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Several types of singular stress fields may appear at the corner where an interface between
two bonded materials intersects a traction-free edge depending on the material combina-
tions. Since the failure of the multi-layer systems often originates at the free-edge corner,
the analysis of the edge interface crack is the most fundamental to simulate crack exten-
sion. In this study, the stress intensity factors for an edge interfacial crack in a bi-material
bonded strip subjected to longitudinal tensile stress are evaluated for various combinations
of materials using the finite element method. Then, the stress intensity factors are calcu-
lated systematically with varying the relative crack sizes from shallow to very deep cracks.
Finally, the variations of stress intensity factors of a bi-material bonded strip are discussed
with varying the relative crack size and material combinations. This investigation may con-
tribute to a better understanding of the initiation and propagation of the interfacial cracks.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most failure for the bonded structures initiates at the interfacial edge corner due to the existence of free edge singularities
under mechanical or thermal loadings. A lot of pioneering studies were addressed on the stress singularities around bi-mate-
rial corners and joints. As an example, the geometrical configuration as shown in Fig. 1 is characterized by the angles h1 and
h2 which the traction-free surfaces of the elastic materials make with the interface. Several types of stress singularities ap-
pear at the interface corner depending on the geometry and material combinations for this bonded layer. Many papers dis-
cussed the order of the stress singularity under various geometries and material combinations [1–6]. Also a fair mount of
attentions were paid for the intensity of this singular stress. Reedy and Guess [7] determined the magnitude of singular
stress for a thin elastic layer sandwiched between two rigid substrates. Akisanya and Fleck [8] applied the contour integral
to evaluate the singular stress at the free-edge of a long bi-material strip subjected to uniform tension. Xu et al. [9] proposed
numerical methods to determine the multiple stress singularities and the related stress intensity coefficients.

On the other hand, the evaluation of the stress intensity factors for the interfacial cracks has some difficulties due to the
complexity of multiple/oscillatory singularities. Various numerical methods [10–14] were reported to determine the stress
intensity factors of an interface crack. Specifically, Teranishi and Nisitani proposed a highly accurate numerical method
named the zero element method to determine the stress intensity factor of a homogenous plate [15]. Anyway, this method
cannot be used directly into the interface crack problem since there is an oscillatory singularity along the interface. Then,
Oda et al. extended this method to the interface crack problems by creating the similar singular stress fields for the reference
and the given unknown problems [14]. None of the aforementioned studies has considered the stress intensity factors for
arbitrary combination of materials and relative crack size. Noda et al. investigated the stress intensity factors for arbitrary
. All rights reserved.
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Nomenclature

a length of the edge interface crack
fij(h) angular functions
r polar distance away from the singular point/crack tip
Em Young’s modulus
F1, F2 dimensionless stress intensity factors at the crack tip of an edge interface crack
Gm shear modulus
H intensity of stress singularity
L height of the bonded strip
K stress intensity factors
K1, K2 general stress intensity factors at the crack tip of an edge interface crack
W width of the bonded strip
T, S tensile and shear stresses applied to the reference problem
a, b material composite parameters
h1, h2 angles of traction-free edges intersect the interface
j Kolosov constant
k order of the stress singularity
ry, sxy stress components along the bi-material interface
r�y0;FEM; s�xy0;FEM stress components at the crack tip of the reference problem
ry0,FEM, sxy0,FEM stress components at the crack tip of the given unknown problem
mm Poisson’s ratio
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material combinations of the central interface crack in a dissimilar bonded plane [16,17]. As a further research of the author’s
previous work, the study object is extended to the single edge interface crack of a bonded strip. In this paper, therefore, the
stress intensity factors will be investigated in a bi-material bonded finite strip as shown in Fig. 2 by applying the finite ele-
ment method with varying not only the material combinations but also the relative crack sizes. The material combinations
(a, b) vary a = 0–0.95, b = �0.2 to 0.45 in the a–b space, and the relative crack size a/W varies from the shallow crack to the
very deep crack. Furthermore, we will show that the stress intensity factors behave a good linearity to the crack length with-
in the zone of dominance of the free edge singularity. Then, a formula will be proposed to determine the stress intensity fac-
tors for the shallow edge interface cracks under arbitrary combination of materials and relative crack size, by fitting the
computed results.

2. Numerical method for the determination of the stress intensity factors

Recently, an effective numerical method called the zero element method was proposed for calculating the stress intensity
factors in homogenous cracked plates [15]. Then, the method is successfully extended to the interfacial crack problems
[14,16,17]. Both of those methods utilize the stress values at the crack tip computed by FEM. For a given bi-material bonded
structure, the stress intensity factors are defined as shown in:
Fig. 1. Geometrical configuration of bi-material bonded plate.



Fig. 2. The shallow (a) and deep (b) edge interface cracks in a bonded strip.
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ry þ isxy !
K1 þ iK2ffiffiffiffiffiffiffiffiffi
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2a
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Here, ry, sxy denote the stress components near the crack tip. r is the radial distance from the crack tip, and e is the bi-elastic
constant given by:
e ¼ 1
2p

ln
j1

G1
þ 1

G2

� �� �
j2

G2
þ 1

G1

� �	
ð2Þ

jm ¼
3� 4mm ðplane strainÞ
3� mm=1þ mm ðplane stressÞ



; ðm ¼ 1;2Þ ð3Þ
where Gm(m = 1, 2) and mm(m = 1, 2) are the shear moduli and Poisson’s ratios of either respective materials. The real and
imaginary parts of the oscillatory stress intensity factors K1 + iK2 in Eq. (1) may be separated as
K1 ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

ry cos Q þ sxy

ry
sin Q

� �
ð4Þ
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r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

sxy cos Q � ry

sxy
sin Q

� �
ð5Þ

Q ¼ e ln
r

2a

� �
ð6Þ
Let’s consider two different interface crack problems C and D. The geometric configurations for problems C and D are
demonstrated in Fig. 3a and b, respectively. The stress intensity factors of problem C are given in advance and those for
Fig. 3. Demonstration of: (a) the reference problem (problem C) and (b) a given unknown problem (problem D).
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problem D are yet to be solved. For notional convenience, problem C is termed the reference problem whose values are
marked with ⁄, and problem D is termed the given unknown problem. Assuming they have the same crack lengths (half
length) a = a0 and the same combination of materials e ¼ e0. Examining the points with the same radial distances r = r0

for the two problems C and D, then gives ½Q ��C ¼ ½Q �D ¼ e0 lnð r0
2a0
Þ. Recall Eqs. (4) and (5), a proportional relationship given

in Eq. (7) is established if and only if Eq. (8) can be satisfied,
Fig. 5.
½K1�D
½K�1�C

¼ ½ry�D
½r�y�C

¼ ½ry0;FEM�D
½r�y0;FEM�C

;
½K2�D
½K�2�C

¼ ½sxy�D
½s�xy�C

¼ ½sxy0;FEM�D
½s�xy0;FEM�C

ð7Þ
Fig. 4. a–b space for the material composite parameters.

The double logarithmic distributions of the dimensionless stress intensity factors: (a) F1 and (b) F2 at the crack tip for shallow edge interface cracks.
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Rearranging Eq. (7), then the stress intensity factors of the target given unknown problem (problem D) can be obtained by:
½K1�D ¼
½ry0;FEM�D½K

�
1�C

½r�y0;FEM�C
; ½K2�D ¼

½sxy0;FEM�D½K
�
2�C

½s�xy0;FEM�C
ð9Þ
Here, r�y0;FEM; s�xy0;FEM are the stress components at the crack tip (the zero element) of the reference problem (problem C) com-
puted by FEM, and ry0,FEM, sxy0,FEM are those of the given unknown problem (problem D). The superscript 0 stands for the
values at the crack tip. In this study, a central cracked bonded dissimilar plane subjected to remote uniform tension
r1y ¼ T and s1xy ¼ S as shown in Fig. 3a is treated as the reference problem. And its stress intensity factors are given by
the theoretical solution as
K�1 þ iK�2 ¼ r1y þ is1xy

� � ffiffiffiffiffiffi
pa
p

ð1þ 2ieÞ; r1y ¼ T; s1xy ¼ S ð10Þ
How to make the condition given in Eq. (8) be satisfied will be depicted in the following. Let rT¼1;S¼0�
y0;FEM and sT¼1;S¼0�

xy0;FEM denote the
stress components for the reference problem (problem C) subjected to pure remote tension (T, S) = (1, 0), and rT¼0;S¼1�

y0;FEM sT¼0;S¼1�
xy0;FEM

denote those for problem C subjected to pure remote shear (T, S) = (0, 1).Using the principle of superposition, the stress com-
ponents of the reference problem shown in Fig. 3a take the following form:
r�y0;FEM ¼ rT¼1;S¼0�
y0;FEM � T þ rT¼0;S¼1�

y0;FEM � S ð11Þ

s�xy0;FEM ¼ sT¼1;S¼0�
xy0;FEM � T þ sT¼0;S¼1�

xy0;FEM � S ð12Þ
Recall the necessary condition given in Eq. (8) for creating the similar singular fields for the problems C and D, inserting Eqs.
(11), (12) into Eq. (8) gives the solution of S/T for determining the remote external loads applied to the reference problem.
Fig. 6. The double logarithmic distributions of the stress intensity factors K1 and K2 at the crack tip for shallow edge interface cracks.
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h i
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h i
C
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h i
C

ð13Þ
Let T = 1 so that S can be determined. Inserting T = 1, S into Eq. (10) gives the values of the oscillatory stress intensity factors
for the reference problem (problem C). Finally, the stress intensity factors for the given unknown problem (problem D) can
be yielded using the proportional relationship as given in Eq. (9).
Fig. 7. The values of: (a) F1 � ða=WÞ1�k and (b) F2 � ða=WÞ1�k for b = 0.3.

Fig. 8. Order of stress singularity k� 1.
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3. Numerical results and discussion

3.1. Formulation of the interface crack problems for arbitrary material combinations

Consider the bi-material bonded strip with width W and length 2L as is shown in Fig. 2. The strip is composed of two
elastic, isotropic and homogeneous finite strips that are perfectly bonded along the interface. The material above the inter-
face is termed material 1, and the material below is termed material 2. The half length of the strip L is assumed to be much
greater than the width W (L P 2W). It is supposed that an edge interface crack with a length of a has initiated at the free-
edge corner, and the strip is subjected to an axial longitudinal uniform tensile stress r.
Table 1
Order of stress singularity k for various combination of materials.

a b = �0.2 b = �0.1 b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.45

0 1 1 1 1 1
0.05 0.98378 0.99035 0.99800 1.00613 1.01403
0.1 0.96593 0.97774 0.99205 1.00831 1.02512
0.15 0.94684 0.96269 0.98253 1.00626 1.03279
0.2 0.92685 0.94571 0.96987 1 1.03604 1.07562
0.3 0.90752 0.93713 0.97605 1.02764 1.09640
0.4 0.86549 0.89741 0.94025 1 1.09130
0.5 0.82096 0.85320 0.89662 0.95796 1.05584
0.6 0.77459 0.80597 0.84801 0.90711 1
0.7 0.75644 0.79606 0.85104 0.93477 1.11741
0.75 0.73090 0.76909 0.82169 0.90048 1.05468
0.8 0.70481 0.74151 0.79163 0.86554 1
0.85 0.67824 0.71331 0.76091 0.83006 0.94923 1.08125
0.9 0.65105 0.68448 0.72953 0.79410 0.90075 1
0.95 0.62320 0.65496 0.69745 0.75761 0.85364 0.93488
1 0.59461 0.62466 0.66461 0.72053 0.80731 0.87624

Fig. 9. Constants: (a) C1 and (b) C2 for various combination of materials.
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The stress intensity factors for the aforementioned problem in plane strain or plane stress are only determined on the two
elastic mismatch parameters a and b (also known as Dundurs’ material composite parameters, Dundurs, 1969). And the mate-
rial composite parameters are defined as
Table 2
Tabulat

a

0.05
0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

Table 3
Tabulat

a

0.05
0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95
a ¼ G1ðj2 þ 1Þ � G2ðj1 þ 1Þ
G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ð14Þ

b ¼ G1ðj2 � 1Þ � G2ðj1 � 1Þ
G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ð15Þ
where the subscripts denote material 1 or 2, Gm = Em/2(1 + mm), (m = 1, 2), Gm, Em mm and jm denote the shear modulus,
Young’s modulus, Poisson’s ratio and Kolosov constant for material m, respectively. jm = (3 � mm)/(1 + mm) for plane stress
and jm = (3 � 4mm) for plane strain. The parameter a is positive when material 2 is more compliant than material 1, and
is negative when material 2 is stiffer than material 1 [8]. The possible values for a and b are plotted in the a–b space shown
in Fig. 4. In this research, only the stress intensity factors for a P 0 in a–b space has been calculated due to the point sym-
metry of the stress intensity factors for arbitrary (a, b). For instance, switching material 1 and 2 (mat1() mat2) will only
reverse the signs of a and b (ða; bÞ () ð�a;�bÞ). Furthermore, when a = ± 1, mm should be set to 0.5 or 0, follows with the
pointless of analysis, therefore, 0.95 is chosen as the maximum value of a used in the analysis. The dimensionless stress
intensity factors F1 and F2 are employed in this research, and the relationship of F1, F2 and K1, K2 is given by the following
equation.
K1 þ iK2 ¼ r
ffiffiffiffiffiffi
pa
p

ðF1 þ iF2Þð1þ 2ieÞ ð16Þ
3.2. Relationship between the stress intensity factors and crack length

The dimensionless stress intensity factors F1 and F2 at the crack tip in a bi-material bonded strip are systematically inves-
tigated with varying the relative crack length alW, as well as the material composite parameters a and b. Here, we restrict
ed values of C1.

b = �0.2 b = �0.1 b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.45

1.009 1.074 1.114 1.131
0.952 1.034 1.094 1.142 1.163
0.88 0.991 1.063 1.138 1.2

0.947 1.025 1.119 1.222
0.863 0.938 1.047 1.205
0.786 0.852 0.952 1.114 1.485
0.71 0.772 0.857 0.991 1.322

0.7 0.771 0.872 1.104
0.635 0.694 0.769 0.919 1.828
0.604 0.659 0.723 0.843 1.336
0.573 0.626 0.68 0.777 1.087
0.542 0.595 0.64 0.719 0.928 1.558
0.508 0.565 0.603 0.666 0.815 1.075
0.46 0.536 0.568 0.619 0.727 0.871

ed values of C2.

b = �0.2 b = �0.1 b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.45

�0.213 �0.129 �0.026 0.086
�0.215 �0.145 �0.052 0.06 0.182
�0.212 �0.157 �0.074 0.032 0.161

�0.167 �0.094 0.004 0.135
�0.179 �0.123 �0.046 0.072
�0.183 �0.141 �0.083 0.009 0.196
�0.182 �0.151 �0.108 �0.041 0.094

�0.156 �0.123 �0.074 0.014
�0.156 �0.131 �0.095 �0.036 0.175
�0.155 �0.134 �0.102 �0.053 0.073
�0.153 �0.135 �0.107 �0.066 0.021
�0.15 �0.135 �0.11 �0.075 �0.011 0.102
�0.145 �0.135 �0.113 �0.082 �0.032 0.025
�0.136 �0.134 �0.114 �0.087 �0.047 �0.010
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our discussion to material combinations with b = 0.3, but similar phenomenon can also be found in others material combi-
nations. The double logarithmic distributions of F1 and |F2| are shown in Fig. 5a and b, respectively. It should be noted that
the absolute values |F2| are used since the domain of the logarithmic function is given by the interval of (0, +1). However,
this does not affect the analysis due to the fact that switching material 1 and 2 (mat1() mat2) will only reverse the sign of
F2. From this figure, it is found that the double logarithmic distributions behave linearity when a/W < 0.01. Furthermore, it
has been found that the slope coincides with the corresponding value of the order of singularity k for the bonded strip [18]. In
other words, the values F1 and F2 behave good linearity within the zone of dominance of the free-edge singularity. Fig. 5 also
reveals that the sign of the slope varies depending on the sign of a(a � 2b). Specifically, the slope of each line is positive
when a(a � 2b) < 0, is zero when a(a � 2b) = 0 and is negative when a(a � 2b) > 0. Thus, it can also be deduced that the val-
ues of F1 and F2 for the limiting case a/W ? 0, are F1 ? 0 and F2 ? 0 when a(a � 2b) < 0, F1 ?1 and F2 ?1 when
a(a � 2b) > 0, and F1, F2 have finite values when a(a � 2b) = 0.

Although when a(a � 2b) > 0 F1 ?1 and F2 ?1 as a/W ? 0, actual crack extension along the interface may be con-
trolled by the stress intensity factors K1, K2 instead of dimensionless factors F1, F2. In order to simulate the crack extension
it is important to consider how the values of K1, K2 change depending on the crack length. The relative crack length a/W is
substituted into Eq. (16) in order to compare K1, K2 with F1, F2. The double logarithmic distributions of the stress intensity
factors K1 and K2 are plotted in Fig. 6. A good linear relationship within the dominance of the free-edge singularity can also
be found from this figure. Then, it can be deduced that K1 ? 0, K2 ? 0 as a ? 0 for any combination of materials. Here, it
should be noted that the stress intensity factors always increase with increasing the crack length for all the material
combinations.
3.3. Asymptotic expressions for a shallow edge interface crack in the bonded strip

The values of F1 � ða=WÞ1�k and F2 � ða=WÞ1�k are plotted against logarithmic relative crack size a/W in Fig. 7a and b,
respectively. Here, k denotes the singular index for a perfectly bonded strip without crack. The material composite param-
eters are kept in b = 0.3, but similar phenomenon can be found from other material combinations. As can be seen from these
figures, the value for a given material combination approaches to a constant when a/W < 0.01. This is because the limiting
Fig. 10. Variations of: (a) F1 and (b) F2 with a, b for a/W = 0.1.
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solutions a/W ? 0 are controlled by the singular behavior of perfectly bonded strip [18]. Thus, we propose the following for-
mula to compute the stress intensity factors at the crack tip for the shallow edge interface crack in a bonded strip.
F1 � ða=WÞ1�k ¼ C1; F2 � ða=WÞ1�k ¼ C2 ð17Þ
In Eq. (17), the singular index k has been investigated for various corner geometries and material combinations [2,3]. The
values of k for the current problem can be obtained by solving the following equation [2,19,20]:
cos2 p
2

k
� �

� ð1� kÞ2
h i2

b2 þ 2ð1� kÞ2 cos2 p
2

k
� �

� ð1� kÞ2
h i

abþ ð1� kÞ2½ð1� kÞ2 � 1�a2

þ cos2 kp
2

� �
sin2 kp

2

� �
¼ 0 ð18Þ
In this research, the values of k are systematically computed for a = 0–0.95, b = �0.2 to 0.45, the results are plotted and tab-
ulated in Fig. 8 and in Table 1, respectively. Here, it should be noticed that k for a < 0 can also be obtained from Table 1 since
kða; bÞ ¼ kð�a;�bÞ. The values of C1, C2 in Eq. (17) are constants depending upon the relative elastic properties of materials.
The coefficients C1, C2 are plotted and listed against material composite parameters in Fig. 9a and Table 2 as well as in Fig. 9b
and Table 3, respectively.

3.4. Effect of material composite parameters a, b on F1, F2

In this section, the effect of the material composite parameters a, b to F1, F2 is investigated for fixed relative crack length
a/W. Figs. 10 and 11 show the variations of F1, F2 for a/W = 0.1 and a/W = 0.9, respectively, over a = 0.05–0.95, b = �0.2 to 0.45
(see the right part of the a–b plane shown in Fig. 4). As demonstrated in the graphs, F2 varies almost linearly with increasing
a under fixed value of b. From the comparison between Figs. 10 and 11, it is seen that F1 and F2 vary in different ways
depending on composite parameters a, b. It is found that the variations of F1 and F2 behave similarly as those shown in
Fig. 10 when a/W < 0.4, and then they change the tendencies similarly as those shown in Fig. 11 when a/W > 0.4. The effect
of the relative crack size will be depicted in Section 3.5.
Fig. 11. Variations of: (a) F1 and (b) F2 with a, b for a/W = 0.9.



Fig. 12. Variations of: F1 (a) and F2 (b) with a, a/W for b = �0.2.
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3.5. Effect of the relative crack size a/W on F1, F2

The variations of F1, F2 and their maximum and minimum values are plotted in Figs. 12–14 over a/W = 0.1–0.9 with vary-
ing material composite parameters. In order to examine the effect more clearly, the values of F1 are normalized by using
those of the homogenous plate. The values of the homogenous plate (a = b = 0) FI,homo are tabulated in Table 4. It is apparent
from the table that the current results are in good agreement with the previous analytical solutions [21–23] with at least 4-
digit accuracy. The values of FI,homo can also be computed using Eq. (19) with an error within 0.59% [22].
FI;homo ffi
ffiffiffiffiffiffiffiffi
2W
pa

r
tan

pa
2W

0:752þ 2:02a=W þ 0:37½1� sinðpa=2WÞ�3

cosðpa=2WÞ ð19Þ
Figs. 12a–14a clearly depict that there is an inflection point around a/W = 0.4 for arbitrary a, b regarding the tendency of F1/
FI,homo. Specifically, F1/FI,homo increases with increasing a under fixed b before this point, but increases with decreasing a after
this point. However, F2 increases monotonously with decreasing b for fixed a and a/W within the range of 0.1 < a/W < 0.9, and
increases monotonously with decreasing a for fixed b and a/W. In addition, over the whole range of a–b space, Fig. 13a shows
that F1/FI,homo peaks at a = 0.95, b = 0 when a/W < 0.4, but bottoms out at a = 0.95, b = 0 when a/W > 0.4 for the whole a–b
space. Fig. 14a shows F1/FI,homo reaches the lowest point at a = 0.85, b = 0.45 when a/W < 0.4. However, the lowest point
for a/W > 0.4 is not situated at one unique (a, b). From Figs. 12b–14b, it is found that F2 peaks at a = 0.1, b = 0.2 when a/
W < 0.4 and at a = 0.15, b = �0.2 when a/W > 0.4 for the whole a–b space. On the other hand, F2 bottoms out at
a = 0.95, b = 0 when a/W < 0.4 and at a = 0.85, b = 0.45 when a/W > 0.4. The exact maximum and minimum values of F1, F2

are listed in Table 5, and the corresponding material composite parameters a, b are also tabulated in the brackets.

4. Conclusions

In this paper, the finite element method focusing on the zero element at the crack tip was successfully applied into solv-
ing the stress intensity factors of the edge interface crack in a bi-material bonded dissimilar strip subjected to axis longitu-



Fig. 14. Variations of: F1 (a) and F2 (b) with a, a/W for b = 0.45.

(a)

(b)

Fig. 13. Variations of: F1 (a) and F2 (b) with a, a/W for b = 0.
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Table 4
The values of FI,homo for the homogenous plate.

a/W Kaya and Erdogan [21] Noda et al. [22] Current Ref. [23]

?0 1.1215 1.1215 1.121 1.122
0.1 1.1892 1.189 1.189 1.196
0.2 1.3673 1.367 1.367 1.367
0.3 1.6599 1.659 1.660 1.655
0.4 2.1114 2.111 2.111 2.108
0.5 2.8246 2.823 2.824 2.827
0.6 4.0332 4.032 4.031 4.043
0.7 6.3549 6.355 6.352 6.376
0.8 11.955 11.95 11.95 11.99
0.9 34.633 34.62 34.60 34.72

Table 5
Maximum and minimum values of F1 and F2 for 0.1 < a/W < 0.9.

a/W F1min(a, b) F1max(a, b) F2min(a, b) F2max(a, b)

0.1 1.138 (0.7, 0.4) 1.470 (0.95, 0) �0.442 (0.95, 0.1) �0.007 (0.05, 0.1)
0.2 1.345 (0.85, 0.45) 1.474 (0.95, 0) �0.347 (0.95, 0) 0.108 (0.1, 0.2)
0.3 1.653 (0.85, 0.45)) 1.698 (0.95, 0) �0.270 (0.95, 0) 0.072 (0.1, 0.2)
0.4 2.105 (0.95, 0.3) 2.124 (0.15, �0.2) �0.182 (0.95, 0) 0.020 (0.1, 0.2)
0.5 2.744 (0.95, 0) 2.843 (0.7, 0.4) �0.195 (0.85, 0.45) 0.053 (0.05, �0.2)
0.6 3.814 (0.95, 0) 4.060 (0.85, 0.45) �0.438 (0.85, 0.45) 0.243 (0.15, �0.2)
0.7 5.977 (0.95, 0) 6.378 (0.7, 0.4) �1.011 (0.85, 0.45) 0.660 (0.15, �0.2)
0.8 10.885 (0.95, 0) 11.940 (0.15, 0.1) �2.719 (0.85, 0.45) 1.810 (0.15, �0.2)
0.9 31.207 (0.95, 0) 34.559 (0.05, 0) �11.741 (0.85, 0.45) 7.441 (0.15, �0.2)
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dinal uniform tensile stress. The stress intensity factors were evaluated for the whole range of combinations of materials and
the relative crack sizes. Then, variations of the dimensionless stress intensity factors F1, F2 for various relative crack size a/W
were indicated for arbitrary material combinations and relative crack sizes. And the effect of material combination and rel-
ative crack size to the stress intensity factors were investigated systematically. Besides, since a linear relationship of
F1; F2 / ða=WÞk�1 was observed for the shallow edge crack case, a useful approximate function was proposed to compute
the stress intensity factors for arbitrary material combinations.
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