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Abstract

In this paper, a mixed-mode interfacial crack in three dimensional bimaterials is
analyzed by singular integral equations on the basis of the body force method. In
the numerical analysis, unknown body force densities are approximated by the
products of the fundamental density functions and power series, where the
fundamental density functions are chosen to express a two-dimensional interface
crack exactly. The results show that the present method yields smooth variations
of mixed mode stress intensity factor along the crack front accurately. The effect
of crack shape on the stress intensity factor for 3D interface cracks is also

discussed on the basis of present solution. Then, it is found that the stress
intensity factors Ky and Ky are always insensitive to the varying ratio of shear
modulus, and determined by Poisson's ratio alone. Distributions of stress
intensity factor are indicated in tables and figures with varying the rectangular
shape and Poisson's ratio.
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1. Introduction

Recently, adhesive joints and composite materials are widely used for lightweight and
functional structures; and therefore, to evaluate their strength has become an important issue
especially from the viewpoint of interfacial destruction, which controls the failure of those
structures. For interfacial crack problem, exact analyses are difficult because of the peculiar
behavior of oscillation stress singularity at the interface crack tip. Regarding
three-dimensional problems, penny-shaped crack [1]-[5] and elliptical interfacial crack[6]
were treated with the problem in a finite body [7]; however, most numerical calculations
were preformed only under specific combination of materials combinations. Closed form
solutions of stress intensity factors (SIFs) are available only for a penny-shaped [7] and
external deep interfacial crack [8] under arbitrary combinations of materials.
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functions were approximated by the products of the fundamental density functions and
polynomials [9] - [11].

In the preceding papers [12], [13], a rectangular crack under tension was analyzed and
smooth distributions of SIFs were obtained. Although the problem of an interface crack in a
dissimilar material is expressed as a system of singular integral equations by
Chen-Noda-Tang[14], it is difficult to solve the equations precisely considering the overlap
of crack opening displacement and stress oscillation singularity, which are peculiar to
interfacial cracks.

In this paper, accurate numerical solutions are discussed for interface crack under shear
loading considering singular behavior exactly; then, the stress intensity factors of a
rectangular interfacial crack are discussed. The unknown body force densities will be
approximated by using the fundamental density functions, which express singular stress
fields exactly. It should be noted that the present method has a specific advantage that the
stress intensity factors are directly determined from the solutions of unknown densities.

2. Singular intergro-differential equations for 3D biomaterial interfacial crack
problems

Consider two dissimilar elastic half-spaces bonded together along the x—y plane under
shear loading 7. =1(0o. =0,z =0) at infinity as shown in Fig.l, which include a
rectangular crack on the interfacial whose length and width are 2a and 2b respectively. The
notations z,, 1, denote shear modulus, and v,,v, Poisson ratios for upper and lower spaces.
The hypersingular intergro-differential equations (1a)-(1e) for this interfacial crack problem,
which were derived by Chen-Noda-Tang [14], are expressed in the following equations.
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Fig.1 Problem configuration
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Here, Au,(x,y) means the crack opening displacement on the interface in the i

direction, and the integral + should be interpreted in a sense of finite part integral.

3. Numerical solutions

In the numerical solutions of the conventional body force method, the unknown body force densities
are approximated by using step functions. Since unknown densities are continuous functions, the final
results are obtained by extrapolation; and therefore, smooth distributions of stress intensity factors are
difficult to be obtained. In this paper following expressions are applied to approximate the
unknowns as continuous functions.

Au,(E,m)=w(EMF (&), i=x,y.2 )
w (&) = Z \/ E B —if xsin .s]n(a_fD

1 4:”1 a+é

b—

W (&)= Z \/ E B -7 xsin gln(—nj) 3)

= 4,”, b+n
w(émn) = Z \/a —& b’ =17’ xcos gln(a_é)jcos(sln(ﬁjj

= 41 cos a+é b+n))

Here w, (&,m),w,(&,m),w,(§,n) are called fundamental density functions, which express
singular behavior along the crack front exactly when the rectangular interface crack is
subjected to shear 7. In real calculations we may putz =1. The bimaterial constant & is
defined as follows.

& =Lln£ﬂ2’q T4 ]
2z i, + 4
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Weight functions  F,(&,7), F,(&,n), F.(£,n) are approximated by polynomials as continuous
functions.

(n=1) n n
F&m=a+an+-+a, n" +an +a t+a tn+--+a,ln +--

n
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I=(n+1)(m+1),G6 (&n)=1 G (&n)=n -G (&n)=¢& G (&n)=¢&7.

Using the approximation method mentioned above, we obtain the following system of linear
equations for the determination of the coefficients «,,8,7, . The unknown
coefficients «,, §,,7,, whose number is 31, are then determined from (5) by selecting a set of
collocation points to minimize the residual stresses.

I-1 I-1 /-1
zai(fxll +fx21)+2/8,fy1 +zyile =Py
i-0 i-0 i=0

PNTRDWIGETAEOWTAEL ©)

1-1 -1 -1

zaifxs +ZIBify3 +z7/ifz3 =D,
i=0 i=0 i=0
4. Numerical results and discussions

4.1 Definition of dimensionless stress intensity factors

On the basis of the theory described in section 3 computer programs are coded, and
calculations are performed when the aspect ratio is a/b=1, 2, 4, 8, under Poisson ratio
v,=v, =0.3 with varying polynomial exponentsm,n . As a result, smooth distributions of
stress intensity factor along the crack front are obtained. In demonstrating the numerical
results of stress intensity factors (SIFs) X,,K,.K the following dimensionless

factors F;,F,,F,, will be used. Here, F,, F,, F, are expressed on the basis of the SIF
(o7~7zb) of 2D crack whose length is 2b.

Vi
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4.2 Compliance of boundary condition and convergence of numerical solutions

Table 1 shows the convergence of the results for F,.F,.F, at y=>b wheny /u =2,
a/b=1, v, =v, =0.3 with varying polynomial exponents in Eq. (4). The boundary conditions
are considered at the collocation point on the mesh 10x10 chosen the crack boundary. To
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minimize the residual stresses the coefficients «,, 5,7, in Eq. (5) are determined. From
Table 3 it is seen that the results may be accurate until the 3-digit. Compliance of boundary
conditions is shown in Fig.2 where the residual stresses, which should be zero along the
crack surface, are less than 5.2x10” whenn=3§.

Table 1 Convergence of stress intensity factor at y=» foru, /gy =2,a/b=1, v=v,=03

x/a 0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11
m=n=6 | 0.8419 0.8398 0.8336 0.8235 0.8098 0.7924 0.7702 0.7408 0.6981 0.6284 0.4966
F, | m=n=7 | 0.8419 0.8402 0.8349 0.8257 0.8120 0.7932 0.7688 0.7374 0.6956 0.6327 0.5131
m=n=8 | 0.8428 0.8411 0.8359 0.8268 0.8132 0.7945 0.7695 0.7369 0.6936 0.6307 0.5154
m=n=6 [ 0.0472 0.0471 0.0467 0.0460 0.0449 0.0433 0.0410 0.0380 0.0338 0.0283 0.0202
F, | m=n=7 | 0.0474 0.0472 0.0468 0.0461 0.0451 0.0436 0.0416 0.0388 0.0349 0.0295 0.0214
m=n=8 [ 0.0475 0.0473 0.0469 0.0461 0.0451 0.0437 0.0417 0.0391 0.0357 0.0312 0.0245

y/b 0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11
m=n=6 [ 0.6516 0.6500 0.6454 0.6376 0.6264 0.6111 0.5906 0.5624 0.5222 0.4607 0.3547
Fy | m=n=7 | 0.6505 0.6490 0.6443 0.6364 0.6250 0.6098 0.5900 0.5638 0.5274 0.4717 03714
m=n=8 [ 0.6507 0.6490 0.6442 0.6360 0.6243 0.6088 0.5836 0.5626 0.5273 0.4743 0.3780

Table 2 Dimensionless stress intensity factor F,and F, for a/b=8 at (0,b)

1 2 5 10 100

vy | Fu £ 0 £y £ £y £ 0 £y £ 0
0,0 0.9930  0.1042(0.1072) | 0.9834 0.2009(0.2206) | 0.9742  0.2410(0.3298) | 0.9373  0.2743(0.3476)
0,0.5 | 0.9768 0.2366(0.2698) | 0.9671 0.2640(0.3122) | 0.9626 0.2745(0.2766) | 0.9576 0.2847(0.3414)
0.3,0.3 | 0.9975 0.0602(0.0608) | 0.9952 0.1189(0.1228) | 0.9933  0.1448(0.1516) | 0.9905 0.1716(0.1832)

Table 3 Dimensionless stress intensity factor for a’/b=1, &£=0.02at y=»

vV (i 1y) | xe=0 111 2711 311 411 511 611 711 811 9/11  10/11
0.3, 0.3 0.8419 0.8402 0.8350 0.8258 0.8123 0.7936 0.7687 0.7361 0.6928 0.6300 0.5149
F, 0,0(1.2870) 0.7544 0.7527 0.7475 0.7385 0.7253 0.7047 0.6837 0.6527 0.6112 0.5502 0.4412
0,0.5(0.0718) 0.8982 0.8967 0.8917 0.8831 0.8700 0.8518 0.8275 0.7958 0.7548 0.6959 0.5825
0.3,0.3 0.0313 0.0312 0.0309 0.0304 0.0297 0.0287 0.0275 0.0257 0.0235 0.0205 0.0161
F, 0,0(1.2870) 0.0278 0.0278 0.0275 0.0270 0.0263 0.0254 0.0241 0.0225 0.0203 0.0171 0.0121
0,0.5(0.0718) 0.0337 0.0335 0.0332 0.0326 0.0320 0.0312 0.0299 0.0282 0.0262 0.0246 0.0235
Vl’VZ(:UZ/Iul) y/b—0 /11 2/11 3/11 411 5/11 6/11 7/11 8/11 9/11 10/11
0.3, 0.3(1.5628) [ 0.6529 0.6513 0.6464 0.6382 0.6265 0.6108 0.5906 0.5645 0.5291 0.4759 0.3796
Fy 0,0(1.2870) 0.7518 0.7501 0.7449 0.7359 0.7229 0.7050 0.6814 0.6506 0.6092 0.5490 0.4415
0,0.5(0.0718) 0.5741 0.5726 0.5682 0.5608 0.5505 0.5371 0.5202 0.4987 0.4694 0.4242 0.3395

Fig.2 Compliance of boundary condition when z, / 4, =2, a/b=1,v, =v, =0.3
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4.3 Comparison with the two-dimensional interface crack

When the aspect ratio of the crack a/b is very large and tends to infinity, the results
should coincide with the two-dimensional solution. Table 2 shows the values of F,, F),, F),
when m=n=28 with aspect ratio a/b=8. It is seen that the present results coincide with the
two-dimensional exact solutions known as F,, =1,F, =2¢ whena/b — o in the range of
|x/ a| <05.

4.4 The stress intensity factors under the same value of ¢

In the preceding papers [12], [13], it is found that the stress intensity factors are
controlled by bimaterial constant & alone under tensile loading. In Table 3, Poisson’s ratio
and shear modulus ratio are changed under constant value of £ =0.02. As shown in Table 3,
it is seen that the stress intensity factors are not controlled by & alone under shear loading.

4.5 Effect of elastic modulus ratio ., / 1 on the stress intensity factors

For general aspect ratios, the following results are obtained by taking polynomial
exponents m = n =8 with the collocation points10x10 . The dimensionless stress intensity
factors F, , F,,, , F, are obtained with varying the elastic modulus ratio g, /g under
v,=v, =0.3 in Tables 4-7 and Fig.3. It is shown that the values of F, and F,, are
insensitive to the shear modulus ratios g, /. On the other hand, F, values, which are
positive at x =a and negative at x =—a, are largely depending on , / 1, . Figure 4 shows
distributions of stress intensity factors with varying a/b under g, /s =2and v, =v, =0.3. As

a /b increases, it is seen that the results coincide with the 2D exact solution ), =1, F, =2¢ .
4.6 Effect of Poisson's ratio on the stress intensity factors

In Table 8, the dimensionless stress intensity factors F), , Fj, , F, are indicated with
varying Poisson’s ratio under fixed values of s, /1, =2, a/b=1. It is seen that those values
are varied depending on Poisson's ratio. Whenv, =v, =0, F, takes a minimum value, and
F,, takes a maximum value of F},. On the other hand, asv;, — 0.5,v, > 0.5, F), takesa
maximum value, and F;, takes a minimum value. With increasing the value of &, F,
value increases. Figure 5 shows distributions of stress intensity factors when g,/ =2.
The value of Fj, and F,,, are mainly controlled by Poisson’s ratios, and the values of F, is
mainly controlled by ¢.

Table4 Stress intensity factor at y =b fora/b=1,v, =v, =0.3

GZ/G1 x/a=0 U1l 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

F 2 0.8428  0.8411 0.8359 0.8268 0.8132 0.7945 0.7695 0.7369 0.6939 0.6307 0.5154
" 5 0.8474  0.8457 0.8405 0.8214 0.8178 0.7990 0.7739 0.7411 0.6976 0.6345 0.5185
10 0.8502  0.8486 0.8433 0.8342 0.8206 0.8018 0.7766 0.7438 0.7003 0.6371 0.5207

100 0.8536  0.8519 0.8467 0.8376 0.8240 0.8051 0.7800 0.7472 0.7037 0.6404 0.5236

F 2 0.6507  0.6490 0.6442 0.6360 0.6243 0.6088 0.5886 0.5626 0.5273 0.4743 0.3780
m 5 0.6388  0.6372 0.6324 0.6243 0.6129 0.5977 0.5781 0.5527 0.5181 0.4656 0.3696
10 0.6307  0.6291 0.6243 0.6163 0.6050 0.5901 0.5708 0.5459 0.5118 0.4597 0.3638

100 0.6200  0.6184 0.6137 0.6058 0.5947 0.5801 0.5613 0.5370 0.5035 0.4519 0.3563

F 2 0.0475  0.0473 0.0469 0.0461 0.0451 0.0437 0.0417 0.0391 0.0357 0.0312 0.0245
! 5 0.0947  0.0944 0.0936 0.0921 0.0901 0.0873 0.0835 0.0785 0.0718 0.0631 0.0500
10 0.1161  0.1157 0.1147 0.1129 0.1105 0.1071 0.1026 0.0965 0.0885 0.0781 0.0623

100 0.1388  0.1384 0.1372 0.1351 0.1323 0.1284 0.1231 0.1160 0.1067 0.0945 0.0760
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o
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b Table5 Stress intensity factorat y=b forab=2 v, =v, =0.3

G,/G, o1l oy 211 311 410 S0 61l UL g1 911 10/
F, 2 09557 0.9546 09511 0.9448 0.9351 0.9209 0.9004 0.8714 0.8287 0.7600 0.6234
5 09569 0.9558 0.9525 0.9463 0.9368 0.9228 0.9027 0.8739 0.8315 0.7630 0.6265
10 09574 09563 09530 0.9470 0.9377 0.9238 0.9039 0.8753 0.8331 0.7648 0.6285
100 09576 09566 0.9533 0.9474 0.9383 09247 0.9051 0.8768 0.8350 0.7670 0.6310
F, 2 04707 04697 0.4668 0.4617 04542 04435 04286 0.4072 03759 0.3278 0.2473
5 04604 0.4595 04567 04518 04446 04344 04199 03990 0.3682 03207 0.2412
: 10 04535 04526 04499 04452 0.4382 04282 04140 03935 03631 03160 0.2370
i 100 0.4444 04436 04410 04365 0.4297 04201 04063 03863 03564 03099 0.2316
7 2 0.0570  0.0569 0.0566 0.0560 0.0552 0.0541 0.0524 0.0499 0.0464 0.0409 0.0314
! 5 0.1130 0.1128 0.1122 0.1113 0.1097 0.1075 0.1043 0.0996 0.0928 0.0822 0.0635
10 01379 0.1376 0.1370 0.1359 0.1341 0.1314 0.1276 0.1221 0.1140 0.1012 0.0786
| 100 0.1640 0.1638 0.1630 0.1617 0.1597 0.1567 0.1523 0.1460 0.1367 0.1219 0.0951

-
-

Table6 Stress intensity factorat y=b fora/b=4 v, =v, =0.3

G,/G, o1 yio211 31 41 sA1 611 AL 841 911 10711
2 0.9857 0.9855 0.9848 0.9834 09810 09766 0.9689 0.9556 09308 0.8788 0.7455

1l

' big

5 0.9879 0.9877 0.9869 0.9854 0.9827 0.9780 0.9700 0.9560 0.9306 0.8008 0.7440
10 0.9893 0.9890 0.9882 0.9866 0.9837 0.9788 0.9705 0.9561 0.9301 0.9768 0.7426
100 0.9908 0.9905 0.9896 0.9878 0.9848 0.9795 0.9707 0.9557 0.9289 0.8748 0.7403

F, 2 03402 0.3391 03360 03305 0.3224 03111 02959 02756 0.2485 02110 0.1550
5 03328 0.3318 03287 03233 03152 03040 0.2890 0.2690 0.2423 0.2056 0.1506
10 03279 03269 03238 03184 03104 02993 02844 02646 02381 0.2018 0.1476
100 03215 03205 03174 03121 03042 02932 02784 02588 0.2327 0.1970 0.1436
7 2 0.0598 0.0597 0.0596 0.0595 0.0593 0.0589 0.0582 0.0569 0.0545 0.0503 0.0414
! 5 0.1182 0.1182 0.1180 0.1178 0.1174 0.1168 0.1155 0.1131 0.1088 0.1007 0.0832
10 0.1440 0.1439 0.1437 0.1435 0.1431 0.1424 0.1410 0.1383 0.1332 0.1236 0.1026
100 0.1708 0.1707 0.1706 0.1703 0.1700 0.1693 0.1678 0.1649 0.1593 0.1483 0.1237
Table7 Stress intensity factorat y=b fora/b=8 v, =v, =0.3
G,/G, o1l yino211 311 410 S0 611 UL ®/11 911 10/
F, 2 0.9975 0.9975 0.9973 0.9970 0.9965 0.9954 0.9933 0.9895 0.9809 0.9533 0.8453
5 09952 0.9951 0.9950 0.9947 0.9943 0.9933 0.9915 0.9880 0.9800 0.9535 0.8470
10 09933 09933 09931 0.9929 0.9925 09916 0.9899 0.9867 0.9790 0.9533 0.8479
100 0.9905 0.9904 0.9903 0.9901 0.9897 0.9890 0.9874 0.9845 0.9774 0.9527 0.8487
F, 2 02248 0.2239 02212 02165 0.2099 02009 0.1893 0.1745 0.1556 0.1307 0.0949
5 02185 0.2177 02150 02105 02039 0.1952 0.1839 0.1695 0.1511 0.1269 0.0921
10 02143 02135 02108 02064 0.1999 0.1913 0.1802 0.1661 0.1481 0.1243 0.0901
100 02090 0.2081 0.2055 02011 0.1948 0.1864 0.1755 0.1617 0.1441 0.1210 0.0876
7 2 0.0602 0.0602 0.0602 0.0602 0.0602 0.0601 0.0599 0.0597 0.0591 0.0569 0.0492
1

5 0.1190  0.1190 0.1190 0.1190 0.1190 0.1189 0.1187 0.1184 0.1175 0.1136  0.0988
10 0.1448 0.1448 0.1448 0.1448 0.1448 0.1448 0.1448 0.1445 0.1436 0.1392 0.1217
100 0.1716 0.1716 0.1717 0.1719 0.1719 0.1720 0.1720 0.1720 0.1712 0.1666 0.1465
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Comp
" nd Tec nology
; ' {
. 1 Table8 Stress intensity factor at (0,b) for a/b=1, g,/ =2
Vi € | B, By F
0 0 |0.0536 | 07603 0.7421 0.0740
0 0.1 | 0.0668 | 0.7725 0.7268 0.0930
0 0.2 |0.0813 | 0.7855 0.7088 0.1138
0 0.3 {00972 | 0.7992 0.6876 0.1365
0 04 |0.1149 | 0.8134 0.6625 0.1614
| 0 0.5 |0.1349 | 0.8276 0.6325 0.1887
0.1 0.1 | 0.0475 | 0.7858 0.7160 0.0682
0.1 0.2 | 0.0620 | 0.7983 0.6992 0.0896
0.1 0.3 |0.0779 | 0.8117 0.6792 0.1133
0.1 0.4 | 0.0956 | 0.8258 0.6555 0.1392
0.1 0.5 | 0.1155 | 0.8401 0.6268 01679
0.2 0.2 | 0.0400 | 0.8132 0.6858 0.0598
0.2 0.3 | 0.0559 | 0.8260 0.6675 0.0843
' 0.2 04 {00736 | 08397 0.6454 0.1114
| P! 0.2 0.5 |0.0935 | 0.8540 0.6185 0.1416
1 ! 0.3 0.3 | 0.0304 | 0.8428 0.6507 0.0475
| 0.3 0.4 |0.0481 | 0.8557 0.6308 0.0757
0.3 0.5 | 0.0680 | 0.8696 0.6062 0.1075
0.4 04 {00177 | 0.8749 0.6087 0.0389

0.4 0.5 0.0376 | 0.8878 0.5873 0.0621
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5. Conclusion

In the present paper, a planar rectangular interfacial crack in a three-dimensional
bimaterial under shear loading is considered by means of the singular integral equations
based on the body force method. The conclusion can be made in the following way.

(1) The unknown functions are approximated by using the fundamental density functions
and polynomials. It is found that the present method shows good convergence of the
results and boundary conditions are satisfied very accurately (see Table 2 and Fig. 2).
The results for a/b=8 coincide with the exact solutions of 2D interfacial crack.

(2) The dimensionless stress intensity factors F,,F,, are insensitive to the elastic
modulus ratio g, / y,. Those values are mainly determined from the aspect ratio of the
crack a/b and Poisson’s ratios of the materialsv,, v,

(3) Under the constant value of elastic modulus ratio g, / 1, the F, value increases with
increasing the value of ¢. On the other hand, the value of F,and F,, are mainly
controlled by Poisson’s ratios (see Tables 4-7, Figs.3-5)...
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