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Abstract 
In this paper, a mixed-mode interfacial crack in three dimensional bimaterials is 
analyzed by singular integral equations on the basis of the body force method. In 
the numerical analysis, unknown body force densities are approximated by the 
products of the fundamental density functions and power series, where the 
fundamental density functions are chosen to express a two-dimensional interface 
crack exactly. The results show that the present method yields smooth variations 
of mixed mode stress intensity factor along the crack front accurately. The effect 
of crack shape on the stress intensity factor for 3D interface cracks is also 
discussed on the basis of present solution. Then, it is found that the stress 
intensity factors KII and KIII are always insensitive to the varying ratio of shear 
modulus, and determined by Poisson's ratio alone. Distributions of stress 
intensity factor are indicated in tables and figures with varying the rectangular 
shape and Poisson's ratio. 
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1. Introduction 

Recently, adhesive joints and composite materials are widely used for lightweight and 
functional structures; and therefore, to evaluate their strength has become an important issue 
especially from the viewpoint of interfacial destruction, which controls the failure of those 
structures. For interfacial crack problem, exact analyses are difficult because of the peculiar 
behavior of oscillation stress singularity at the interface crack tip. Regarding 
three-dimensional problems, penny-shaped crack [1]-[5] and elliptical interfacial crack[6] 
were treated with the problem in a finite body [7]; however, most numerical calculations 
were preformed only under specific combination of materials combinations. Closed form 
solutions of stress intensity factors (SIFs) are available only for a penny-shaped [7] and 
external deep interfacial crack [8]  under arbitrary combinations of materials. 

In our previous papers [9], an axi-symmetric ring-shaped interfacial crack under tension and 
torsion in dissimilar materialwere analyzed on the idea of the body force method coupled 
with singular integral equation formulation. In the numerical solutions, the unknown 
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functions were approximated by the products of the fundamental density functions and 
polynomials [9] - [11].  

In the preceding papers [12], [13], a rectangular crack under tension was analyzed and 
smooth distributions of SIFs were obtained. Although the problem of an interface crack in a 
dissimilar material is expressed as a system of singular integral equations by 
Chen-Noda-Tang [14], it is difficult to solve the equations precisely considering the overlap 
of crack opening displacement and stress oscillation singularity, which are peculiar to 
interfacial cracks.  

In this paper, accurate numerical solutions are discussed for interface crack under shear 
loading considering singular behavior exactly; then, the stress intensity factors of a 
rectangular interfacial crack are discussed. The unknown body force densities will be 
approximated by using the fundamental density functions, which express singular stress 
fields exactly. It should be noted that the present method has a specific advantage that the 
stress intensity factors are directly determined from the solutions of unknown densities.  

 
2. Singular intergro-differential equations for 3D biomaterial interfacial crack 
problems 

Consider two dissimilar elastic half-spaces bonded together along the x y−  plane under 
shear loading 1yzτ ∞ = ( 0, 0z zxσ τ∞ ∞= = ) at infinity as shown in Fig.1, which include a 
rectangular crack on the interfacial whose length and width are 2a and 2b respectively. The 
notations 1 2,µ µ denote shear modulus, and 1 2,ν ν  Poisson ratios for upper and lower spaces. 
The hypersingular intergro-differential equations (1a)-(1e) for this interfacial crack problem, 
which were derived by Chen-Noda-Tang [14], are expressed in the following equations. 
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Here, ( , )iu x y∆  means the crack opening displacement on the interface in the i  
direction, and the integral    should be interpreted in a sense of finite part integral. 

  
3. Numerical solutions 

In the numerical solutions of the conventional body force method, the unknown body force densities 
are approximated by using step functions. Since unknown densities are continuous functions, the final 
results are obtained by extrapolation; and therefore, smooth distributions of stress intensity factors are 
difficult to be obtained. In this paper following expressions are applied to approximate the 
unknowns as continuous functions. 

( ), ( , ) ( , ), , ,i i iu w F i x y zξ η ξ η ξ η∆ = =                                    (2) 
 

 

 

 

 

Here ( , ), ( , ), ( , )x y zw w wξ η ξ η ξ η  are called fundamental density functions, which express 
singular behavior along the crack front exactly when the rectangular interface crack is 
subjected to shear yzτ ∞ . In real calculations we may put 1yzτ ∞ = . The bimaterial constant ε is 
defined as follows. 
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Weight functions ( , ), ( , ), ( , )x y zF F Fξ η ξ η ξ η  are approximated by polynomials as continuous 
functions.  

 

 

 

 

 

 

 
 

Using the approximation method mentioned above, we obtain the following system of linear 
equations for the determination of the coefficients , ,i i iα β γ ． The unknown 
coefficients , ,i i iα β γ , whose number is 3l, are then determined from (5) by selecting a set of 
collocation points to minimize the residual stresses. 

4. Numerical results and discussions  

4.1 Definition of dimensionless stress intensity factors 

On the basis of the theory described in section 3 computer programs are coded, and 
calculations are performed when the aspect ratio is a/b=1, 2, 4, 8, under Poisson ratio 

1 2 0.3ν ν ==  with varying polynomial exponents ,m n . As a result, smooth distributions of 
stress intensity factor along the crack front are obtained. In demonstrating the numerical 
results of stress intensity factors (SIFs) , ,I II IIIK K K , the following dimensionless 
factors , ,I II IIIF F F will be used. Here, , ,I II IIIF F F are expressed on the basis of the SIF 
( z bσ π∞ ) of 2D crack whose length is 2b.  

 

4.2 Compliance of boundary condition and convergence of numerical solutions 

Table 1 shows the convergence of the results for , ,
II III I

F F F  at  y b=  when
21 / 2µ µ = , 

a/b=1, 1 2 0.3ν ν= = with varying polynomial exponents in Eq. (4). The boundary conditions 
are considered at the collocation point on the mesh 10 10×  chosen the crack boundary. To 

( 1)

0 1 1 1 2 2

1

1 1
0

( 1)

0 1 1 1 2 2

1 1

( , )

( , )

( , )

n n n

x n n n n n

l
m m m n

l n l n l i i
i

n n n

y n n n n n

m m m

l n l n l

F

G

F

ξ η α α η α η α η α ξ α ξη α ξη

α ξ α ξ η α ξ η α ξ η

ξ η β β η β η β η β ξ β ξη β ξη

β ξ β ξ η β ξ η

−

− + +

−

− − − −
=

−

− + +

− − − −

= + + ⋅ ⋅ ⋅ + + + + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

+ + + ⋅ ⋅ ⋅ + =

= + + ⋅ ⋅ ⋅ + + + + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

+ + + ⋅ ⋅ ⋅ +

∑

1

0

( 1)

0 1 1 1 2 2

1

1 1
0

(4)
( , )

( , )

( , )

l
n

i i
i

n n n

z n n n n n

l
m m m n

l n l n l i i
i

G

F

G

β ξ η

ξ η γ γ η γ η γ η γ ξ γ ξη γ ξη

γ ξ γ ξ η γ ξ η γ ξ η

−

=

−

− + +

−

− − − −

=

=

= + + ⋅ ⋅ ⋅ + + + + + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

+ + + ⋅ ⋅ ⋅ + =















∑

∑

( )( ) ( ) ( ) ( ) ( )
0 1 1 1

1 1 , , 1, , , , , , , , .
m n

n l
l n m G G G Gξ η ξ η η ξ η ξ ξ η ξ η

+ −
= + + = = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =

1 1 1
1 2
1 1 1 1

0 0 0

1 1 1
1 2

2 2 2 2
0 0 0

1 1 1

3 3 3
0 0 0

( )

( ) (5)

l l l

i x x i y i z
i i i

l l l

i x i y y i z
i i i

l l l

i x i y i z
i i i

x

y

z

f f f f p

f f f f p

f f f p

α β γ

α β γ

α β γ

− − −

= = =

− − −

= = =

− − −

= = =

+ + + = −

+ + + = −

+ + = −











∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

, , 2 2
, ,

2
, 2 2

,
1 1 2

( , ) ( , )
(cos ln( ) ( , ) 2 ( , ) )

( , ) 1 1 sin ln( )
4 cosh (1/ 1/ )

I x x y b II x x y b

I II z x x y b y x x y b
yz

III x x y b l
III x x x

l lyz

K x y iK x y a xF iF a x F x y i F x y
a xb

K x y a xF a x F
G G a xb

ε ε
τ π

κ ε
µ πετ π

= =± = =±

= =± = =±∞

= =±
=∞

=

+ − + = = − ×  + 

+ − = = × −  + + 
∑ y b=± （6）



 

 

Journal of  Computational 
Science and Technology  

Vol. 3, No. 1, 2009

236 

minimize the residual stresses the coefficients , ,i i iα β γ  in Eq. (5) are determined. From 
Table 3 it is seen that the results may be accurate until the 3-digit. Compliance of boundary 
conditions is shown in Fig.2 where the residual stresses, which should be zero along the 
crack surface, are less than 55.2 10−×  when 8n = . 
 

Table 1 Convergence of stress intensity factor at y b=  for 2 1/ 2µ µ = , a/b=1, 1 2 0.3ν ν ==  

 x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

 m=n=6 0.8419 0.8398 0.8336 0.8235 0.8098 0.7924 0.7702 0.7408 0.6981 0.6284 0.4966

IIF  m=n=7 0.8419 0.8402 0.8349 0.8257 0.8120 0.7932 0.7688 0.7374 0.6956 0.6327 0.5131

 m=n=8 0.8428 0.8411 0.8359 0.8268 0.8132 0.7945 0.7695 0.7369 0.6936 0.6307 0.5154

 m=n=6 0.0472 0.0471 0.0467 0.0460 0.0449 0.0433 0.0410 0.0380 0.0338 0.0283 0.0202

IF  m=n=7 0.0474 0.0472 0.0468 0.0461 0.0451 0.0436 0.0416 0.0388 0.0349 0.0295 0.0214

 m=n=8 0.0475 0.0473 0.0469 0.0461 0.0451 0.0437 0.0417 0.0391 0.0357 0.0312 0.0245

 /y b  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

 m=n=6 0.6516 0.6500 0.6454 0.6376 0.6264 0.6111 0.5906 0.5624 0.5222 0.4607 0.3547

IIIF  m=n=7 0.6505 0.6490 0.6443 0.6364 0.6250 0.6098 0.5900 0.5638 0.5274 0.4717 0.3714

 m=n=8 0.6507 0.6490 0.6442 0.6360 0.6243 0.6088 0.5886 0.5626 0.5273 0.4743 0.3780
 
 

Table 2 Dimensionless stress intensity factor IIF and IF  for / 8a b =  at (0, )b  

2 1/µ µ  2 5 10 100 

1 2,v v  IIF  IF  () IIF  IF  IIF  IF  () IIF  IF  () 

0,0 0.9930 0.1042(0.1072) 0.9834 0.2009(0.2206) 0.9742 0.2410(0.3298) 0.9373 0.2743(0.3476)
0,0.5 0.9768 0.2366(0.2698) 0.9671 0.2640(0.3122) 0.9626 0.2745(0.2766) 0.9576 0.2847(0.3414)

0.3,0.3 0.9975 0.0602(0.0608) 0.9952 0.1189(0.1228) 0.9933 0.1448(0.1516) 0.9905 0.1716(0.1832)
 
 

Table 3 Dimensionless stress intensity factor for a/b=1, ε =0.02 at y b=  
 

1 2 2 1, ( / )ν ν µ µ x/a=0 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

 0.3, 0.3 0.8419 0.8402 0.8350 0.8258 0.8123 0.7936 0.7687 0.7361 0.6928 0.6300 0.5149

IIF  0,0(1.2870) 0.7544 0.7527 0.7475 0.7385 0.7253 0.7047 0.6837 0.6527 0.6112 0.5502 0.4412

 0,0.5(0.0718) 0.8982 0.8967 0.8917 0.8831 0.8700 0.8518 0.8275 0.7958 0.7548 0.6959 0.5825

 0.3, 0.3 0.0313 0.0312 0.0309 0.0304 0.0297 0.0287 0.0275 0.0257 0.0235 0.0205 0.0161

IF  0,0(1.2870) 0.0278 0.0278 0.0275 0.0270 0.0263 0.0254 0.0241 0.0225 0.0203 0.0171 0.0121

 0,0.5(0.0718) 0.0337 0.0335 0.0332 0.0326 0.0320 0.0312 0.0299 0.0282 0.0262 0.0246 0.0235

 1 2 2 1, ( / )ν ν µ µ y/b→0 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

 0.3, 0.3(1.5628) 0.6529 0.6513 0.6464 0.6382 0.6265 0.6108 0.5906 0.5645 0.5291 0.4759 0.3796

IIIF  0,0(1.2870) 0.7518 0.7501 0.7449 0.7359 0.7229 0.7050 0.6814 0.6506 0.6092 0.5490 0.4415

 0,0.5(0.0718) 0.5741 0.5726 0.5682 0.5608 0.5505 0.5371 0.5202 0.4987 0.4694 0.4242 0.3395  
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Fig.2 Compliance of boundary condition when 2 1/ 2µ µ = , a/b=1, 1 2 0.3ν ν= =   
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4.3 Comparison with the two-dimensional interface crack 

When the aspect ratio of the crack a/b is very large and tends to infinity, the results 
should coincide with the two-dimensional solution. Table 2 shows the values of , ,I II IIIF F F  
when 8m n= =  with aspect ratio a/b=8. It is seen that the present results coincide with the 
two-dimensional exact solutions known as 1, 2II IF F ε= =  when /a b → ∞ in the range of 

/ 0.5x a ≤ . 

4.4 The stress intensity factors under the same value of ε  

In the preceding papers [12], [13], it is found that the stress intensity factors are 
controlled by bimaterial constant ε  alone under tensile loading. In Table 3, Poisson’s ratio 
and shear modulus ratio are changed under constant value ofε =0.02. As shown in Table 3, 
it is seen that the stress intensity factors are not controlled by ε  alone under shear loading.   

4.5 Effect of elastic modulus ratio 2 1/µ µ on the stress intensity factors 

For general aspect ratios, the following results are obtained by taking polynomial 
exponents m n= =8 with the collocation points10 10× . The dimensionless stress intensity 
factors IIF , IIIF , IF  are obtained with varying the elastic modulus ratio 2 1/µ µ under 

1 2 0.3ν ν ==  in Tables 4-7 and Fig.3. It is shown that the values of IIF  and IIIF  are 
insensitive to the shear modulus ratios 2 1/µ µ . On the other hand, IF  values, which are 
positive at x a=  and negative at x a= − , are largely depending on 2 1/µ µ . Figure 4 shows 
distributions of stress intensity factors with varying /a b  under 2 1/ 2µ µ = and 1 2 0.3ν ν= = . As 

/a b increases, it is seen that the results coincide with the 2D exact solution 1IIF = , 2IF ε= . 

4.6 Effect of Poisson's ratio on the stress intensity factors  

In Table 8, the dimensionless stress intensity factors IIF , IIIF , IF  are indicated with 
varying Poisson’s ratio under fixed values of 2 1/µ µ =2, a/b=1. It is seen that those values 
are varied depending on Poisson's ratio. When 1 2 0ν ν= = , IIF  takes a minimum value, and 

IIIF  takes a maximum value of IIIF . On the other hand, as 1 20.5, 0.5ν ν→ → , IIF  takes a 
maximum value, and IIIF  takes a minimum value. With increasing the value of ε , IF  
value increases. Figure 5 shows distributions of stress intensity factors when 2 1/ 2µ µ = . 
The value of IIF and IIIF  are mainly controlled by Poisson’s ratios, and the values of IF  is 
mainly controlled by ε .  

Table4 Stress intensity factor at y b=  for a/b=1, 1 2 0.3ν ν= =  

 
2 1/G G  /x a =0 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

2 0.8428 0.8411 0.8359 0.8268 0.8132 0.7945 0.7695 0.7369 0.6939 0.6307 0.5154

5 0.8474 0.8457 0.8405 0.8214 0.8178 0.7990 0.7739 0.7411 0.6976 0.6345 0.5185

10 0.8502 0.8486 0.8433 0.8342 0.8206 0.8018 0.7766 0.7438 0.7003 0.6371 0.5207

IIF  

100 0.8536 0.8519 0.8467 0.8376 0.8240 0.8051 0.7800 0.7472 0.7037 0.6404 0.5236

2 0.6507 0.6490 0.6442 0.6360 0.6243 0.6088 0.5886 0.5626 0.5273 0.4743 0.3780

5 0.6388 0.6372 0.6324 0.6243 0.6129 0.5977 0.5781 0.5527 0.5181 0.4656 0.3696

10 0.6307 0.6291 0.6243 0.6163 0.6050 0.5901 0.5708 0.5459 0.5118 0.4597 0.3638

IIIF  

100 0.6200 0.6184 0.6137 0.6058 0.5947 0.5801 0.5613 0.5370 0.5035 0.4519 0.3563

2 0.0475 0.0473 0.0469 0.0461 0.0451 0.0437 0.0417 0.0391 0.0357 0.0312 0.0245

5 0.0947 0.0944 0.0936 0.0921 0.0901 0.0873 0.0835 0.0785 0.0718 0.0631 0.0500

10 0.1161 0.1157 0.1147 0.1129 0.1105 0.1071 0.1026 0.0965 0.0885 0.0781 0.0623

IF  

100 0.1388 0.1384 0.1372 0.1351 0.1323 0.1284 0.1231 0.1160 0.1067 0.0945 0.0760
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Table5 Stress intensity factor at y b=  for a/b=2 1 2 0.3ν ν= =  

 
2 1/G G  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

2 0.9557 0.9546 0.9511 0.9448 0.9351 0.9209 0.9004 0.8714 0.8287 0.7600 0.6234

5 0.9569 0.9558 0.9525 0.9463 0.9368 0.9228 0.9027 0.8739 0.8315 0.7630 0.6265

10 0.9574 0.9563 0.9530 0.9470 0.9377 0.9238 0.9039 0.8753 0.8331 0.7648 0.6285

IIF  

100 0.9576 0.9566 0.9533 0.9474 0.9383 0.9247 0.9051 0.8768 0.8350 0.7670 0.6310

2 0.4707 0.4697 0.4668 0.4617 0.4542 0.4435 0.4286 0.4072 0.3759 0.3278 0.2473

5 0.4604 0.4595 0.4567 0.4518 0.4446 0.4344 0.4199 0.3990 0.3682 0.3207 0.2412

10 0.4535 0.4526 0.4499 0.4452 0.4382 0.4282 0.4140 0.3935 0.3631 0.3160 0.2370

IIIF  

100 0.4444 0.4436 0.4410 0.4365 0.4297 0.4201 0.4063 0.3863 0.3564 0.3099 0.2316

2 0.0570 0.0569 0.0566 0.0560 0.0552 0.0541 0.0524 0.0499 0.0464 0.0409 0.0314

5 0.1130 0.1128 0.1122 0.1113 0.1097 0.1075 0.1043 0.0996 0.0928 0.0822 0.0635

10 0.1379 0.1376 0.1370 0.1359 0.1341 0.1314 0.1276 0.1221 0.1140 0.1012 0.0786

IF  

100 0.1640 0.1638 0.1630 0.1617 0.1597 0.1567 0.1523 0.1460 0.1367 0.1219 0.0951

Table6 Stress intensity factor at y b=  for a/b=4 1 2 0.3ν ν= =  

 
2 1/G G  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

2 0.9857 0.9855 0.9848 0.9834 0.9810 0.9766 0.9689 0.9556 09308 0.8788 0.7455

5 0.9879 0.9877 0.9869 0.9854 0.9827 0.9780 0.9700 0.9560 0.9306 0.8008 0.7440

10 0.9893 0.9890 0.9882 0.9866 0.9837 0.9788 0.9705 0.9561 0.9301 0.9768 0.7426

IIF  

100 0.9908 0.9905 0.9896 0.9878 0.9848 0.9795 0.9707 0.9557 0.9289 0.8748 0.7403

2 0.3402 0.3391 0.3360 0.3305 0.3224 0.3111 0.2959 0.2756 0.2485 0.2110 0.1550

5 0.3328 0.3318 0.3287 0.3233 0.3152 0.3040 0.2890 0.2690 0.2423 0.2056 0.1506

10 0.3279 0.3269 0.3238 0.3184 0.3104 0.2993 0.2844 0.2646 0.2381 0.2018 0.1476

IIIF  

100 0.3215 0.3205 0.3174 0.3121 0.3042 0.2932 0.2784 0.2588 0.2327 0.1970 0.1436

2 0.0598 0.0597 0.0596 0.0595 0.0593 0.0589 0.0582 0.0569 0.0545 0.0503 0.0414

5 0.1182 0.1182 0.1180 0.1178 0.1174 0.1168 0.1155 0.1131 0.1088 0.1007 0.0832

10 0.1440 0.1439 0.1437 0.1435 0.1431 0.1424 0.1410 0.1383 0.1332 0.1236 0.1026

IF  

100 0.1708 0.1707 0.1706 0.1703 0.1700 0.1693 0.1678 0.1649 0.1593 0.1483 0.1237

Table7 Stress intensity factor at y b=  for a/b=8 1 2 0.3ν ν= =  

 
2 1/G G  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

2 0.9975 0.9975 0.9973 0.9970 0.9965 0.9954 0.9933 0.9895 0.9809 0.9533 0.8453

5 0.9952 0.9951 0.9950 0.9947 0.9943 0.9933 0.9915 0.9880 0.9800 0.9535 0.8470

10 0.9933 0.9933 0.9931 0.9929 0.9925 0.9916 0.9899 0.9867 0.9790 0.9533 0.8479

IIF  

100 0.9905 0.9904 0.9903 0.9901 0.9897 0.9890 0.9874 0.9845 0.9774 0.9527 0.8487

2 0.2248 0.2239 0.2212 0.2165 0.2099 0.2009 0.1893 0.1745 0.1556 0.1307 0.0949

5 0.2185 0.2177 0.2150 0.2105 0.2039 0.1952 0.1839 0.1695 0.1511 0.1269 0.0921

10 0.2143 0.2135 0.2108 0.2064 0.1999 0.1913 0.1802 0.1661 0.1481 0.1243 0.0901

IIIF  

100 0.2090 0.2081 0.2055 0.2011 0.1948 0.1864 0.1755 0.1617 0.1441 0.1210 0.0876

2 0.0602 0.0602 0.0602 0.0602 0.0602 0.0601 0.0599 0.0597 0.0591 0.0569 0.0492

5 0.1190 0.1190 0.1190 0.1190 0.1190 0.1189 0.1187 0.1184 0.1175 0.1136 0.0988

10 0.1448 0.1448 0.1448 0.1448 0.1448 0.1448 0.1448 0.1445 0.1436 0.1392 0.1217

IF  

100 0.1716 0.1716 0.1717 0.1719 0.1719 0.1720 0.1720 0.1720 0.1712 0.1666 0.1465
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Table8 Stress intensity factor at (0, )b for a/b=1, 2 1/ 2µ µ =  

1ν  2ν  
 

ε  IIF  IIIF  IF  

0 0 0.0536 0.7603 0.7421 0.0740 

0 0.1 0.0668 0.7725 0.7268 0.0930 

0 0.2 0.0813 0.7855 0.7088 0.1138 

0 0.3 0.0972 0.7992 0.6876 0.1365 

0 0.4 0.1149 0.8134 0.6625 0.1614 

0 0.5 0.1349 0.8276 0.6325 0.1887 

0.1 0.1 0.0475 0.7858 0.7160 0.0682 

0.1 0.2 0.0620 0.7983 0.6992 0.0896 

0.1 0.3 0.0779 0.8117 0.6792 0.1133 

0.1 0.4 0.0956 0.8258 0.6555 0.1392 

0.1 0.5 0.1155 0.8401 0.6268 01679 

0.2 0.2 0.0400 0.8132 0.6858 0.0598 

0.2 0.3 0.0559 0.8260 0.6675 0.0843 

0.2 0.4 0.0736 0.8397 0.6454 0.1114 

0.2 0.5 0.0935 0.8540 0.6185 0.1416 

0.3 0.3 0.0304 0.8428 0.6507 0.0475 

0.3 0.4 0.0481 0.8557 0.6308 0.0757 

0.3 0.5 0.0680 0.8696 0.6062 0.1075 

0.4 0.4 0.0177 0.8749 0.6087 0.0389 

0.4 0.5 0.0376 0.8878 0.5873 0.0621 

0.4999 0.4999 →0 0.9098 0.5570 7x10-6 

 
 
 
 
 
 
 
 

(a) IIF                     (b) IIIF                     (c) IF  

Fig. 3 Variations of SIF for a/b=1, 1 2 0.3ν ν= =  

    
 
 
 
 
 
 
 

 

Fig. 4 Variations of SIF for 2 1/ 2µ µ = , 1 2 0.3, 2 0.0608ν ν ε= = =  
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(a) IIF                      (b) IIIF                      (c) IF  

Fig. 5 Variations of SIF for a/b=1, 2 1/ 2µ µ =  
 
5. Conclusion 

In the present paper, a planar rectangular interfacial crack in a three-dimensional 
bimaterial under shear loading is considered by means of the singular integral equations 
based on the body force method. The conclusion can be made in the following way.  
(1) The unknown functions are approximated by using the fundamental density functions 

and polynomials.  It is found that the present method shows good convergence of the 
results and boundary conditions are satisfied very accurately (see Table 2 and Fig. 2). 
The results for a/b=8 coincide with the exact solutions of 2D interfacial crack. 

(2) The dimensionless stress intensity factors ,II IIIF F  are insensitive to the elastic 
modulus ratio 2 1/µ µ . Those values are mainly determined from the aspect ratio of the 
crack /a b and Poisson’s ratios of the materials 1 2,ν ν   

(3) Under the constant value of elastic modulus ratio 2 1/µ µ , the IF  value increases with 
increasing the value of ε . On the other hand, the value of IIF and IIIF  are mainly 
controlled by Poisson’s ratios (see Tables 4-7, Figs.3-5)... 
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