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Abstract

Two types of optimization of thin-walled cylindrical shells loaded by lateral pressure are analyzed in this paper, with arbitrary axisymmetric

boundary conditions and the volume being constant. The first is to find the optimal thickness to minimize the maximum deflection of a cylindrical

shell. Here expressions of the objective function are obtained by the stepped reduction method. The optimal designs are reduced to nonlinear

programming problems with an equality constraint. In minimizing the maximum deflection, the position of the maximum deflection from a

previous iteration is used as the next one. The second is to find the optimal thickness to maximize the buckling pressure of shell. A buckling

criterion of a shell is derived on the basis of an energy principle. An optimization criterion is formulated as the maximum of the buckling pressure.

Moreover, the space of allowable solutions is defined. This procedure converges quickly and numerical results show the effectiveness of the

method. Several examples are provided to illustrate the methods.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Shell structures have been used widely in spaceflight and

aviation, vessel, and large storage structures, etc. Optimal

designs with respect to thin shell structures are important in

both theory and application. Many techniques have been used

for optimal design of shells. Often, the work addresses optimal

design on weight of shell structures under various load and

constraint conditions. However, few works deal with dual

problems. Gajewski and Zyczkowski published their survey

paper on optimal structural design under stability constraints in

1988 [1]. Hyman presented an optimum design for the

instability of cylindrical shells under lateral pressure in 1971

[2]. Rotter stated the new European standard and current

research needs on shell structures in 1998 [3]. Chapelle

investigated fundamental considerations for the finite element

analysis of shell structures [4] while Araar studied buckling of
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cylindrical shells under external pressure for a new shape of

self-stiffened shell [5]. Adali did the minimum sensitivity

design of laminated shells under axial load and external

pressure [6]. Sakamoto did his investigation of a practical

method of structural optimization by genetic algorithms [7].

Optimal sizes of a ground-based horizontal cylindrical tank

under strength and stability constraints were investigated by

Magnucki [8] and here are offered related works such as

[9–13].

It is important to study the rational form of a shell to resist

deformation. First, an effective way of optimal design for a thin

cylindrical elastic shell is presented, which can determine the

thickness functions that cause the minimax deflection or

minimum compliance of the shell, under the conditions that the

volume is constant and the middle surface shape is defined. In

these optimal problems, the explicit formulations of the

objective function cannot be determined by traditional methods

that lead to much computational difficulties. The deflection

solution of cylindrical shells with variable thickness can be

given by the stepped reduction method; further explicit

expressions of the objective function can be obtained. The

expressions are suitable for the arbitrary axisymmetric

boundary conditions and radial compression. The optimal

design of a cylindrical shell is reduced to a nonlinear

programming problem with an equality constraint.

Another method for optimal design of a thin cylindrical

shell is proposed, which can determine the thickness functions
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that cause the maximum buckling load, under the condition of

the volume being constant. By use of an energy principle the

bifurcation buckling of the cylindrical shell subjected to lateral

uniform pressure is analyzed. The necessary condition of the

shell system being in a stable state is that the second variation

of the total potential energy equals zero when it reaches a

disturbed bifurcation buckling state from a stable equilibrium

state. The solution for buckling pressure of the shell is

transferred to a generalized eigenvalue equation. The buckling

pressure is expected to be the maximum and then the optimal

design of the shell is reduced to a nonlinear programming

problem with constraints of the volume being constant.
2. Governing equation and the solution

2.1. Deflection of the cylindrical shell

Consider the thin cylindrical elastic shell shown in Fig. 1,

with the axisymmetric variable thickness h(x), length l, radius

r, elastic constants E, v, and arbitrary axisymmetric radial

compression P(x). Divide the shell into n segments. Let each

shell segment be short enough so that it can be considered as

having uniform thickness and being subjected to a uniform

lateral pressure. Suppose the ith segment has the length liZ1/n,

thickness hi, lateral pressure Pi, local variable xi, 0%xi%li
(lower section of the segment xiZ0 and the upper section

xiZli). Then the differential equation for the radial deflection

wi of the ith shell segment is [14]

d4wiðxiÞ

dx4i
C4KiwiðxiÞZ

Pi

Di

(1)

where DiZEh3i =12ð1Kn2Þ is the radial stiffness and

KiZ3ð1Kn2Þ=ðrhiÞ
2. The solution of Eq. (1) can be written

by the stepped reduction method as follows

wiðxiÞZwið0ÞF1iðxiÞCw0
ið0ÞF2iðxiÞCMið0ÞF3iðxiÞ

CQið0ÞF4iðxiÞCF5iðxiÞ (2)

where wi(0), w
0
ið0Þ, Mi(0) and Qi(0) are the deflection, slope,

bending moment and shear force, respectively, at the point

xiZ0, and
l

x

0

P

Fig. 1. Cylindrical shell with variable thickness.
F1iðxiÞZ coshðlixiÞcosðlixiÞ

F2iðxiÞZ ½coshðlixiÞsinðlixiÞCsinhðlixiÞcosðlixiÞ�=ð2liÞ

F3iðxiÞZ sinhðlixiÞsinðlixiÞ=ð2l
2
i Þ

F4iðxiÞZ ½coshðlixiÞsinðlixiÞKsinhðlixiÞcosðlixiÞ�=ð4l
3
i Þ

F5iðxiÞZ ½1KF1iðlixiÞ�P=ð4liDiÞ

9>>>>>>>=
>>>>>>>;

where l4i ZEhi=4r
2Di. For convenience, the following dimen-

sionless variables are introduced

�r Z
r

l
; �li Z

li
l
; �hi Z

hi
h0

; �xi Z
xi
l
; �wi Z

wi

l
; �Pi Z

Pil
3

D0

;

�Mi Z
Mil

D0

; �Qi Z
Qil

2

D0

; D0 Z
Eh30

12ð1Kn2Þ

9>>>>=
>>>>;

(3)

where h0 denotes the thickness of a uniform shell with given

volume V0. Then Eq. (2) can be written

�wiðxiÞZ �wið0Þf1ið �xiÞC �w0
ið0Þf2ið �xiÞC �Mið0Þf3ið �xiÞ

C �Qið0Þf4ið �xiÞC f5ið �xiÞ (4)

where the quantities �wið0Þ; �w
0
ið0Þ; �Mið0Þ and �Qið0Þ denote

dimensionless deflection, slope, bending moment, and shear

force, respectively, at �xiZ0. The functions fkið �xiÞ are the

corresponding dimensionless functions of

FkiðxiÞ; ðkZ1;2;3;4;5Þ. Thus, �wið �xiÞ is an explicit formulation

of �xi. Let

Sið �xiÞZ ½ �wið �xiÞ; �w
0
ið �xiÞ; �Mið �xiÞ; �Qið �xiÞ�

T (5)

According to the relations of deflection, slope, bending

moment and shear force, we have

Sið �xiÞZ Tið �xiÞSið0ÞCUið �xiÞ ðiZ 1;2;.;nÞ (6)

where Tið �xiÞ andUið �xiÞ denote a 4!4 matrix and a 4!1 matrix,

respectively, which consist of fkið �xiÞ; ðkZ1;2;3;4;5Þ and their

derivatives. Continuity conditions at the junction of two

neighbouring segments must be satisfied, so

Sið0ÞZ SiK1ð�liK1Þ ðiZ 2;3;.;nÞ (7)

Thus, we have

S1ð �x1ÞZ T1ð �x1ÞS1ð0ÞCU1ð �x1Þ

Sið �xiÞZ Tið �xiÞS1ð0Þ
Q

Tjð�ljÞCUið �xiÞCTið �xiÞ UiK1
�liK1

� ��
C
P

Uj
�lj
� �Q

Tk �lk
� ��

ðiZ 2;3;.;nÞ;

ðjZ 1;2;.;iK2Þ; ðkZ 1;2;.;jK1Þ

9>>>=
>>>;
(8)

Then Tið �xiÞ are the explicit formulation of �xi, �hi. When iZn

and �xnZ �ln, Eq. (8) will give expressions for �wn, �w
0
n, �mn and �qn.

If the boundary conditions of the shell are given, the explicit

expressions of the deflection, slope, bending moment and shear

force at any point of the shell can be obtained from Eq. (8).
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2.2. Buckling of cylindrical shell with variable thickness

Consider the same thin elastic cylindrical shell shown in

Fig. 1, but under uniform lateral pressure P. Divide the shell

into n elements along the x direction.

To study the stability of the cylindrical shell under lateral

pressure, suppose that it is in a stable equilibrium state e, and is

then given a disturbance to another state f. Let the displacement

field in state f be

Vf ZVe CVj (9)

where Ve is the displacement field in state e, and Vj is the

disturbing displacement field from state e to f. The

displacement can be expressed as linear functions of a shell

element on the generalized joints [13].

ue ZB1ðxÞu
e
1 CB2ðxÞu

e
2

we ZA1ðxÞw
e
1 CA2ðxÞq

e
1 CA3ðxÞw

e
2 CA4ðxÞq

e
2

uj Z ½B1ðxÞu
j
1 CB2ðxÞu

j
2�cos jq

vj Z ½B1ðxÞv
j
1 CB2ðxÞv

j
2�sin jq

wj Z A1ðxÞw
j
1 CA2ðxÞq

j
1 CA3ðxÞw

j
2 CA4ðxÞq

j
2

� �
cos jq

9>>>>>>>>=
>>>>>>>>;

(10)

where ðuei ;w
e
i ;q

e
i Þ, ðu

j
i;v

j
i;w

j
i;q

j
iÞ; ðiZ1;2Þ denote the general-

ized joint displacements in state e and the disturbing procedure,

respectively, j is circumferential integral wave number, Ai(x),

(iZ1,2,3,4) and Bi(x), (iZ1,2) are polynomials.

According to the relation between strain and displacement

from Donnell theory, by substitution from the displacement

field ðueCuj;vj;weCwjÞ into the disturbing state f, the strain

and curvature change in state f can be denoted

3f Z 3e C3ð1Þ C3ð2Þ

cf Zce Ccð1Þ

)
(11)

where 3e,ce are strain and curvature change, respectively, in

state e, 3(1),c(1) and 3(2) are linear and quadratic terms,

respectively, with uj, vj, wj. The strain energy of the cylindrical

shell in state f is denoted

Uf ZUe CUð1Þ CUð2Þ C0ðUð3ÞÞ (12)

where Ue is strain energy in state e, U(1), U(2) are linear and

quadratic terms, respectively, with uj, vj, wj.

Consider a virtual displacement in state f. From the principle

of virtual work

dðUf ÞZ

ðð
ðP$dVÞr dq dx (13)

This can be rewritten as

dðUf CUf ÞZ 0 (14)

where Uf is the external force potential energy in state f.

Retaining the first-order and second-order terms and neglecting

higher order terms, the following formula is derived from
Eq. (14)

dðUe CUe CUð1Þ CUð1Þ CUð2Þ CUð2ÞÞZ 0 (15)

where U(1)CU(2) is the increment of external force potential

energy from state e to f. Because state e is an equilibrium state,

the following equilibrium equation is obtained from the

principle of minimum potential energy

dðUe CUeÞZ 0 (16)

Meanwhile state f is also an equilibrium state. So the first-

order variation of total potential energy in state f equals zero

dðUð1Þ CUð1ÞÞZ 0 (17)

From Eqs. (15), (16) and (17)

dðUð2Þ CUð2ÞÞZ 0 (18)

Eq. (18) shows that the second order variation of total

potential energy from state e to f is zero. When the criterion is

satisfied, unique solution of the disturbing generalized joint

displacement will not exist. Then bifurcation instability

appears.

In the disturbing procedure from state e to f, the second-

order term for the external force work is

Uð2Þ Z
P

2

ðð
ðwjÞ2 Cwj vvj

vq

� �
Crwj vuj

vx

� �
C ðvjÞ2

�

Kvj
vwj

vq

� �
Kruj

vwj

vx

� ��
dq dx

(19)

According to the continuity condition at the joints of

neighboring shell elements, Eq. (8) becomes

½Ke�fqegZ fQeg (20)

where [Ke] is the rigidity matrix, {qe}, {Qe} are the generalized

joint displacement and force, respectively. The equilibrium

displacement {qe} can be derived from Eq. (20) under

appropriate boundary conditions. A matrix expression of the

disturbing generalized joint displacement is obtained by

analyzing terms of the criterion Eq. (18)

f½Kj�CP½Kg�gfqjgZ f0g (21)

where [Kj] and [Kg] are rigidity matrix and increment rigidity

matrix with j circumferential wave number. {qj} is the

disturbing generalized joint displacement. Eq. (21) is a

generalized eigen equation derived by the stability criterion,

from which the buckling load can be obtained.

For convenience of numerical computation, the following

dimensionless variables are introduced

�r Z
r

l
; �li Z

li
l
; �hi Z

hi
h0

; �xi Z
xi
l
; �wi Z

wi

l
; f �qgZ

fqg

l
; �P

Z
r3P

D0

; D0 Z
Eh30

12ð1Kn2Þ

where h0 is the average thickness of a shell with the given

volume. Then dimensionless Eqs. (20) and (21) are
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½ �Ke
�f �qegZ f �Qe

g (22)

f½ �Kj
�C �P½ �Kg

�gf �qjgZ f0g (23)

where ½ �Ke
� and f �Qe

g are the dimensionless global rigidity

matrix and the generalized joint force of Eq. (22), respectively.

½ �Kj
� and ½ �Kg

� are the dimensionless global rigidity matrix and

the increment rigidity matrix of Eq. (23), respectively.

The generalized joint displacement f �qeg can be obtained from
Eq. (22) under appropriate boundary conditions, then the

minimum eigenvalue of Eq. (23) can be obtained by using

the inverse iteration method. Here, the buckling pressure is the

minimum eigenvalue for various circumferential wave number j

�pcr ZMinf �pcrðjÞ; ðjZ 1;2;.;10Þg (24)
3. Two types of optimal design

3.1. Optimal design on minimax deflection

The following procedure is proposed to determine the

optimal design. Determine the thickness function h(x), which

minimizes the maximal w(h,x) subject to the constraint of its

volume being constant
Ð
hðxÞdxZV0=2pr. As previously

stated, after dividing the shell into n shell segments and setting

a dimensionless transformation, the optimal design problem

can be defined as follows. Determine nC1 variables

ð �h1; �h2;.; �hn; �xÞ,

Minimize max �wð �h1; �h2;.; �hn; �xÞ;

subject to
P �hi�li Z 1;ð �hiR �hminÞðiZ 1;2;.;nÞ

)
(25)

where �hmin is the dimensionless given minimal thickness.

If the boundary conditions and �hi ðiZ1;2;.;nÞ are given,

the solution �w can be obtained by Eq. (8). To find the point of

the maximal deflection, let the length of each segment be small

enough so that only one stationary point of deflection exists at

each segment, if it exists. The following procedure is proposed

to determine the stationary point of deflection. First, determine

all segments {j}, which satisfy �wj$ �wjK1%0. By means of the

average section method, the stationary points of deflection at

these elements will be obtained. Denote these points by f �xjg.
Second, compare the deflections corresponding to points f �xjg,
and find the point of maximal deflection for the whole shell.

Denote the point as �xm, and the deflection as �wm,

�wmZ �wmð �h1; �h2;.; �hn; �xmÞ, where m indicates the point �xm
lying in the mth segment. Thus, the optimization objective is

to determine �h1; �h2;.; �hn, to minimize �wmð �h1; �h2;.; �hn; �xmÞ.
Model (25) is a nonlinear programming problem with an

equality constraint, and the explicit formulation of the

objective function with respect to design variables was

obtained. Therefore, the derivatives of the objective function

with respect to design variables can be easily obtained. It will

be solved by using various multidimensional gradient methods.

For example, if the reduced gradient method is used and �hn is
taken as the base variable, the reduced gradient can be easily
obtained as follows:

vwm h1;.;hnK1;xm
� �

vh1
;.;

vwm h1;.;hnK1;xm
� �

vhnK1

� �
:

As a nonlinear programming with an equality constraint, Eq.

(25) can be solved by the simplified projection gradient

method. Because the gradient vector is obtained easily, the

proposed method with high calculation accuracy and fast

convergence is superior to most traditional methods.
3.2. Optimal design on maximizing buckling pressure

The optimal design of a cylindrical shell on stability can be

stated as follows. Dividing the shell into n shell segments and

setting a dimensionless transformation, and keeping the shell

volume constant, find the optimal thickness �hi; ðiZ1;2;.;nÞ to

maximize its buckling pressure

minimize F ZK�Pcrð �h1; �h2;.; �hnÞ

subject to
P �hi�li Z 1;ð �hmaxR �hiR �hminÞ; iZ 1;2;.;nð Þ

)

(26)

where �hmax; �hmin are the given dimensionless maximum and

minimum thickness, respectively. The following procedure is

proposed to determine the optimal design. The Tabu search

algorithm is used for pilot calculations for a representative

material. The results show high calculation accuracy but slow

convergence for the tabu search algorithm.

Being a nonlinear programming with an equality constraint,

(26) can be solved by the simplified projection gradient method

with high calculation accuracy and fast convergence.
4. Numerical results and discussion

4.1. Numerical results on minimax deflection

In this section, some numerical results for the two types of

optimal design obtained using the stepped reduction method

and suitable optimal techniques are illustrated. Several typical

examples are provided. In the following numerical examples,

let initial parameters: �hð0Þi Z1; ðiZ1; 2;.; nÞ; nZ0:3;
�h0= �rZ0:01; �l= �rZ2:0. l denotes the ratio of maximal deflection

of the optimal shell and maximal deflection of the uniform shell

with the same volume. In Fig. 2, the solid lines represent the

thickness distribution and deflection curves of the optimal

shell, respectively. Meanwhile, the dotted lines show the

corresponding thickness distribution and deflection curves of

the uniform shell with the same volume, respectively. (a) Is

both ends built-in, uniform load, lZ0.760; (b) is both ends

simply supported, uniform load, lZ0.798; (c) is lower end

built-in, upper end free, and P(x)ZP(1Kx/l), lZ0.619.
4.2. Numerical results on maximizing buckling pressure

It is effective to calculate the buckling pressure of a

cylindrical shell with variable thickness by using the proposed
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Fig. 2. Curves of optimal thickness and deflection under various boundary conditions.
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method. Numerical results for uniform thickness show that the

results are close in comparison with that by Donnell theory.

Some numerical results for various boundary conditions are

obtained. Here, the optimal results for two typical boundary

conditions are illustrated, with various ratios of radius to

thickness, and length to radius. The boundary conditions are

C1 boundary : uZ vZwZ
vw

vx
Z 0

S3 boundary : Nx Z vZwZMx Z 0

Let the initial parameters �hð0Þi Z1; ðiZ1;2;.;nÞ; nZ0:3;
�h0= �rZ0:01; nZ160, and lZ �P�

cr= �Pcr, where �Pcr and �P�
cr are the

buckling pressure of the optimal shell and the uniform shell
with the same volume, respectively. Results are shown in

Figs. 3 and 4.

(a) �l=�rZ2; �PcrZ69:61; �P�
crZ121:35; lZ1:74.

(b) �l=�rZ10; �PcrZ12:96; �P�
crZ27:74; lZ2:14.

(c) buckling pressure as a function of �l= �r.
(a) �l=�rZ2; �PcrZ49:76; �P�

crZ90:77; lZ1:82.

(b) �l=�rZ10; �PcrZ8:03; �P�
crZ21:44; lZ2:67.

(c) buckling pressure as a function of �l= �r.
5. Conclusions

In this paper, we have investigated two types of

optimization of cylindrical shells. First, the stepped reduction
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method has been used to calculate the deflection of a

cylindrical shell; further explicit expressions of the objective

function can be derived and analyzed by use of the iteration

method. The expressions are suitable for arbitrary axisym-

metric boundary conditions and radial compression. The

optimal design of a cylindrical shell is reduced to a nonlinear

programming problem with an equality constraint. Secondly,

an effective method to maximize the buckling pressure of a

cylindrical shell with variable thickness and subjected to lateral

uniform pressure is proposed. The bifurcation buckling of the

cylindrical shell has been derived by use of an energy principle.

If it reaches a disturbing bifurcation buckling state from a

stable equilibrium state, the necessary condition of the

cylindrical shell being in a stable state is that the second

variation of total potential energy equals zero. To solve the

buckling pressure of the cylindrical shell is reduced to a

generalized eigenvalue equation. Some numerical calculations

are carried out to show the usefulness of the present method.

The numerical examples demonstrate the accuracy and

efficiency of the proposed method.
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