日本機械学会論文集(A編) 73巻731号(2007-7)

せん断荷重下における異種接合半無限体中の 界面き裂の応力拡大係数の解析*

徐春暉*1,野田尚昭*2,高瀬 康*2

Variations of Stress Intensity Factors of a Planar Interfacial Crack Subjected to Mixed Mode Loading

Chunhui XU, Nao-Aki NODA*3 and Yasushi TAKASE

*³ Department of Mechanical Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550 Japan

In this paper, a mixed mode interfacial crack in three dimensional bimaterials is analyzed by singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The results show that the present method yields smooth variations of mixed mode stress intensity factors of a rectangular interface crack along the crack front accurately. The effect of crack shape on the stress intensity factor for 3D interface cracks is also discussed on the basis of present solution. Then, it is found that the stress intensity factors $K_{\rm H}$ and $K_{\rm HI}$ are always insensitive to the shear modulus ratio, and almost determined by Poisson's ratio alone. Distributions of stress intensity factors are indicated in tables and figures with varying the rectangular shape and Poisson's ratio.

Key Words: Stress Intensity Factor, Body Force Method, Interface Crack, Composite Material, Singular Integral Equation

1. 緒 言

最近, 軽量化と高機能化を目的として複合材料が広 分野で使用されるようになり, その強度評価が重要な 問題となっている。多くの界面を有する複合材料の破 壊は,界面に生じたき裂の伝ばに支配されることが多 い。しかし界面き裂問題では、変位の振動現象と応力 の振動特異性が解析を困難なものとしているため、こ れまで得られた厳密な解析結果はあまり多くない. 三 次元界面き裂に関しては円形界面き裂(1)~(5)やだ円形 界面き裂(6)や有限体中のき裂(7)などいくつかの解析 はなされているものの、その多くは特定の材料の組合 せに対する数値計算である場合がほとんどであり,任 意の材料の組合せに対して応力拡大係数が閉じた形で 与えられているものは円形界面き裂のと深い環状界 面き裂⁽⁸⁾に関するもののみである。著者ら⁽⁹⁾は、異種 材料接合界面に接する軸対称き裂がねじりと引張りを 受ける問題を、体積力法の特異積分方程式で表現し解

析を行っている。また,体積力法の特異積分方程式の 未知関数を基本密度関数と多項式で近似する方法を用 いて^{(の~(11)},均質材中の三次元き裂先端の精度の高い 滑らかな応力拡大係数の分布を求めたほか,異種接合 面上の界面き裂が引張りを受ける問題を取扱っ た⁽¹²⁾⁽¹³⁾.

三次元界面き裂問題を特異積分方程式として表現す ることは、陳・野田・湯ら⁽¹⁴⁾によって行われている が、この場合にも、変位の振動現象と応力の振動特異 性がその厳密な解析を困難にしている。そこで、本研 究では、その特異積分方程式を、せん断荷重下におい て振動特異性を考慮して厳密に解析する方法を考察す るため、まず長方形界面き裂問題について応力拡大係 数の解析を行う。解析方法としては、体積力法の未知 関数を基本密度関数と多項式の積で近似する方法を用 いる。本解析法は、界面き裂先端近傍で生じる変位の 振動現象を厳密に評価した解析が可能であり、応力拡 大係数が連立方程式の解から直接決定されるという特 徴をもっている。

2. 解 析 方 法

図1のように *x*, *y* 平面を接合界面とする無限体中の界面き裂を考える.ここで, *µ*₁, *µ*₂ は, それぞれ上

^{*} 原稿受付 2006 年 12 月 11 日.

^{*1} China Agricultural University (Beijing 100083 P.R. China) [現:九州工業大学工学部(● 804-8550 北九州市戸 畑区仙水町 1-1)].

^{*2} 正員,九州工業大学工学部(每804-8550 北九州市戸畑区仙 水町 1-1).

E-mail: noda@mech.kyutech.ac.jp

下材料の横弾性係数, ν₁, ν₂ は上下材料のポアソン比である。このような三次元界面き裂の問題に関して陳・野田・湯ら⁽¹⁴⁾ らによって体積力法の考え方に基づく特異積分方程式(1•a)~(1•e)が導かれている。

$$\begin{split} & \mu_{1}(\Lambda_{2}-\Lambda_{1})\frac{\partial\Delta u_{z}(x,y)}{\partial x} + \mu_{1}\frac{(2\Lambda-\Lambda_{1}-\Lambda_{2})}{2\pi} \int_{s}^{1} \frac{1}{r^{3}}\Delta u_{x}(\xi,\eta)dS(\xi,\eta) + 3\mu_{1}\frac{(\Lambda_{1}+\Lambda_{2}-\Lambda)}{2\pi} \\ & \times \int_{s}^{1} \frac{(x-\xi)^{2}}{r^{5}}\Delta u_{x}(\xi,\eta)dS(\xi,\eta) + 3\mu_{1}\frac{(\Lambda_{1}+\Lambda_{2}-\Lambda)}{2\pi} \int_{s}^{1} \frac{(x-\xi)(y-\eta)}{r^{5}}\Delta u_{y}(\xi,\eta)dS(\xi,\eta) \\ & = -p_{x}(x,y), \quad x,y \in S \qquad (1 \cdot a) \\ & \mu_{1}(\Lambda_{2}-\Lambda_{1})\frac{\partial\Delta u_{z}(x,y)}{\partial y} + \mu_{1}\frac{(2\Lambda-\Lambda_{1}-\Lambda_{2})}{2\pi} \int_{s}^{1} \frac{1}{r^{3}}\Delta u_{y}(\xi,\eta)dS(\xi,\eta) + 3\mu_{1}\frac{(\Lambda_{1}+\Lambda_{2}-\Lambda)}{2\pi} \\ & \times \int_{s}^{1} \frac{(x-\xi)(y-\eta)}{r^{5}}\Delta u_{x}(\xi,\eta)dS(\xi,\eta) + 3\mu_{1}\frac{(\Lambda_{1}+\Lambda_{2}-\Lambda)}{2\pi} \int_{s}^{1} \frac{(y-\eta)^{2}}{r^{5}}\Delta u_{y}(\xi,\eta)dS(\xi,\eta) \\ & = -p_{y}(x,y), \quad x,y \in S \qquad (1 \cdot b) \\ & \mu_{1}(\Lambda_{1}-\Lambda_{2}) \bigg[\frac{\partial\Delta u_{x}(x,y)}{\partial x} + \frac{\partial\Delta u_{y}(x,y)}{\partial y} \bigg] + \mu_{1}\frac{(\Lambda_{1}+\Lambda_{2})}{2\pi} \int_{s}^{1} \frac{1}{r^{3}}\Delta u_{z}(\xi,\eta)dS(\xi,\eta) \\ & = -p_{z}(x,y), \quad x,y \in S \qquad (1 \cdot b) \\ & \dots (1 \cdot c) \bigg[\frac{\partial\Delta u_{x}(x,y)}{\partial x} + \frac{\partial\Delta u_{y}(x,y)}{\partial y} \bigg] + \mu_{1}\frac{(\Lambda_{1}+\Lambda_{2})}{2\pi} \int_{s}^{1} \frac{1}{r^{3}}\Delta u_{z}(\xi,\eta)dS(\xi,\eta) \\ & = -p_{z}(x,y), \quad x,y \in S \qquad (1 \cdot c) \bigg[\frac{\partial\Delta u_{x}(x,y)}{\partial x} + \frac{\partial\Delta u_{y}(x,y)}{\partial y} \bigg] + \mu_{1}\frac{(\Lambda_{1}+\Lambda_{2})}{2\pi} \int_{s}^{1} \frac{1}{r^{3}}\Delta u_{z}(\xi,\eta)dS(\xi,\eta) \\ & = -p_{z}(x,y), \quad x,y \in S \end{matrix}$$

·····(1•e)

ここで、 $\Delta u_i(x, y)$ は*i*方向のき裂上下面の変位差 であり、 \oint は発散積分の有限部分を表す.本論文では 図1(b)に示すように界面上に寸法 $2a \times 2b$ の長方形 界面き裂が存在し、せん断応力 $\tau_{yz}^{ss} = 1(\sigma_z^{ss} = 0, \tau_{zz}^{ss} = 0)$ を受ける場合を解析の対象とする.この問題に対し

Fig. 1 Problem configuration

て、未知関数である Δu_i を精度良く求めるため、本論 文では以下のようにおく.

$$\Delta u_i(\xi, \eta) = w_i(\xi, \eta) F_i(\xi, \eta), \quad i = x, y, z$$
.....(2)

ここに $w_i(\xi, \eta)$ は次式で定義される.

$$w_{x}(\xi,\eta) = \sum_{l=1}^{2} \frac{1+\kappa_{l}}{4\mu_{l}\cosh\pi\varepsilon} \sqrt{a^{2}-\xi^{2}}\sqrt{b^{2}-\eta^{2}}$$

$$\times \sin\left[\varepsilon\ln\left(\frac{a-\xi}{a+\xi}\right)\right]$$

$$w_{y}(\xi,\eta) = \sum_{l=1}^{2} \frac{1+\kappa_{l}}{4\mu_{l}\cosh\pi\varepsilon} \sqrt{a^{2}-\xi^{2}}\sqrt{b^{2}-\eta^{2}}$$

$$\times \cos\left[\varepsilon\ln\left(\frac{b-\eta}{b+\eta}\right)\right]$$

$$w_{z}(\xi,\eta) = -\sum_{l=1}^{2} \frac{1+\kappa_{l}}{4\mu_{l}\cosh\pi\varepsilon} \sqrt{a^{2}-\xi^{2}}\sqrt{b^{2}-\eta^{2}}$$

$$\times \cos\left[\varepsilon\ln\left(\frac{a-\xi}{a+\xi}\right)\right]\sin\left[\varepsilon\ln\left(\frac{b-\eta}{b+\eta}\right)\right]$$
.....(3)

ここで $w_x(\xi, \eta), w_y(\xi, \eta), w_z(\xi, \eta)$ は基本密度関数と呼ばれ,界面き裂固有の振動特異性を表現する関数である。接合無限体中の xy 平面上にある二次元界面き裂($a/b \rightarrow 0, a/b \rightarrow \infty$ に相当)が遠方で, τ_{yz}^{∞} が作用したときの応力場を厳密に表現する体積力密度やき裂開口変位を考慮して,式(3)を用いる⁽¹²⁾.

式(3)でバイマテリアル定数 $\epsilon \ge \kappa$ は次式で定義 される.

 $\varepsilon = \frac{1}{2\pi} \ln \left(\frac{\mu_2 \kappa_1 + \mu_1}{\mu_1 \kappa_2 + \mu_2} \right)$

ここで重み関数, $F_{s}(\xi, \eta)$, $F_{s}(\xi, \eta)$, $F_{z}(\xi, \eta)$ は連 続性を考慮した多項式を用いる。具体的には ξ, η に ついて m, n 次までの以下のような表現を用いる。

$$F_{x}(\xi, \eta) = a_{0} + a_{1}\eta + \dots + a_{n-1}\eta^{(n-1)} + a_{n}\eta^{n} + a_{n+1}\xi + a_{n+2}\xi\eta + \dots + a_{2n}\xi\eta^{n} + \dots + a_{2n}\xi\eta^{n} + \dots + a_{n-1}\xi^{m}\eta^{n} = \sum_{i=0}^{l-1} a_{i}G_{i}(\xi, \eta)$$

$$F_{y}(\xi, \eta) = \beta_{0} + \beta_{1}\eta + \dots + \beta_{n-1}\eta^{(n-1)} + \beta_{n}\eta^{n} + \beta_{n+1}\xi + \beta_{n+2}\xi\eta + \dots + \beta_{2n}\xi\eta^{n} + \dots + \beta_{l-n-1}\xi^{m} + \beta_{l-n}\xi^{m}\eta^{n} = \sum_{i=0}^{l-1} \beta_{i}G_{i}(\xi, \eta)$$

$$F_{z}(\xi, \eta) = \gamma_{0} + \gamma_{1}\eta + \dots + \gamma_{n-1}\eta^{(n-1)} + \gamma_{n}\eta^{n} + \gamma_{n+1}\xi + \gamma_{n+2}\xi\eta + \dots + \gamma_{2n}\delta\eta^{n} + \dots + \gamma_{l-n-1}\xi^{m} + \gamma_{l-n}\xi^{m}\eta + \dots + \gamma_{l-1}\xi^{m}\eta^{n} = \sum_{i=0}^{l-1} \gamma_{i}G_{i}(\xi, \eta)$$

l = (n+1)(m+1)

 $G_0(\xi, \eta) = 1, \quad G_1(\xi, \eta) = \eta, \quad \dots, \quad G_{n+1}(\xi, \eta) = \xi, \quad \dots, \quad G_{l-1}(\xi, \eta) = \xi^m \eta^n$

式(4)より式(5)が得られ,結局問題は式(4)で示される多項式 $F_x(\xi, \eta)$, $F_y(\xi, \eta)$, $F_z(\xi, \eta)$ の 3l 個の係数 a_i , β_i , γ_i を未知数とする連立一次方程式を解くことに帰する。これらの未知数は, 界面き裂となる仮想境界上で残留 する応力が最小となるように最小二乗法によって決定する。

$$\sum_{i=0}^{l-1} \alpha_i (f_{x_1}^1 + f_{x_1}^2) + \sum_{i=0}^{l-1} \beta_i f_{y_1} + \sum_{i=0}^{l-1} \gamma_i f_{z_1} = -p_x(x, y), \quad x, y \in S$$

$$\sum_{i=0}^{l-1} \alpha_i f_{x_2} + \sum_{i=0}^{l-1} \beta_i (f_{y_2}^1 + f_{y_2}^2) + \sum_{i=0}^{l-1} \gamma_i f_{z_2} = -p_y(x, y), \quad x, y \in S$$

$$\sum_{i=0}^{l-1} \alpha_i f_{x_3} + \sum_{i=0}^{l-1} \beta_i f_{y_3} + \sum_{i=0}^{l-1} \gamma_i f_{z_3} = -p_z(x, y), \quad x, y \in S$$

3. 解析結果および考察

3・1 無次元化応力拡大係数の定義 2章までの理論に基づいて,計算プログラムを作成し,多項式の次数のパラメータ m, n を変化させてき裂の形状比 a/b=1, 2, 4, 8 について数値計算を行った.本解析結果から,き裂前縁の滑らかな応力拡大係数の分布が得られる.以下では次式で定義される無次元化応力拡大係数 F_1 , F_{11} を用いて,結果を示す.これは,長さ 2b の二次元界面き裂の応力拡大係数 $K_1+iK_{11}=(\sigma_z^{\circ}+i\tau_{yz}^{\circ})(1+2i\epsilon)\sqrt{\pi b}$ と比較することに相当する.

$$F_{1} + iF_{11} = \frac{K_{1}(x, y)|_{x=x,y=\pm b} + iK_{11}(x, y)|_{x=x,y=\pm b}}{\tau_{yx}^{\infty}\sqrt{\pi b}} = \sqrt{a^{2} - x^{2}} \times \left\{-2\varepsilon\cos\left[\varepsilon\ln\left(\frac{a-x}{a+x}\right)\right]F_{z}(x, y)|_{x=x,y=\pm b}\right] \times iF_{y}(x, y)|_{x=x,y=\pm b}$$

$$(6 \cdot a)$$

$$F_{111} = \frac{K_{11}(x, y)|_{x=x,y=\pm b}}{\tau_{yz}^{\infty}\sqrt{\pi b}} = \sum_{l=1}^{2} \frac{1+\kappa_{l}}{4\mu_{l}} \frac{1}{\cosh \pi \varepsilon} \frac{1}{(1/\mu_{1}+1/\mu_{2})} \sqrt{a^{2} - x^{2}} \sin\left[\varepsilon\ln\left(\frac{a-x}{a+x}\right)\right]F_{x}|_{x=x,y=\pm b}$$

$$(6 \cdot b)$$

3・2 境界条件の満たし方と解の収束性 形状比 $a/b=1, \mu_2/\mu_1=2, ポアソン比 \nu_1=\nu_2=0.3 のき裂に$ ついて,近似する式(4)の多項式の次数を変化させたときの辺 <math>y=bの応力拡大係数 F_{11}, F_{1}, F_{11} の収束性 を表1に示す。表1の場合では有効数字3けた程度収 束している。ここで,境界条件を満足させるため,残 留する応力が最小となるように a_i, β_i, γ_i を最小二乗 法によって決定した。その際,き裂となるべき境界上 に想定した10×10のメッシュの交点での応力が最小 となるようにした。境界条件の満足度を図2に示す。 図2に示すように境界条件 $\sigma_z/\tau_{yz}^{oo}=0, \tau_{yz}/\tau_{yz}^{oo}+1=0,$ $\tau_{zz}/\tau_{yz}^{oo}=0$ は, n=8 で5.2×10⁻⁵以下で満足される。

3・3 二次元界面き裂との比較 き裂の形状比 *a/b*を大きくした場合には二次元界面き裂の解に一致 するはずである.表2に*a/b*=8のとき,多項式の次 数m=n=8として,式(6)で定義される $F_{\rm I}$, $F_{\rm II}$ の値 を示す。表2のような検討によって,a/b=8の結果 は $|x/a| \le 0.5$ の範囲で $a/b \to \infty$ の二次元界面き裂の 厳密解 $F_{\rm I}=2\varepsilon$, $F_{\rm II}=1$ によく一致することがわかった。

3・4 バイマテリアル定数 ε が一定の場合の応力拡 大係数について さきの研究⁽¹²⁾ において、三次元 界面き裂の引張問題では応力拡大係数はバイマテリア ル定数 ε のみに依存することを明らかにした。表3 に ε =0.02 と固定し、ポアソン比と剛性比を変えたと きの結果を示す。表3 に示すようにせん断荷重下では 応力拡大係数は ε のみでは決まらないことがわかる。

3-5 ポアソン比一定のときの剛性比 μ₂/μ₁ の応力 拡大係数への影響 一般の形状比について多項式の 次数 *m*=*n*=8, 選点数 10×10として,以下の結果を 得た.ポアソン比 ν₁=ν₂=0.3と固定して,剛性比

	m, n	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	m=n=6	0.8419	0.8398	0.8336	0.8235	0.8098	0.7924	0.7702	0.7408	0.6981	0.6284	0.4966
F_{II}	m=n=7	0.8419	0.8402	0.8349	0.8257	0.8120	0.7932	0.7688	0.7374	0.6956	0.6327	0.5131
	m=n=8	0.8428	0.8411	0.8359	0.8268	0.8132	0.7945	0.7695	0.7369	0.6936	0.6307	0.5154
	m=n=6	0.0472	0.0471	0.0467	0.0460	0.0449	0.0433	0.0410	0.0380	0.0338	0.0283	0.0202
F_{I}	m=n=7	0.0474	0.0472	0.0468	0.0461	0.0451	0.0436	0.0416	0.0388	0.0349	0.0295	0.0214
	m=n=8	0.0475	0.0473	0.0469	0.0461	0.0451	0.0437	0.0417	0.0391	0.0357	0.0312	0.0245
	m, n	$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	m=n=6	0.6516	0.6500	0.6454	0.6376	0.6264	0.6111	0.5906	0.5624	0.5222	0.4607	0.3547
F _{III}	m=n=7	0.6505	0.6490	0.6443	0.6364	0.6250	0.6098	0.5900	0.5638	0.5274	0.4717	0.3714
	m=n=8	0.6507	0.6490	0.6442	0.6360	0.6243	0.6088	0.5886	0.5626	0.5273	0.4743	0.3780

Table 1 Convergence of dimensionless stress intensity factor at y=b for $\mu_2/\mu_1=2$, a/b=1, $\nu_1=\nu_2=0.3$

Table 2 Dimensionless stress intensity factor F_{II} and F_{I} for a/b=8 at (0, b)

μ_2/μ_1	2			5		10	100		
v_{1}, v_{2}	F_{II}	F_I (2 ε)	F	$F_I (2\varepsilon)$	F	F_I (2 ε)	F	F_{I} (2 ε)	
$v_1 = 0$, $v_2 = 0$	0.9930	0.1042(0.1072)	0.9834	0.2009(0.2206)	0.9742	0.2410(0.3298)	0.9373	0.2743(0.3476)	
$v_1 = 0.0$, $v_2 = 0.5$	0.9768	0.2366(0.2698)	0.9671	0.2640(0.3122)	0.9626	0.2745(0.2766)	0.9576	0.2847(0.3414)	
$v_1 = 0.3$, $v_2 = 0.3$	0.9975	0.0602(0.0608)	0.9952	0.1189(0.1228)	0.9933	0.1448(0.1516)	0.9905	0.1716(0.1832)	

Table 3 Dimensionless stress intensity factor for a/b=1, $\varepsilon=0.02$ at y=b

	$v_1, v_2 (\mu_2 / \mu_1)$	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	$v_1 = 0.3, v_2 = 0.3$	0.8419	0.840	0.835	0.825	0.812	0.793	0.768	0.736	0.692	0.630	0.514
F	$v_1 = 0, v_2 = 0 (1.2870)$	0.7544	0.752	0.747	0.738	0.725	0.704	0.683	0.652	0.611	0.550	0.441
	$v_1 = 0, v_2 = 0.5 (0.0718)$	0.8982	0.896	0.891	0.883	0.870	0.851	0.827	0.795	0.754	0.695	0.582
	$v_1 = 0.3, v_2 = 0.3$	0.0313	0.031	0.030	0.030	0.029	0.028	0.027	0.025	0.023	0.020	0.016
F_I	$v_1 = 0, v_2 = 0 \ (1.2870)$	0.0278	0.027	0.027	0.027	0.026	0.025	0.024	0.022	0.020	0.017	0.012
	$v_1 = 0, v_2 = 0.5 (0.0718)$	0.0337	0.033	0.033	0.032	0.032	0.031	0.029	0.028	0.026	0.024	0.023
	$v_1, v_2 (\mu_2 / \mu_1)$	$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	$v_1 = 0.3, v_2 = 0.3 (1.5628)$	0.6529	0.651	0.646	0.638	0.626	0.610	0.590	0.564	0.529	0.475	0.379
F _{III}	$v_1 = 0, v_2 = 0 (1.2870)$	0.7518	0.750	0.744	0.735	0.722	0.705	0.681	0.650	0.609	0.549	0.441
	$v_1 = 0, v_2 = 0.5 (0.0718)$	0.5741	0.572	0.568	0.560	0.550	0.537	0.520	0.498	0.469	0.424	0.339

 μ_2/μ_1 を変化させた場合の無次元化応力拡大係数 F_{II} , F_{III} , F_I を表 4~7,および図 3 に示す. これらの図表 に示すように, F_{II} , F_{III} の値は,剛性比 μ_2/μ_1 の変化に あまり依存しないことがわかる. 一方, F_I は, x=aでは正, x=-aでは負であるが, F_1 の値は剛性比に よって大きく変化する.図4 に $\mu_2/\mu_1=2$, $\nu_1=\nu_2=0.3$ を固定して,形状比 a/b を変化させた場合の応力分布 を示す.a/bが大きくなるにつれて二次元界面き裂の 解 $F_{II}=1$, $F_{I}=2\epsilon$ に近づくことがわかる.

3・6 剛性比一定のときのポアソン比の応力拡大係 数への影響 形状比 *a*/*b*=1, 剛性比 μ₂/μ₁=2 のと き, ポアソン比を変化させた場合の無次元化応力拡大

771

係数 F_{III} , F_{II} を表8に示す.表8に示すように, これらの値はポアソン比の変化にいずれも依存して変 化することがわかる. F_{III} の最小値と F_{III} の最大値は, $\nu_1 = \nu_2 = 0$ のとき現れる. $\nu_1 \rightarrow 0.5$, $\nu_2 \rightarrow 0.5$ のとき, F_{11} は最大値となり、 F_{111} は最小値となる。 F_1 の値に 関しては、 ϵ が増加するとともに単調に増加する傾向 が認められる。図5は、 $\mu_2/\mu_1=2$ のときの応力拡大係 数の分布の例を示す。 F_{11} と F_{111} はポアソン比の組合

Table 4 Dimensionless stress intensity factor at y=b for a/b=1, $\nu_1=\nu_2=0.3$

	μ_2/μ_1	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.8428	0.8411	0.8359	0.8268	0.8132	0.7945	0.7695	0.7369	0.6939	0.6307	0.5154
F_{II}	5	0.8474	0.8457	0.8405	0.8214	0.8178	0.7990	0.7739	0.7411	0.6976	0.6345	0.5185
	10	0.8502	0.8486	0.8433	0.8342	0.8206	0.8018	0.7766	0.7438	0.7003	0.6371	0.5207
	100	0.8536	0.8519	0.8467	0.8376	0.8240	0.8051	0.7800	0.7472	0.7037	0.6404	0.5236
	2	0.0475	0.0473	0.0469	0.0461	0.0451	0.0437	0.0417	0.0391	0.0357	0.0312	0.0245
F_I	5	0.0947	0.0944	0.0936	0.0921	0.0901	0.0873	0.0835	0.0785	0.0718	0.0631	0.0500
	10	0.1161	0.1157	0.1147	0.1129	0.1105	0.1071	0.1026	0.0965	0.0885	0.0781	0.0623
	100	0.1388	0.1384	0.1372	0.1351	0.1323	0.1284	0.1231	0.1160	0.1067	0.0945	0.0760
		$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.6507	0.6490	0.6442	0.6360	0.6243	0.6088	0.5886	0.5626	0.5273	0.4743	0.3780
F_{III}	5	0.6388	0.6372	0.6324	0.6243	0.6129	0.5977	0.5781	0.5527	0.5181	0.4656	0.3696
	10	0.6307	0.6291	0.6243	0.6163	0.6050	0.5901	0.5708	0.5459	0.5118	0.4597	0.3638
	100	0.6200	0.6184	0.6137	0.6058	0.5947	0.5801	0.5613	0.5370	0.5035	0.4519	0.3563

	μ_2/μ_1	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.9557	0.9546	0.9511	0.9448	0.9351	0.9209	0.9004	0.8714	0.8287	0.7600	0.6234
F_{II}	5	0.9569	0.9558	0.9525	0.9463	0.9368	0.9228	0.9027	0.8739	0.8315	0.7630	0.6265
	10	0.9574	0.9563	0.9530	0.9470	0.9377	0.9238	0.9039	0.8753	0.8331	0.7648	0.6285
	100	0.9576	0.9566	0.9533	0.9474	0.9383	0.9247	0.9051	0.8768	0.8350	0.7670	0.6310
	2	0.0570	0.0569	0.0566	0.0560	0.0552	0.0541	0.0524	0.0499	0.0464	0.0409	0.0314
F_I	5	0.1130	0.1128	0.1122	0.1113	0.1097	0.1075	0.1043	0.0996	0.0928	0.0822	0.0635
	10	0.1379	0.1376	0.1370	0.1359	0.1341	0.1314	0.1276	0.1221	0.1140	0.1012	0.0786
	100	0.1640	0.1638	0.1630	0.1617	0.1597	0.1567	0.1523	0.1460	0.1367	0.1219	0.0951
		$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.4707	0.4697	0.4668	0.4617	0.4542	0.4435	0.4286	0.4072	0.3759	0.3278	0.2473
F_{III}	5	0.4604	0.4595	0.4567	0.4518	0.4446	0.4344	0.4199	0.3990	0.3682	0.3207	0.2412
	10	0.4535	0.4526	0.4499	0.4452	0.4382	0.4282	0.4140	0.3935	0.3631	0.3160	0.2370
	100	0.4444	0.4436	0.4410	0.4365	0.4297	0.4201	0.4063	0.3863	0.3564	0.3099	0.2316

Table 5 Dimensionless stress intensity factor at y=b for a/b=2, $\nu_1=\nu_2=0.3$

Table 6 Dimensionless stress intensity factor at y=b for a/b=4, $\nu_1=\nu_2=0.3$

	μ_2/μ_1	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.9857	0.9855	0.9848	0.9834	0.9810	0.9766	0.9689	0.9556	09308	0.8788	0.7455
F_{II}	5	0.9879	0.9877	0.9869	0.9854	0.9827	0.9780	0.9700	0.9560	0.9306	0.8008	0.7440
	10	0.9893	0.9890	0.9882	0.9866	0.9837	0.9788	0.9705	0.9561	0.9301	0.9768	0.7426
	100	0.9908	0.9905	0.9896	0.9878	0.9848	0.9795	0.9707	0.9557	0.9289	0.8748	0.7403
	2	0.0598	0.0597	0.0596	0.0595	0.0593	0.0589	0.0582	0.0569	0.0545	0.0503	0.0414
F_I	5	0.1182	0.1182	0.1180	0.1178	0.1174	0.1168	0.1155	0.1131	0.1088	0.1007	0.0832
	10	0.1440	0.1439	0.1437	0.1435	0.1431	0.1424	0.1410	0.1383	0.1332	0.1236	0.1026
	100	0.1708	0.1707	0.1706	0.1703	0.1700	0.1693	0.1678	0.1649	0.1593	0.1483	0.1237
		$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.3402	0.3391	0.3360	0.3305	0.3224	0.3111	0.2959	0.2756	0.2485	0.2110	0.1550
F_{m}	5	0.3328	0.3318	0.3287	0.3233	0.3152	0.3040	0.2890	0.2690	0.2423	0.2056	0.1506
	10	0.3279	0.3269	0.3238	0.3184	0.3104	0.2993	0.2844	0.2646	0.2381	0.2018	0.1476
	100	0.3215	0.3205	0.3174	0.3121	0.3042	0.2932	0.2784	0.2588	0.2327	0.1970	0.1436

せん断荷重下における異種接合半無限体中の界面き裂の応力拡大係数の解析

	μ_2/μ_1	x/a = 0	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.9975	0.9975	0.9973	0.9970	0.9965	0.9954	0.9933	0.9895	0.9809	0.9533	0.8453
F_{II}	5	0.9952	0.9951	0.9950	0.9947	0.9943	0.9933	0.9915	0.9880	0.9800	0.9535	0.8470
	10	0.9933	0.9933	0.9931	0.9929	0.9925	0.9916	0.9899	0.9867	0.9790	0.9533	0.8479
	100	0.9905	0.9904	0.9903	0.9901	0.9897	0.9890	0.9874	0.9845	0.9774	0.9527	0.8487
	2	0.0602	0.0602	0.0602	0.0602	0.0602	0.0601	0.0599	0.0597	0.0591	0.0569	0.0492
F_{I}	5	0.1190	0.1190	0.1190	0.1190	0.1190	0.1189	0.1187	0.1184	0.1175	0.1136	0.0988
	10	0.1448	0.1448	0.1448	0.1448	0.1448	0.1448	0.1448	0.1445	0.1436	0.1392	0.1217
	100	0.1716	0.1716	0.1717	0.1719	0.1719	0.1720	0.1720	0.1720	0.1712	0.1666	0.1465
		$y/b \rightarrow 0$	1/11	2/11	3/11	4/11	5/11	6/11	7/11	8/11	9/11	10/11
	2	0.2248	0.2239	0.2212	0.2165	0.2099	0.2009	0.1893	0.1745	0.1556	0.1307	0.0949
F_{III}	5	0.2185	0.2177	0.2150	0.2105	0.2039	0.1952	0.1839	0.1695	0.1511	0.1269	0.0921
	10	0.2143	0.2135	0.2108	0.2064	0.1999	0.1913	0.1802	0.1661	0.1481	0.1243	0.0901
	100	0.2090	0.2081	0.2055	0.2011	0.1948	0.1864	0.1755	0.1617	0.1441	0.1210	0.0876

Table 7 Dimensionless stress intensity factor at y=b for a/b=8, $\nu_1=\nu_2=0.3$

Fig. 3 Variations of dimensionless stress intensity factor for a/b=1, $\nu_1=\nu_2=0.3$

Fig. 4 Variations of dimensionless stress intensity factor for $\mu_2/\mu_1=2$, $\nu_1=\nu_2=0.3$, $2\varepsilon=0.060.8$

Fig. 5 Variations of dimensionless stress intensity factor for a/b=1, $\mu_2/\mu_1=2$

Table 8	Dimensionless stress intensity factor at $(0, b)$
	for $a/b=1, \ \mu_2/\mu_1=2$

ν_1	ν_2	ε	F _n	F _{III}	F_{I}
0	0	0.0536	0.7603	0.7421	0.0740
0	0.1	0.0668	0.7725	0.7268	0.0930
0	0.2	0.0813	0.7855	0.7088	0.1138
0	0.3	0.0972	0.7992	0.6876	0.1365
0	0.4	0.1149	0.8134	0.6625	0.1614
0	0.5	0.1349	0.8276	0.6325	0.1887
0.1	0.1	0.0475	0.7858	0.7160	0.0682
0.1	0.2	0.0620	0.7983	0.6992	0.0896
0.1	0.3	0.0779	0.8117	0.6792	0.1133
0.1	0.4	0.0956	0.8258	0.6555	0.1392
0.1	0.5	0.1155	0.8401	0.6268	01679
0.2	0.2	0.0400	0.8132	0.6858	0.0598
0.2	0.3	0.0559	0.8260	0.6675	0.0843
0.2	0.4	0.0736	0.8397	0.6454	0.1114
0.2	0.5	0.0935	0.8540	0.6185	0.1416
0.3	0.3	0.0304	0.8428	0.6507	0.0475
0.3	0.4	0.0481	0.8557	0.6308	0.0757
0.3	0.5	0.0680	0.8696	0.6062	0.1075
0.4	0.4	0.0177	0.8749	0.6087	0.0389
0.4	0.5	0.0376	0.8878	0.5873	0.0621
0.4999	0.4999	_→0	0.9098	0.5570	7x10 ⁻⁶

せでその値が支配されるのに対して F_1 は ϵ によって 支配されている.

4. 結 言

本研究では、せん断荷重下における長方形界面き裂の問題(図1)を、体積力法の特異積分方程式で表現し、 未知関数を基本密度関数と多項式の積で近似する方法 を用いて考察した。

(1) 未知関数である体積力密度を基本密度関数と 多項式の積で近似する方法を適用した結果,良好な収 束性(表 1)と境界条件の満足度(図 2)が得られた.ま た,本解析結果は a/b=8 で二次元界面き裂の厳密解 とよく一致する.

(2) $F_{\rm H}$, $F_{\rm H}$ は剛性比に不敏感であり, 狭い範囲 に整理されることがわかる。こられの値は主としてき 裂形状とポアソン比のみによって決まることが, 数値 解析によって明らかとなった [表 4~7, 図 3, 4, 5(a), (b)].

(3) 剛性比が一定のとき, F_1 の値は ε の増加と ともに増加する. 一方, $F_{II} \ge F_{III}$ は ε ではなくポア ソン比の組合せによって大小が決まり, $\nu_1 \rightarrow 0.5$, $\nu_2 \rightarrow 0.5$ のとき, F_{II} は最大値となり, F_{III} は最小値と なる [表 8, 図 5(c)].

文 献

- (1) Mossakovski, V. I. and Rybka, M. T., Generalization of the Griffith-Sneddon Criterion for the Case of a Non-homogeneous Body, *Prikladnaia matematica I mekhanika*, Vol. 28 (1964), pp. 1061-1069.
- (2) England, F., Stress Distribution in Bonded Dissimilar Materials Containing Circular or Ring-Shaped Cavities, *Transaction of the ASME, Journal of Applied Mechanics, Series E*, Vol. 32 (1965), pp. 829-836.
- (3) Kassir, M. K. and Bregman, A. M., The Stress Intensity Factor for a Penny-Shaped Crack between Two Dissimilar Materials, *Transaction of the ASME, Journal of Applied Mechanics, Series E*, Vol. 39 (1972), pp. 308-310.
- (4) Lowengrub, M. and Sneddon, I. N., The Effect of Internal Pressure on a Penny-Shaped Crack at the Interface of Two Bonded Dissimilar Elastic Half-Spaces, *International Journal of Engineering Science*, Vol. 12 (1974), pp. 387-396.
- (5) Keer, L. M. et al., The Interface Penny-Shaped Crack Reconsidered, International Journal of Engineering Science, Vol. 16 (1978), pp. 765-772.
- (6) Shibuya, T. et al., Stress Analysis of the Vicinity of an Elliptical Crack at the Interface of Two Bonded Half-Spaces, *JSME International Journal, Series A*, Vol. 32 (1989), pp. 485-491.
- (7) Yuuki, R. and Cao, X. F., Boundary Element Analysis to Stress Intensity Factor of Interface Crack, *Transaction of the Japan Society of Mechanical Engineering*, *Series A*, Vol. 55, No. 510 (1989), pp. 340-347.
- (8) Takakuda, K. et al., Stress Analysis for biomaterial with an Interface Crack, In: Preliminary Proceeding 55th Annual Meeting of Japan Society of Mechanical Engineering (in Japanese), No. 780-3 (1978-4), pp. 167-169.
- (9) Noda, N. A. et al., Analysis of Stress Intensity Factors of a Ring-Shaped Interface Crack, *International Journal of Solids and Structures*, Vol. 40, No. 24 (2003), pp. 6577-6592.
- (10) Qing W. and Noda, N. A., Variation of Stress Intensity Factors along the Front of 3D Rectangular Crack by Using a Singular Integral Equation Method, *International Journal of Fracture*, Vol. 108 (2001), pp. 119– 131.
- (11) Qin T. Y. and Noda, N. A., Stress Intensity Factors of Rectangular Crack Meeting a Bimateral Interface, *International Journal of Solids and Structures*, Vol. 40 (2003), pp. 2473-2486.
- (12) Noda, N. A. et al., Stress Intensity Factor for a Planar Interfacial Crack in Three Dimensional Bimaterials, *Transaction of the Japan Society of Mechanical Engineering, Series A*, Vol. 73, No. 727 (2007), pp. 379-386.
- (13) Noda, N. A. et al., Stress Intensity Factor for a Rectangular Interface Crack in Three Dimensional Bimaterials, *Transaction of the Japan Society of Mechanical Engineering, Series A*, Vol. 73, No. 728 (2007), pp. 468-474.
- (14) Chen M. C. et al., Application of Finite-part Integrals to Planar Interfacial Fracture Problems in Three Dimensional Bimaterials, *Journal of Applied Mechanics*, Vol. 66 (1999), pp. 885-890.

774