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Abstract 
In this paper, stress intensity factors for a three dimensional rectangular interfacial 
crack are considered on the idea of the body force method. In the numerical 
calculations, unknown body force densities are approximated by the products of the 
fundamental densities and power series; here the fundamental densities are chosen 
to express singular stress fields due to an interface crack exactly. The calculation 
shows that the present method gives rapidly converging numerical solutions and 
highly satisfied boundary conditions. The stress intensity factors for a rectangular 
interface crack are indicated accurately with varying the aspect ratio, and 
biomaterial parameter. 
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1. Introduction 

In recent years, composite materials and adhesive or bonded joints are widely used in 
many fields especially for electronic products. Failures of those products are dominated by 
interfacial destruction because they usually originate from the interfacial region. From this 
aspect, the accurate evaluation of interface cracks in dissimilar materials has been important. 
For interfacial cracks, a number of analyses [1]-[18] have been made; however, usually they 
are limited under specific material combinations. Closed form solutions for stress intensity 
factors (SIFs) are available only for penny-shaped interfacial crack [17], deep external 
interfacial crack[18], and ring-shaped interfacial crack[19] under any combinations of 
materials. Usually, considering the oscillation singularity and overlapping of crack surfaces 
around the crack tip is difficult although both of them are peculiar to interface cracks. 

   In our previous paper [20], accurate numerical solutions were considered for 3D 
interfacial crack problems on the basis of hypersingular intergro-differential equations 
derived by Chen-Noda-Tang[21] considering the oscillation singularity and overlapping of 
crack surfaces. The proposed method may be useful for expressing singular behavior and 
providing smooth distributions stress intensity factors along crack front with highly satisfied 
boundary. Therefore, in this paper, a 3D interfacial rectangular crack will be analyzed and 
the effect of material combination and geometrical conditions on the stress intensity factors 
will be discussed with varying the material combinations and geometrical conditions.  
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2. Singular intergro-differential equations for 3D biomaterial interfacial crack 
problems 

Consider two dissimilar elastic half-spaces bonded together along the x y−  plane 
subjected to stresses 0 , 0, 0z yz zxσ σ τ τ∞ ∞ ∞= = =  at the infinity as shown in Fig.1. There is a 
rectangular interface crack whose length and width are 2a and 2b respectively. 
Here 1 2,µ µ are shear modulus, 1 2,ν ν are Poisson ratios of the materials. The problem is 
formulated as a system of hypersingular intergro-differential equations (1) derived by 
Chen-Noda-Tang (21). 
 

 

 

 

 

 

 

 

 

 

 

 
Here, ( , )iu x y∆  means unknown crack opening displacement on the interface in the i  

direction. The integrals including in Eq. (1) should be interpreted in a sense of finite part 
integrals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Problem configuration 
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3. Outline of the method of analysis 

In this paper the outline of the method of analysis will be indicated since the details were 
described in the previous paper [20]. In solving ordinary crack problems the unknown 
densities were accurately obtained by using the fundamental densities, which express exact 
solutions for 2D cracks. For interfacial cracks, available solutions are indicated in Figure 2 
for a 2D interface crack with a length of 2a under normal stress 0σ  and shear stress 0τ  at 
the infinity. Crack opening displacements for Fig.2 , ,x y zu u u∆ ∆ ∆  in relation to fundamental 
density functions ( ), ( ), ( )x y zw w wξ ξ ξ can be expressed in the following equations [4]. 

 
For Fig. 2(a): 

 

 
 
 
For Fig. 2(b): 
 
 
 
Here, 0 0σ τ,  are the tensile stress and shear stress applied at infinity, and ε and κ  are 
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In present paper, we assume the following expression. 
 
 

Here, fundamental densities ( , )iw ξ η , which express oscillation singularity of interface 

cracks, are defined as follows. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2. Fundamental densities for two dimensional problems 
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Here the weight functions ( , ), ( , ), ( , )x y zF F Fξ η ξ η ξ η are approximated by polynomials. As 
an example, ( , )xF ξ η  may be expressed in the following equations. 
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4. Results and discussion 

4.1 The definition of dimensionless stress intensity factors 

On the basis of the theory mentioned above, calculations are performed with varying the 
polynomial exponents ,m n  in Eq. (7) for a/b=1, 2, 4, 8 and ε =0-0.1. Then, smooth 
distributions are obtained for the stress intensity factors along the crack front. Here, the 
normalized stress intensity factors FΙ , FΙΙ , FΙΙΙ  as shown in Eq. (8) will be used to indicate 
the results. The boundary conditions are considered at the 10 10× collocation points 
imagined on the mesh at the crack surface. The least square regression method is applied to 
minimize the residual stress to determining the coefficients in the polynomials , ,i i iα β γ  in 
Eq. (7). 
 
 
 
 
 
 
 
 

4.2 Convergence of the results 

Figure 3(a) - 3(c) shows the compliance of the boundary condition when a/b=1 
and ε = 0.02 .  The remaining stresses ( 1)/z zσ σ ∞ + , /yz zτ σ ∞ , /zx zτ σ ∞ , which should be zero 
along the crack surface, are less than 54.4 10−×  when m n= =6. Those values become 
smaller than 61.5 10−× when m n= =8. The compliance of the boundary conditions is better 
than the case for the crack terminating at an interface [22] and almost similar to the case of 
an internal crack in a homogeneous material [23]. It is known that the boundary condition 
for a surface crack [24] cannot be satisfied very accurately as shown in Fig.3. Usually the 
boundary conditions for interface cracks are difficult to be satisfied because of the peculiar 
behavior of oscillation singularity. However, the present method of analysis provides 
accurate solutions by introducing the fundamental densities and performing numerical 
integrals with using double exponent integration formula. Table 1 indicates the results for 
homogeneous material comparing the previous results [22], [23]. As shown in Table 1, the 
present method shows good convergence for all other cases. 

 
Table1 Convergence of stress intensity factor IF  for ε =0, a/b=1 at y b=  (Collocation 

point 20 20× ) 
x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

m=n=4 0.7521 0.7507 0.7462 0.7379 0.7250 0.7066 0.6821 0.6509 0.6108 0.5538 0.4497

m=n=6 0.7538 0.7520 0.7467 0.7377 0.7248 0.7072 0.6836 0.6520 0.6094 0.5482 0.4423

m=n=8 0.7534 0.7516 0.7463 0.7373 0.7243 0.7063 0.6821 0.6500 0.6081 0.5513 0.4543

Qin 0.7534 0.7512 0.7462 0.7379 0.7255 0.7072 0.6821 0.6497 0.6090 0.5521 0.4464

Wang 0.7534 0.7517 0.7465 0.7376 0.7245 0.7066 0.6828 0.6512 0.6086 0.5492 0.4536
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Fig.3 Compliance of boundary condition for / 1, 0.02a b ε= =  

4.3 Comparison with the two-dimension case 

For large aspect ratio a/b, the results should coincide with the two-dimensional solution. 
For a/b=8 the stress intensity factors , ,F F FΙ ΙΙ ΙΙΙ  shown in Eq. (8) are given in Table 2 
when the polynomial exponents 8m n= = . It is seen that the present results coincide with 
the two-dimensional exact solution known as 1, 2I IIF F ε= = , 0IIIF = as /a b→∞  in the 
range of / 0.5x a ≤ .  

Table 2(a) Dimensionless stress intensity factor FΙ  for / 8a b =  at y b=  
x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

ε =0.02 0.9947 0.9946 0.9942 0.9933 0.9917 0.9888 0.9838 0.9750 0.9580 0.9175 0.7954

ε =0.04 0.9938 0.9937 0.9932 0.9923 0.9907 0.9878 0.9828 0.9739 0.9568 0.9160 0.7931

ε =0.06 0.9920 0.9919 0.9914 0.9905 0.9889 0.9860 0.9809 0.9719 0.9545 0.9134 0.7892

ε =0.08 0.9891 0.9890 0.9885 0.9875 0.9859 0.9830 0.9779 0.9687 0.9509 0.9092 0.7836

ε =0.10 0.9848 0.9847 0.9842 0.9833 0.9816 0.9786 0.9733 0.9640 0.9461 0.9037 0.7755

Table 2(b) Dimensionless stress intensity factor FΙΙ for / 8a b =  at y b=  

 

x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

ε =0.02 0.0397 0.0397 0.0396 0.0396 0.0395 0.0394 0.0391 0.0387 0.0378 0.0358 0.0304

ε =0.04 0.0786 0.0786 0.0785 0.0784 0.0783 0.0780 0.0775 0.0766 0.0749 0.0710 0.0601

ε =0.06 0.1160 0.1160 0.1160 0.1158 0.1156 0.1152 0.1144 0.1131 0.1106 0.1047 0.0885

ε =0.08 0.1515 0.1515 0.1514 0.1512 0.1509 0.1503 0.1493 0.1476 0.1442 0.1364 0.1151

ε =0.10 0.1845 0.1845 0.1844 0.1842 0.1838 0.1831 0.1819 0.1797 0.1755 0.1658 0.1394
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Table2(c) Dimensionless stress intensity factor 310FΙΙΙ
−× for / 8a b =  at y b= ( 1 2 0.3ν ν= = ) 

x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

ε =0.02 0 0.045 0.099 0.172 0.283 0.463 0.762 1.28 2.24 3.99 6.83 

ε =0.04 0 0.091 0.020 0.345 0.568 0.927 1.53 2.57 4.47 7.94 1.36 

ε =0.06 0 0.014 0.030 0.521 0.856 1.39 2.29 3.84 6.66 1.18 2.01 

ε =0.08 0 0.018 0.040 0.701 1.15 1.87 3.05 5.10 8.79 1.55 2.63 

ε =0.10 0 0.024 0.051 0.886 1.45 2.34 3.82 6.34 1.08 1.90 3.21 

4.4 stress intensity factors for planar rectangular interfacial crack 

The stress intensity factors (SIFs) are calculated for general aspect ratio with varying the 
polynomial exponents until m n= =8. Table 3 shows the variations of SIFs along the crack 
front for a square interface crack a/b=1. It is seen that with varying ε  from 0 to 0.1, the 
value of FΙ  decreases but the value of FΙΙ increases. Table 4 shows the comparison 
between the results of square and disk shaped interfacial cracks. Here, the maximum values 
of FΙ , FΙΙ  at 0,x y b= = ±  are indicated for the square crack. Under the same value of ε , 
the FΙ  value of a square interfacial crack is larger than that of disk shaped interfacial crack, 
while FΙΙ  of square interfacial crack is smaller than that of a disk shaped interfacial crack. 
Table 5 shows the values of FΙ and FΙΙ  of a rectangular interfacial crack with varying the 
aspect ratio as a /b=1, 2, 4, 8.  The FΙ and FΙΙ values of a rectangular interfacial crack are 
determined by ε  alone (20). The value of IIIF  is smaller and with the range 2

max 10F −
Ι × . 

Table 3(a) Dimensionless stress intensity factor FΙ  for a/b=1 at y b=  
x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

ε =0 0.7534 0.7516 0.7463 0.7373 0.7243 0.7063 0.6821 0.6500 0.6081 0.5513 0.4543

ε =0.02 0.7528 0.7511 0.7459 0.7369 0.7238 0.7058 0.6822 0.6514 0.6099 0.5490 0.4400

ε =0.04 0.7509 0.7492 0.7440 0.7351 0.7219 0.7040 0.6804 0.6495 0.6080 0.5470 0.4377

ε =0.06 0.7478 0.7461 0.7409 0.7320 0.7188 0.7009 0.6773 0.6464 0.6048 0.5436 0.4339

ε =0.08 0.7433 0.7416 0.7364 0.7275 0.7143 0.6965 0.6729 0.6419 0.6003 0.5389 0.4286

ε =0.10 0.7373 0.7356 0.7304 0.7215 0.7085 0.6906 0.6671 0.6362 0.5945 0.5329 0.4218

Table 3(b) Dimensionless stress intensity factor FΙΙ  for a/b=1 at y b=  
x a  0/11 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

ε =0.02 0.0274 0.0273 0.0272 0.0266 0.0260 0.0251 0.0239 0.0224 0.0204 0.0176 0.0134

ε =0.04 0.05417 0.0540 0.0535 0.0527 0.0514 0.0497 0.0474 0.0443 0.0403 0.0348 0.0365

ε =0.06 0.07985 0.0796 0.0789 0.0776 0.0758 0.0733 0.0699 0.0654 0.0595 0.0515 0.0393

ε =0.08 0.1040 0.1037 0.1028 0.1012 0.0988 0.0955 0.0911 0.0853 0.0776 0.0673 0.0515

ε =0.10 0.1263 0.1259 0.1248 0.1229 0.1201 0.1161 0.1107 0.1037 0.0945 0.0821 0.0629

  Table 4 Comparison between the results of square and disk shaped interface cracks 
1F   

2F  
ε  

square disk square disk 

ε =0.02 0.7528 0.636 0.02738 0.030 

ε =0.04 0.7509 0.636 0.05417 0.061 

ε =0.06 0.7478 0.635 0.07985 0.091 

ε =0.08 0.7433 0.634 0.1040 0.122 

ε =0.10 0.7373 0.632 0.1263 0.152 
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Table5 Dimensionless stress intensity factor FΙ and FΙΙ  at the point ( 0 b， ) 
F Ι

  FΙ Ι
 

ε  
a/b=1 a/b=2 a/b=4 a/b=8 a/b=1 a/b=2 a/b=4 a/b=8 

ε =0.02 0.7528 0.9052 0.9760 0.9947 0.0274 0.0352 0.0388 0.0397 

ε =0.04 0.7509 0.9038 0.9750 0.9938 0.0542 0.0696 0.0768 0.0786 

ε =0.06 0.7478 0.9013 0.9730 0.9920 0.0798 0.1027 0.1134 0.1160 

ε =0.08 0.7433 0.8975 0.9699 0.9891 0.1040 0.1338 0.1479 0.1515 

ε =0.10 0.7373 0.8921 0.9654 0.9848 0.1263 0.1627 0.1801 0.1845 

 

5. Conclusion  

In this paper the stress intensity factors of a planar rectangular interfacial crack in 
three-dimensional bimaterials are studied through the singular integral equations on the 
basis of the body force method. The conclusion can be summarized as follows:  
(1)  The unknown functions were approximated by using fundamental densities and 

polynomials. Here the fundamental densities were chosen to express singular 
behavior of interface crack exactly.  

(2)  The present method provides smooth distributions of stress intensity factors along the 
crack front with good convergence. The remaining stresses along the crack surface 
are less than 510−  when the polynomial exponents 8m n= = (see Fig.3). 

(3)  The results for a/b=8 coincide with the 2D solutions to the three-digit in the range 
/ 0.5x a ≤  (see Table 3). 

(4)  The stress intensity factors of a rectangular interface crack were indicated accurately 
in Tables with varying the aspect ratio /a b   and bimaterial constant ε  (see Tables 
3-5).   
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