example; then, the method of analysis will
be explained. The unit cell model in Fig. 3(b) can be analyzed in the following procedure. Here, lr1 and
lz1 are dimensions of inclusion in the r- and z-directions, respectively (see Fig. 3). Also, lr2 and lz2 are dimen-
sions of unit cell in the r- and z-directions, ur0 is an average displacement at r = lr2 (see the definition in Fig.
4), uz0 is a constant displacement at z = lz2. Denote the shear modulus and Poisson�s ratios of the matrix by
(GM, mM) and the ones of the inclusions by (GI, mI). Assume two infinite bodies �M� and �I� have the same
elastic constants of the ones of matrix and inclusions, respectively (see Fig. 4). On the idea of the body force
method, the problem is formulated as a system of singular integral equations as shown in Eqs. (5) and (6).
Here, there are four types of unknown functions, that is,

(A) Body forces densities FnM1, FtM1 distributed in the normal and tangential directions along the
fictitious boundary for inclusion in body �M�,

(B) Body forces densities FnI1, FtI1 distributed in the normal and tangential directions along the fictitious
boundary for inclusion in body �I�, and

(C) Body forces densities FnM2, FtM2 distributed in the normal and tangential directions along the
fictitious boundary for unit cell in body �M�.

(D) Body forces densities FnI2, FtI2 distributed in the normal and tangential directions along the fictitious
boundary for unit cell in body �I�. However, FnI2, FtI2 are not independent and calculated from FnM2,
FtM2 (see Eq. (11)).

In order to satisfy the boundary conditions for the interface and unit cell, the stress and displacement
fields due to ring forces acting in the r- and z-directions in an infinite body will be used. As an example,
hF nM1
nn ðr1; s1Þ denotes the normal stress induced at the collocation point s1 when the ring force with unit den-

sity FnM1 = 1 is acting at the point r1. Both points s1 and r1 are on the fictitious boundary of the inclusion
interface. The expression may be found in (Nisitani and Noda, 1984). The notation

R
l1
means integrating

the ring forces on the boundary for the cylindrical cavity in the body �M�, or the inclusion in the body �I�,
and

R
l2
means integrating the ring forces on the boundary of the unit cellZ Z
� 1

2
F nM1ðs1Þ �

1

2
F nI1ðs1Þ þ

l1

hF nM1
nn ðr1; s1ÞF nM1ðr1Þdr1 þ

l1

hF tM1
nn ðr1; s1ÞF tM1ðr1Þdr1

�
Z
l1

hF nI1
nn ðr1; s1ÞF nI1ðr1Þdr1 �

Z
l1

hF tI1
nn ðr1; s1ÞF tI1ðr1Þdr1 þ

Z
l2

hF nM2
nn ðr2; s1ÞF nM2ðr2Þdr2

þ
Z
l2

hF tM2
nn ðr2; s1ÞF tM2ðr2Þdr2 �

Z
l2

hF nI2
nn ðr2; s1ÞF nI2ðr2Þdr2 �

Z
l2

hF tI2
nn ðr2; s1ÞF tI2ðr2Þdr2

¼ 0 ð5aÞ

� 1

2
F tM1ðs1Þ �

1

2
F tI1ðs1Þ þ

Z
l1

hF nM1
nt ðr1; s1ÞF nM1ðr1Þdr1 þ

Z
l1

hF tM1
nt ðr1; s1ÞF tM1ðr1Þdr1

�
Z
l1

hF nI1
nt ðr1; s1ÞF nI1ðr1Þdr1 �

Z
l1

hF tI1
nt ðr1; s1ÞF tI1ðr1Þdr1 þ

Z
l2

hF nM2
nt ðr2; s1ÞF nM2ðr2Þdr2

þ
Z
l2

hF tM2
nt ðr2; s1ÞF tM2ðr2Þdr2 �

Z
l2

hF nI2
nt ðr2; s1ÞF nI2ðr2Þdr2 þ

Z
l2

hF tI2
nt ðr2; s1ÞF tI2ðr2Þdr2

¼ 0 ð5bÞ
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Z
l1

hF nM1
ur ðr1; s1ÞF nM1ðr1Þdr1 þ

Z
l1

hF tM1
ur ðr1; s1ÞF tM1ðr1Þdr1 �

Z
l1

hF nI1
ur ðr1; s1ÞF nI1ðr1Þdr1

�
Z
l1

hF tI1
ur ðr1; s1ÞF tI1ðr1Þdr1 ¼ 0 ð5cÞ

Z
l1

hF nM1
uz ðr1; s1ÞF nM1ðr1Þdr1 þ

Z
l1

hF tM1
uz ðr1; s1ÞF tM1ðr1Þdr1 �

Z
l1

hF nI1
uz ðr1; s1ÞF nI1ðr1Þdr1

�
Z
l1

hF tI1
uz ðr1; s1ÞF tI1ðr1Þdr1 ¼ 0 ð5dÞ
Eqs. (5a)–(5d) express the boundary conditions along the interface of the inclusion, that is,
rnM � rnI = 0, sntM � sntI = 0, urM � urI = 0, uzM � uzI = 0. Here, (urM,uzM) and (rnM,sntM) are the dis-
placements and tractions, respectively, on the fictitious boundary of cylindrical cavities in body �M�. On
the other hand, (urI,uzI) and (rnI,sntI) are the displacements and tractions, respectively, on the fictitious
boundary of cylindrical inclusions in body �I�.

Similar to Eq. (5), the conditions along the boundary for the unit cell can be expressed by Eq. (7). Here,
point P is on the end z = lz2, and points Q and Q 0 are symmetric with respect to the plane z = lz2/2 on the
surface r = lr2 (see Fig. 4). Then,
r0 � pl2r2 ¼
Z lr2

0

rz

����
z¼lz2

2pdr;

srzjz¼lz2
¼ 0; uzjz¼lz2

¼ uz0 at z ¼ lz2

ð6Þ

0 ¼
Z lz2

0

rr

����
z¼lr2

2prdr

rrjz¼z � rrjz¼lz2�z ¼ 0; srzjz¼z � srzjz¼lz2�z ¼ 0

urjz¼z � urjz¼lz2�z ¼ 2ur0; uzjz¼z � uzjz¼lz2�z ¼ uz0

ur0 ¼
1

lz2

Z lz2

0

ur

����
r¼lr2

dz at r ¼ lr2

ð7Þ
By considering an adjacent unit cell as shown in Fig. 4, it is seen that two points Q(lr2,z), Q
0(lr2, lr2 � z)

should have similar displacement on r = lr2. Here, uz0 and ur0 are still unknown, the following two auxiliary
problems will be analyzed instead of solving Fig. 4 directly (Needleman, 1972; Tvergaard, 1981).

Here, an auxiliary problem as shown in Fig. 5(a) has the boundary condition, uz0 = c1, ur0 = 0, where c1
is an arbitrary constant. The other auxiliary problem as shown in Fig. 5(b) has the boundary condition,
ur0 = 0, ur0 = c1. Under those boundary conditions, the stresses r1, r2, r3, r4 will be calculated from Eq.
(8). These stresses r1 � r4 defined by Eq. (8) will be used to express the problem in Fig. 4 by superposing
two auxiliary problems. Here, for example, r1 is an average stress rz for the auxiliary problem in Fig. 5(a).
r1 � pl2r2 ¼
Z lr2

0

rz

����
z¼lz2

2prdr at z ¼ �lz2

r2 � 2plr2lz2 ¼
Z lz2

�lz2

rr

����
r¼lr2

2plr2 dz at r ¼ lr2

r3 � pl2r2 ¼
Z lr2

0

rz

����
z¼lz2

2prdr at z ¼ �lz2

r4 � 2plr2lz2 ¼
Z lz2

�lz2

rr

����
r¼lr2

2plr2 dz at r ¼ lr2

ð8Þ



Fig. 5. Auxiliary problems: (a) ur0 = 0, uz0 = c1, (b) ur0 = c1, uz0 = 0.
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Dimensionless stress intensity factors for Figs. 4 and 5(a) and (b) are defined in Eq. (9) having relations (10)
(see Appendix A). Here, the eigenvalues k1 and k2 are given as the roots of eigenequations (3) and (4).
F I;k1 ¼ KI;k1 r0

ffiffiffi
p

p
l1�k1
r1

� �
; F II;k2 ¼ KII;k2 r0

ffiffiffi
p

p
l1�k2
r1

� ���
F a

I;k1
¼ KI;k1 r1

ffiffiffi
p

p
l1�k1
r1

� �
; F a

II;k2
¼ KII;k2 r1

ffiffiffi
p

p
l1�k2
r1

� ��.
F b

I;k1
¼ KI;k1 r3

ffiffiffi
p

p
l1�k1
r1

� �
; F b

II;k2
¼ KII;k2 r3

ffiffiffi
p

p
l1�k2
r1

� ��. ð9Þ

F I;k1 ¼
F a

I;k1
� ðr2=r1ÞF b

I;k1

1� ðr2=r1Þðr3=r4Þ
; F II;k2 ¼

F a
II;k2

� ðr2=r1ÞF b
II;k2

1� ðr2=r1Þðr3=r4Þ
ð10Þ
In this study, as shown in Eq. (11), the body forces densities, FnI2, FtI2 distributed along the fictitious
boundary for unit cell are also applied in body �I� so as to produce the same deformations of body �M�
due to the body forces FnM2, FtM2.
hF nM2
ur hF tM2

ur

hF nM2
uz hF tM2

uz

" #
�

F nM2

F tM2

� �
¼ hF nI2

ur hF tI2
ur

hF nI2
uz hF tI2

uz

" #
�

F nI2

F tI2

� �
ð11Þ
Since the relation (11) is satisfied, Eqs. (5c), (5d) does not include the integral involving the term hF nM2
ur ðr2; s1Þ

etc.
3. Numerical solutions of singular integral equations

Numerical solutions will be explained by taking an example for the boundary conditions for corner A.
Fig. 6 illustrates boundary divisions for the solutions of Eqs. (1)–(3) when lz1/lr1 = 10, lz2/lz1 = 2, lr2/lr1 = 5.
It should be noted that the body forces, Fn and Ft (see Fig. 4(b)), acting in the normal and tangential direc-
tions, should be expressed as a combination of symmetric mode I type rk1�1

1 and skew-symmetric mode II
type rk2�1

1 to the bisector of the corners (Chen, 1992). Here, r1 is a distance measured from the corner A. The
body force densities distributed in the regions A 02–A–A2 is expressed as follows using fundamental densi-
ties rk1�1

1 ; rk2�1
1 and weight functions W I

nM1 � W II
tM1.



Fig. 6. Boundary division when lz1/lr1 = 10, lr2/lr1 = 5, lz2/lz1 = 2.
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F nM1ðr1Þ ¼ F I
nM1ðr1Þ þ F II

nM1ðr1Þ ¼ W I
nM1ðr1Þr

k1�1
1 þ W II

nM1ðr1Þr
k2�1
1

F tM1ðr1Þ ¼ F I
tM1ðr1Þ þ F II

tM1ðr1Þ ¼ W I
tM1ðr1Þr

k1�1
1 þ W II

tM1ðr1Þr
k2�1
1

F nI1ðr1Þ ¼ F I
nI1ðr1Þ þ F II

nI1ðr1Þ ¼ W I
nI1ðr1Þr

k1�1
1 þ W II

nI1ðr1Þr
k2�1
1

F tI1ðr1Þ ¼ F I
tI1ðr1Þ þ F II

tI1ðr1Þ ¼ W I
tI1ðr1Þr

k1�1
1 þ W II

tI1ðr1Þr
k2�1
1

ð12Þ

W I
nM1ðr1Þ ¼

XM
n¼1

anrn�1
1 ; W I

tM1ðr1Þ ¼
XM
n¼1

bnrn�1
1

W II
nM1ðr1Þ ¼

XM
n¼1

cnrn�1
1 ; W II

tM1ðr1Þ ¼
XM
n¼1

dnrn�1
1

W I
nI1ðr1Þ ¼

XM
n¼1

enrn�1
1 ; W I

tI1ðr1Þ ¼
XM
n¼1

fnrn�1
1

W II
nI1ðr1Þ ¼

XM
n¼1

gnr
n�1
1 ; W II

tI1ðr1Þ ¼
XM
n¼1

hnrn�1
1

ð13Þ
Eqs. (12) and (13) do not include the terms expressing local uniform stretching and shear distortion at
the corner A. Therefore the body forces densities are applied also in the body �I� in order to express local
uniform stretching and shear distortion at the corner A (see Eq. (11)).

On the numerical solution as shown in Eqs. (12), (13), the singular integral equations (5)–(7) are reduced
to algebraic equations for the determination of the unknown coefficients an � hn. These coefficients are
determined from the boundary conditions at suitably chosen collocation points. The generalized stress
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intensity factors KI;k1 ; KII;k2 for angular corners can be obtained from the values of
W I

nð0Þ;W II
n ð0Þ;W I

tð0Þ;W II
t ð0Þ at the corner tip (Noda et al., 1996).
4. Results and discussion

4.1. Convergence of the results

In the following calculations Poisson�s ratio is assumed as mI = mM = 0.3. Generalized stress intensity fac-
tors K1,k1, KII,k2 are analyzed with varying dimensions of inclusion and unit cell, and elastic ratio GI/GM.
Table 1
Convergence of F I;k1 and F II;k2 for (a) periodic array when lz1/lr1 = 10, lz2/lz1 = 5, lr2/lr1 = 20; (b) zigzag array when lz1/lr1 = 30, lz2/
lr1 = 31, lr2/lr1 = 2.2

M FI,k1 FII,k2 FI,k1 FII,k2

(a)
GI/GM = 102 GI/GM = 10�5

3 1.2871 1.7952 0.3786 1.5998
4 1.2898 1.7989 0.3789 1.6042
5 1.2903 1.7993 0.3790 1.6051
6 1.2900 1.7988 0.3787 1.6055

(b)
GI/GM = 60 GI/GM = 102

3 0.4398 0.5354 0.4588 0.4872
4 0.4407 0.5368 0.4613 0.4921
5 0.4416 0.5375 0.4628 0.4925
6 0.4413 0.5371 0.4628 0.4924

Table 2
Mechanical properties of (a) carbon fiber-reinforced plastics and (b) glass fiber-reinforced plastics

Polycarbonate/carbon fiber Polyamid/carbon fiber Polyphenylene sulfide/carbon fiber

(a)
Young�s modulus of matrix (MPa) 2000 2800 3800
Density of matrix (g/cm3) 1.19–1.23 1.14–1.16 1.35
Young�s modulus of fiber (MPa) 235,000 235,000 235,000
Density of fiber (g/cm3) 1.80 1.80 1.80
Aspect ratio of fiber (average) 30 30 30
Elastic ratio GI/GM 118 84 61
Weight percent of fiber (%) 30 30 30
Volume percent of fiber (%) 22.08–22.68 21.37–21.65 24.30

(b)
Polypropylene/glass fiber Polyethylene/glass fiber Polyethylene/glass fiber

Young�s modulus of matrix (MPa) 900–1300 950–1400 3100–3200
Density of matrix (g/cm3) 0.89–0.91 0.94–0.96 1.04–1.05
Young�s modulus of fiber (MPa) 76,000 76,000 76,000
Density of fiber (g/cm3) 2.51 2.51 2.51
Aspect ratio of fiber (average) 30 30 30
Elastic ratio GI/GM 58–84 54–80 24–25
Weight percent of fiber (%) 40 40 40
Volume percent of fiber (%) 19.09–19.44 19.96–20.29 21.62–21.79



Table 3
(a) F I;k1 and (b) F II;k2 for periodic and zigzag arrays when GI/GM = 60, lz1/lr1 = 30

Volume percent
of fiber (%)

Case 1 Case 2 Case 3

Zigzag
array

Periodic
array

lz2/lr2 Zigzag
array

Periodic
array

lz2/lr2 Zigzag
array

Periodic
array

lz2/lr2

(a)
25 0.411 0.391 15.78 0.624 0.384 17.71 0.113 0.358 20.58
20 0.441 0.435 14.09 0.706 0.424 19.61 0.119 0.393 25.72
15 0.506 0.489 12.18 0.821 0.451 20.37 0.127 0.338 34.30
5 0.855 0.801 7.02 1.125 0.776 48.13 0.563 0.713 103.11
! 0 1.556 1.556 – 1.556 1.556 – 1.556 1.556 –

(b)
25 0.450 0.399 15.78 0.788 0.386 17.81 0.310 0.365 20.58
20 0.537 0.503 14.09 0.972 0.479 19.66 0.376 0.435 25.72
15 0.650 0.586 12.18 1.043 0.559 21.27 0.400 0.431 34.30
5 1.249 1.194 7.02 1.493 1.176 46.32 1.052 1.132 103.11
! 0 2.156 2.156 – 2.156 2.156 – 2.156 2.156 –

Fig. 7. (a) F I;k1 , (b) F II;k2 for periodic array, (c) F I;k1 , (d) F II;k2 for zigzag array when G1/GM = 60, lz1/lr1 = 30.
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Some examples of convergence are shown in Table 1 when lz1/lr1 = 10, lz2/lz1 = 2, lr2/lr1 = 5. Since the re-
sults obtained from W I

nð0Þ and W I
tð0Þ, have a few percent differences, the average values are indicated

(Noda et al., 2000, 2003). The results have good convergence to the forth digit when M = 4–6, where M

is a number of collocation points at each division of boundaries. In the following calculation the general-
ized stress intensity factors (GSIF) are shown confirming the convergence as shown in Table 1.

4.2. Effect of volume fraction and elastic modulus ratio on the GSIF

In this study, periodic and zigzag arrays of cylindrical inclusions will be analyzed. Then, parametric stud-
ies will be conducted to address the issue of optimal arrangement of cylindrical inclusions given the same
volume fraction and material properties. Table 2 shows the mechanical properties of short fiber-reinforced
plastics. As shown in these tables, in most cases, the aspect ratio of fiber is 30; in the following calculation,
therefore, fiber�s aspect ratio is fixed as lz1/lr1 = 30. In Table 3 and Fig. 7, the elastic modulus ratio is fixed
Fig. 8. Results for two rectangular inclusions under plane strain when G1/GM = 100, m1 = mM = 0.3: (a) F I;k1 at D vs. d relation (b) F II;k2

at D vs. d relation.

Table 4
(a) F I;k1 and (b) F II;k2 for periodic and zigzag arrays when volume percent of fiber Vf = 20%, lz1/lr1 = 30

GI/GM Case 1 Case 2 Case 3 V! 0%

Zigzag
array

Periodic
array

lz2/lr2 Zigzag
array

Periodic
array

lz2/lr2 Zigzag
array

Periodic
array

lz2/lr2

(a)
10 0.368 0.363 14.09 0.609 0.337 18.43 0.105 0.270 25.72 0.617
60 0.441 0.435 14.09 0.693 0.404 19.31 0.119 0.361 25.72 1.556
100 0.463 0.440 14.09 0.740 0.382 19.58 0.111 0.305 25.72 1.943

(b)
10 0.582 0.567 14.09 1.038 0.507 20.50 0.402 0.453 25.72 1.124
60 0.537 0.503 14.09 0.967 0.470 19.81 0.435 0.435 25.72 2.156
100 0.492 0.476 14.09 0.850 0.429 18.77 0.356 0.356 25.72 2.673



4902 N.-A. Noda, Y. Takase / International Journal of Solids and Structures 42 (2005) 4890–4908
as GI/GM = 60, then the effect of volume fraction Vf of fibers is considered. As shown in Fig. 7, for both
periodic and zigzag arrays, the F I;k1 and F II;k2 decrease with increasing Vf. As shown in Fig. 7, for periodic
array, the F I;k1 and F II;k2 decrease with increasing lz2/lr2. On the other hand, for zigzag array, the F I;k1 and
F II;k2 have peak values at a certain value of lz2/lr2 as shown in Fig. 7.

The reason for appearing peak values in zigzag array in Fig. 7 can be explained from the results of two
rectangular inclusions in matrix as shown in Fig. 8 (Noda et al., 2000). With decreasing the distance d, the
F I;k1 and F II;k2 values decrease if two inclusions are in the transverse direction (see l = 10 in Fig. 8). On the
other hand, if two inclusions are in the oblique direction, the F I;k1 and F II;k2 values increase with decreasing
the distance d (see l = 0, 1, 2 in Fig. 8). With decreasing d in a zigzag array, two types of inclusions, which
have different interaction which have different effects of interaction, approach each other; one is in the
transverse direction, the other in the in the oblique directions. Therefore, at a certain distance the interac-
tion may be larger.

From the parametric studies for zigzag and periodic arrays, it may be concluded that large aspect ratio of
unit cell lz2/lr2 may be desirable for short fiber-reinforce composites because the singular stress is not larger
unless adjacent fibers are very close or touch.
Fig. 9. (a) F I;k1 , (b) F II;k2 for periodic array, (c) F I;k1 , (d) F II;k2 for zigzag array when Vf = 20%, lz1/lr1 = 30.



Fig. 10. Two-dimensional models: (a) two rectangular inclusions and (b) a periodic array of rectangular inclusions.

Table 5
F I;k1 and F II;k2 for (a) periodic array of rectangular inclusions in Fig. 6(b) and (b) periodic array of cylindrical inclusions in Fig. 3 when
GI/GM = 102, lz1/lr1 = 10

lr2/lr1 lz2/lz1

FI,k1 (k1 = 0.76323491) FII,k2 (k2 = 0.62184397)

2 5 10 2 5 10

(a)
5 0.486 0.472 0.470 0.706 0.775 0.806
10 0.609 0.603 0.602 0.925 0.967 0.983
20 0.672 0.656 0.655 1.038 1.016 1.026

30 0.702 0.666 0.665 1.086 1.018 1.023

50 0.731 0.672 0.670 1.131 1.019 1.019

(b)
1.5 2 5 1.5 2 5

5 0.935 0.942 0.953 1.247 1.284 1.357
10 1.238 1.229 1.233 1.725 1.708 1.731
15 1.309 1.281 1.280 1.832 1.784 1.788

20 1.328 1.298 1.290 1.869 1.810 1.799

25 1.347 1.303 1.294 1.890 1.813 1.802

30 1.359 1.309 1.295 1.904 1.816 1.803

50 – 1.314 1.295 – 1.820 1.803

For (a): FI,k1 ! 0.671, FII,k2 ! 1.018 if lr2/lr1 !1 lz2/lz1 !1.
For (b): FI,k1 ! 1.297, FII,k2 ! 1.804 if lr2/lr1 ! 1 lz2/lz1 ! 1.
Region within 1% interaction are in italics.
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In Table 4 and Fig. 9, the volume fraction is fixed as Vf = 0 and 20%, then the effect of elastic ratio
GI/GM is considered. As shown in Tables 2 and 3, Vf = 20% corresponds to most cases of the reinforced
plastics. In Fig. 9, each curve corresponds to the distinct singularity index k1, k2. With increasing the elastic
ratio� as GI/GM = 10 ! 100, the interaction becomes larger under the same geometrical condition. For
example, when GI/GM = 100, as shown in Fig. 9, F I;k1=F I;k1 jvf!0 ¼ 0:06–0:38; F II;k2=
F II;k2jV f!0 ¼ 0:13–0:32. On the other hand, when GI=GM ¼ 10; F I;k1=F I;k1jV f!0 ¼ 0:17–0:99; F II;k2=
F II;k2jV f!0 ¼ 0:36–0:92. From the results of zigzag arrays in Fig. 9, it should be noted that F I;k1 and
F II;k2 have largest values at lz2/lr2 ffi 20 when Vf = 20% almost independent of GI/GM.

4.3. Comparison between 3D arrays and 2D arrays

In the previous studies the interaction between two rectangular inclusions as shown in Fig. 10(a) have
been treated as a two-dimensional models of fibers (Noda et al., 1998, 2000). Since it is very difficult to deal
with the three-dimensional problem of Fig. 10(a), it is important to discuss the difference between the re-
sults of two- and three-dimensional modeling. In Table 5 and Fig. 11, the results of a periodic array of
cylindrical inclusions are compared with the ones of a periodic array of rectangular inclusions when
GI/GM = 102 and lz1/lr1 = 10. In this case, if the size of unit cell is larger enough, the results coincide with
the ones of a single inclusion, that is, F I;k1 ! 1:297 and F II;k2 ! 1:804 for a cylindrical inclusion, and
F I;k1 ! 0:671 and F I;k1 ! 1:018 for a rectangular inclusion. In Fig. 11, first, consider the case of
lr2/lr1 = 50 and lz2/lz1 = 2, where the distance in the r-direction is large enough. Because of the interaction
of fibers in the z-direction, the F I;k1 is larger than the case of lz2/lz1 ! 1 by 9% for rectangular inclusions,
and by 1% for cylindrical inclusions. In other words, the effect of distance lz2 is smaller in 3D arrays than in
2D arrays. Next, assume the distance in the z-direction is large enough, for example, lz2/lz1 = 5. Then, it is
found that if lr2/lr1 P 30 the effect of interaction on F I;k1 is less than 1% for 2D inclusions. On the other
hand, if lz2/lz1 = 5 and lr2/lr1 P 20 for cylindrical inclusions, the effect of interaction on is less than 1%.
Fig. 11. Comparison between rectangular inclusion and cylindrical inclusions.
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The effect of the distance in the r-direction in 3D arrays is also smaller than in 2D arrays. The region is
indicated by a solid line in Table 5.

4.4. The region within 1% interaction

In this section, spacing of fibers when the interaction can be negligible will be considered assuming peri-
odic arrangement. Table 6(a) shows the results when GI/GM = 102 and lz1/lr1 = 5. From Table 6(a), it is seen
that if lr2/lr1 P 5 for lz1/lr1 = 2 the interaction on F I;k1 is less than 1%. Also, if lr2/lr1 P 50 for lz1/lr1 = 30,
the interaction on F I;k1 is less than 1%. That means, with increasing the fiber length, the interaction becomes
larger. Similarly, Table 6(b) shows the results when GI/GM = 10 and lz1/lr1 = 2. When lz1/lr1 = 10, lr2/lr1 = 5
for GI/GM = 10, F I;k1 decreases by 11%. Under the same geometrical condition, F I;k1 decreases by 27% for
GI/GM = 102. In other words, with increasing the elastic ratio GI/GM, the effect of interaction becomes lar-
ger. Similar tendency can been seen in Table 3(c) for GI/GM = 2 with lz2/lz1 = 2.
Table 6
F I;k1 and F II;k2 for periodic array of cylindrical inclusions in Fig. 3. (a) GI/GM = 102 and lz1/lr1 = 10 (b) GI/GM = 10 and lz1/lr1 = 2
(c) GI/GM = 2 and lz2/lz1

(a) lr2/lr1 lz1/lr1

FI,k1 (k1 = 0.76323491) FII,k2 (k2 = 0.62184397)

2 10 20 30 2 10 20 30

3 0.451 – – – 0.725 – – –
5 0.485 0.953 0.973 1.055 0.755 1.357 1.365 1.381
10 0.493 1.233 1.493 1.529 0.757 1.730 2.073 2.117
20 0.496 1.290 1.709 1.849 0.760 1.799 2.363 2.549
30 0.497 1.295 1.738 1.910 0.761 1.803 2.399 2.631
50 0.497 1.295 1.746 1.930 0.761 1.804 2.407 2.660

1 0.495 1.297 1.753 1.943 0.759 1.804 2.416 2.673

(b) lr2/lr1 lz1/lr1

FI,k1 (k1 = 0.79811118) FII,k2 (k2 = 0.78565474)

5 10 100 5 10 100

5 0.510 0.553 – 0.936 0.963 –
10 0.538 0.584 0.585 0.996 1.063 1.061
15 0.539 0.594 0.602 0.997 1.083 1.095
20 0.540 0.596 0.608 0.997 1.089 1.107
30 0.541 0.598 0.612 0.998 1.087 1.115

50 – 0.599 0.616 – 1.089 1.121

1 0.540 0.599 0.618 0.996 1.087 1.121

(c) lr2/lr1 lz1/lr1

FI,k1 (k1 = 0.91091019) FII,k2 (k2 = 0.9810170)

10 30 60 100 10 30 60 100

5 0.250 0.250 0.251 0.250 3.235 3.238 3.239 3.240
10 0.253 0.254 0.252 0.251 3.282 3.282 3.271 3.242
15 0.253 0.254 0.255 0.252 3.288 3.289 3.288 3.273
20 0.254 0.254 0.255 0.253 3.291 3.291 3.290 3.287

30 0.255 0.255 0.255 0.254 3.295 3.298 3.298 3.296

50 0.255 0.255 0.255 0.255 3.299 3.301 3.301 3.300



Fig. 12. Region within 1% interaction.
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Fig. 12 shows the region of lr2/lr1, where the interaction is less than 1%, as a function of lz2/lz1. As shown
in Fig. 12, with increasing lz2/lz1, the larger distance lr2/lr1 is necessary for less than 1% interaction.

Regarding the region of lz2/lz1, we can see the following. When GI/GM = 102, lz2/lz1 P 5 is necessary for
less than 1% interaction. Also, when GI/GM 6 10, lz2/lz1 P 2 is necessary for less than 1% interaction.
5. Conclusion

To evaluate the mechanical strength of fiber-reinforced composites it is necessary to evaluate singular
stresses at the end of fibers. In this paper, therefore, periodic and zigzag arrays of cylindrical inclusions
in matrix under longitudinal tension are analyzed by the application of the body force method. The con-
clusions can be made in the following way.

(1) Generalized stress intensity factors at the fiber end are systematically calculated and shown in Figures
and Tables with varying the elastic ratio, length, and spacing of fibers. The interaction becomes larger
with increasing fiber length and elastic ratio. The region when the interaction effect is less than 1% is
shown in figure as a function of fiber length.

(2) As shown in Fig. 12, for both periodic and zigzag arrays, the F I;k1 and F II;k2 decrease with increasing
Vf. For periodic array, the F I;k1 and F II;k2 decrease with increasing the aspect ratio of the unit cell. On
the other hand, for zigzag array, the F I;k1 and F II;k2 have peak values at a certain value of as shown in
Fig. 12.

(3) From the parametric studies for zigzag and periodic arrays, it may be concluded that large aspect
ratio of unit cell lz2/lr2 may be desirable for short fiber-reinforce composites because the singular stress
is not larger unless adjacent fibers are very close or touch. From the results of zigzag arrays in Fig. 9,
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it should be noted that F I;k1 and F II;k2 have the largest values at lz2/lr2 ffi 20 when Vf = 20% almost
independent of GI/GM. With increasing the elastic ratio as GI/GM = 10–100, the interaction becomes
larger under the same geometrical condition as shown in Fig. 8.
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Appendix A. Relation between the results of given and auxiliary problems

In this study two auxiliary problems were analyzed instead of solving Fig. 4 directly. The final results
were given by Eq. (10), which can be derived in the following way. The boundary conditions of the given
problem as shown in Fig. A.1(a) are rzav = r0, rrav = 0, and the results are F a

I;k1
; F a

II;k2
. Here rzav is an aver-

age stress at z = ±lz2, and rrav is an average stress at r = lr2. On the other hand, the boundary conditions in
Fig. A.1(b) are rzav = 0, rrav ¼ r0

0, and the results are F b
I;k1

; F b
II;k2

. Under this situation, the dimensionless
stress intensity factors, for auxiliary problems as shown in Fig. A.2 can be expressed as follows:
F a
I;k1

¼ F I;k1 þ
r2

r1

F 0
I;k1

; F b
I;k1

¼ F 0
I;k1

þ r3

r4

F I;k1 ðA:1Þ
Fig. A.1. Problems to be solved (a), (b).

Fig. A.2. Auxiliary problems (a), (b).
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F a
II;k2

¼ F II;k2 þ
r2

r1

F 0
II;k2

; F b
II;k2

¼ F 0
II;k2

þ r3

r4

F II;k2 ðA:2Þ
From these equations, we have
F I;k1 ¼
F a

I;k1
� ðr2=r1ÞF b

I;k1

1� ðr2=r1Þðr3=r4Þ
; F II;k2 ¼

F a
II;k2

� ðr2=r1ÞF b
II;k2

1� ðr2=r1Þðr3=r4Þ
ðA:3Þ
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