はく離強度の便利で正確な評価法の提案*

宮崎 達二郎¹⁾ 野田 尚昭²⁾ 内木場 卓巳³⁾ 李 戎⁴⁾ 佐野 義一⁵⁾

Proposal of a Convenient and Accurate Method for Evaluation of Debonding Strength

Tatsujiro Miyazaki Nao-Aki Noda Takumi Uchikoba Rong Li Yoshikazu Sano

A debonding fracture criterion of single lap joints is discussed. Two distinct intensities of singular stress fields corresponding to two singular indexes are calculated accurately by the reciprocal work contour integral method. The results show the ratio of the intensities of two types of the singular stress fields is almost the same for the various adhesive geometries. Therefore the criterion can be expressed in terms of the intensity of singular stress field having the stronger singularity when aluminum alloy is bonded by epoxy resin. The proposed method can be applied to evaluating the bonding strength for various structures conveniently.

KEY WORDS : Materials, Adhesive, Test/evaluation, Debonding fracture criterion, Single lap joint, Intensity of singular stress field, Reciprocal work contour integral method, Joining, FEM (D3)

1. 緒 言

構造用接着剤は、耐疲労性の向上、部品表面の平滑化、異 種材料同士の接合、重量の軽減、密封性、設備費低減・工数 削減といった生産経済性など多くの優れた点を有することか ら、自動車においてもよく用いられている⁽¹⁾⁻⁽⁶⁾.通常、構造 用接着剤は、溶接、ビス、ボルトなどの代わりに車体の構造 部分の接合に使用される.接着力が大きく、構造材料と同等 あるいはそれに準ずる強度を有するが⁽¹⁾、はく離破壊する場合 はその強度が著しく低下する⁽⁵⁾.接着信頼性を確保するために は、はく離破壊強度を正しく評価する必要がある.

接着接合継手の強度評価法は、日本工業規格(JIS)によっ て規格化され⁽⁷⁾,それによって実験的に接着強度を知ることが できる.しかしながら、この規格での接着強度は破断荷重で 定義されていることから、破壊モードがはく離破壊であって も、接着強度をはく離破壊基準として用いることはできない. ところで最近、Mintzas – Nowell⁽⁸⁾は*H_{cr}*クライテリオン⁽⁸⁾⁻⁽¹⁰⁾ と呼ばれる特異応力場の強さに基づいた評価法を用いて突合 わせ継手(図1)の引張試験結果を整理し、その有効性を報告 している.また、著者らも試験片破断時の特異応力場の強さ で整理し、同様な結果が得られることを確認した^{(11),(12)}.はく 離破壊の現象に基づき、実際の接着接合部の強度評価に適用 可能であることから、特異応力場の強さは合理的かつ実用的

*2013年11月25日受理.

1) 琉球大学工学部(903-2102 沖縄県中頭郡西原町千原1番地) 2)・5) 九州工業大学大学院工学研究院(804-8550 北九州市戸 畑区仙水町1-1)

3)・4) 九州工業大学大学院工学府(804-8550 北九州市戸畑区 仙水町 1-1) な評価方法,評価パラメータとして大いに期待される^{(13), (14)}. そこで本研究では,接着接合体の強度試験にしばしば用いら れる単純重ね合わせ継手(図2)の接合端部の特異応力場の強 さを正確に求めるとともに,その結果に基づいて実験結果⁽¹⁵⁾ が便利に整理できることを示す.

2. 単純重ね合わせ継手の実験データ

単純重ね合わせ継手に関してこれまでにも多くの実験が行われており JIS にも規定されている⁽⁷⁾. しかしながら,荷重負荷時に試験片が変形することが示されていないので,その特異応力場を正確に求めることが困難であることが検討により明らかとなった.そこで本研究では,板厚の大きな試験片を用いて行われた Park ら⁽¹⁵⁾の実験結果に注目する.実験では,被着材にアルミニウム合金6061-T6(ヤング率 $E_1 = 68.9$ GPa,ポアソン比 $v_1 = 0.3$),接着剤にエポキシ系接着剤(ヤング率 $E_2 = 4.2$ GPa,ポアソン比 $v_2 = 0.45$)が用いられている.図2に実験で用いられた試験片の形状を示す.試験片は,全長が225mmで,接着層の厚さ t_2 が0.15mmから0.9mmまで,長さ l_2 が10mmから50mmまで種々に変化させたものを対象とする.

Fig. 1 Butt joint^{(8),(11),(12)}

Fig. 2 Single lap joint⁽¹⁵⁾

	-		
Specimen	l_2 [mm]	<i>t</i> ₂ [mm]	P_{af} [kN]
A10	10	0.15	6.87
A15	15	0.15	10.57
A20	20	0.15	12.41
A25	25	0.15	14.17
A30	30	0.15	14.56
A35	35	0.15	16.41
A40	40	0.15	18.09
A50	50	0.15	18.22
A25-30	25	0.30	14.32
A25-45	25	0.45	14.26
A25-90	25	0.90	14.19
A30-30	30	0.30	16.91
A30-45	30	0.45	16.12
A30-90	30	0.90	15.37

Fig. 3 Adhesive tensile strength^{(20),(21)}

表1に引張せん断接着強さ*P*_{af}を示す. 試験片 A10 を除い たいずれも荷重と変位の関係がほぼ直線的であることから, それらは界面端部より生じたはく離がき裂に成長し,それが 不安定的に伝ばすることで破断したと考えられる. これらの 結果は,破壊基準に界面端部の特異応力場の強さを用いるこ との妥当性を与える.

図3に接着層厚さ t_2 を一定とした場合の P_{af} を示す.Lが長 くなるにつれて P_{af} は大きくなる傾向にある.図4に破断時 の接着層での平均せん断応力 τ_c を示す. L_2 が15mm以下の場 合, τ_c が約28.3MPaで一定となっているが, L_2 が15mmより 長くなると, τ_c は減少する傾向を示している.能野・永弘⁽¹⁶⁾

Fig. 4 Average shear stress at fracture of specimens with $t_2 = 0.15 \text{ mm}^{(20), (21)}$

Fig. 5 Analysis model and boundary condition

は、接着層長さが短い場合は接着層が全範囲で降伏して破壊 に至ることを報告している.そして、そのような場合は、τ_cが 一定となる傾向を示す.本研究では*l*₂が15mm以下では凝集 破壊、それ以上でははく離破壊が生じたと考える.この実験 結果からもわかるように、接着層長さが長くなり、界面のは く離から破壊が始まる場合には平均せん断応力を破壊基準に 用いることができない.

3. 接着接合体の強度試験片の解析

3.1 単純重ね合わせ継手の特異応力場

図 5 に解析モデルを示す. l_1 および l_1 は被着体の長さ,厚 さ, l_2 および l_2 は接着層の長さ,厚さである.また, E_1 , v_1 および E_2 , v_2 はそれぞれ被着体および接着剤のヤング率,ポ アソン比である.

被着体と接着剤の界面端部で特異応力場が生じることは、 よく知られている.この特異応力場は、特異性指数 λ によっ て支配される⁽¹⁷⁾. λ を求めるための特性方程式は Bogy^{(18),(19)} によって最初に導かれており、図5の点Oでは次のように表 される^{(17),(20),(21)}.

$$4\sin^{2}(\pi\lambda)\left\{\sin^{2}\left(\frac{\pi\lambda}{2}\right) - \lambda^{2}\right\}\beta^{2} + 4\lambda^{2}\sin^{2}(\pi\lambda)\alpha\beta$$
$$+\left\{\sin^{2}\left(\frac{\pi\lambda}{2}\right) - \lambda^{2}\right\}\alpha^{2} - 4\lambda^{2}\sin^{2}(\pi\lambda)\beta$$
$$-2\left\{\lambda^{2}\cos(2\pi\lambda) + \sin^{2}\left(\frac{\pi\lambda}{2}\right)\cos(\pi\lambda) + \frac{1}{2}\sin^{2}(\pi\lambda)\right\}\alpha$$
$$+\sin^{2}\left(\frac{3\pi}{2}\lambda\right) - \lambda^{2} = 0$$
(1)

ここで、 α および β は Dundurs の複合材料パラメータ⁽²²⁾であり、横弾性係数 G_m (m=1は被着材、2 は接着剤を表す)、ポ

アソン比vmを用いて次のように定義される.

$$\alpha = \frac{G_2(\kappa_1 + 1) - G_1(\kappa_2 + 1)}{G_2(\kappa_1 + 1) + G_1(\kappa_2 + 1)}, \quad \beta = \frac{G_2(\kappa_1 - 1) - G_1(\kappa_2 - 1)}{G_2(\kappa_1 + 1) + G_1(\kappa_2 + 1)},$$

$$\kappa_m = \frac{3 - \nu_m}{1 + \nu_m} \text{(plain stress)}, 3 - 4\nu_m \text{(plain strain)}. \quad (2)$$

Park ら⁽¹⁵⁾の実験における被着材と接着剤の組合せでは $\alpha = -0.8699$, $\beta = -0.006642$ となり,特性方程式の解は2実 根 $\lambda_1 = 0.6062$, $\lambda_2 = 0.9989$ となる.その場合,界面端部の点 O から $\theta = 0$ の界面に沿ってある距離*r*だけ離れた位置での 応力 σ_{θ} および $\tau_{r_{\theta}}$ は,それぞれ次のように表される.

$$\sigma_{\theta} = \frac{K_{1}}{r^{1-\lambda_{1}}} f_{\theta\theta}(0,\lambda_{1}) + \frac{K_{2}}{r^{1-\lambda_{2}}} f_{\theta\theta}(0,\lambda_{2}) = \frac{K_{\sigma,\lambda_{1}}}{r^{1-\lambda_{1}}} + \frac{K_{\sigma,\lambda_{2}}}{r^{1-\lambda_{2}}}$$

$$\tau_{r\theta} = \frac{K_{1}}{r^{1-\lambda_{1}}} f_{r\theta}(0,\lambda_{1}) + \frac{K_{2}}{r^{1-\lambda_{2}}} f_{r\theta}(0,\lambda_{2}) = \frac{K_{\tau,\lambda_{1}}}{r^{1-\lambda_{1}}} + \frac{K_{\tau,\lambda_{2}}}{r^{1-\lambda_{2}}}$$
(3)

ここで, K_k (k = 1, 2) は任意の実定数, $f_{\theta\theta}(\theta, \lambda_k)$ および $f_{r\theta}(\theta, \lambda_k)$ はそれぞれ応力場の様式を表すもので, α , β お よび λ_k で決まる θ の関数, K_{σ,λ_k} および K_{r,λ_k} は特異応力場の 強さである.式(3)に示すように,4つの特異応力場の強さ K_{σ,λ_i} , K_{σ,λ_2} , K_{r,λ_i} および K_{r,λ_2} は2つの実定数 K_1 , K_2 で決まるこ とから, 界面端部近傍の特異応力場もまたその2つ実定数で 決まることになる.

3.2 これまでの解析の問題点と本論文の解析法

先の研究で著者ら(20),(21),(23)は、単純重ね合わせ継手の場合、 接着層の厚さおよび長さの変化であれば、特異応力場には相 似に近い関係が生じることを明らかにした^{(20), (21), (23) - (25)}. そ して、実数の特異性指数を2つ有する単純重ね合わせ継手の 引張試験結果が、応力特異性の強い方の1つの特異応力場の 強さで近似的に整理できることを示した^{(20),(21)}.しかしながら, 先の研究(20),(21)では2つの特異応力場の強さをそれぞれ正確に 求めて議論していないので、どの程度相似性があるかは不明 である.はく離破壊基準を特異応力場の強さで統一的に表す 上で、特異応力場の相似性を確認することは極めて重要であ ると考えられる. また, 文献(20), (21)の方法では, 接着層寸 法が変化しても特異応力場は相似であるといった仮定がなさ れ、特異応力場の強さは相対値でしか求められない. すなわ ち, 接着層寸法が異なる単純重ね合わせ継手①, ②の特異応 力場の強さをそれぞれ $K^{\oplus}_{\sigma,\lambda_1}$, $K^{\oplus}_{\sigma,\lambda_2}$, $K^{\oplus}_{\sigma,\lambda_1}$, $K^{\oplus}_{\sigma,\lambda_2}$ とする と, $K_{\sigma,\lambda_2}^{\mathbb{O}} / K_{\sigma,\lambda_1}^{\mathbb{O}} = K_{\sigma,\lambda_2}^{\mathbb{O}} / K_{\sigma,\lambda_1}^{\mathbb{O}}$ の仮定の下で特異応力場の 強さの比 $K^{@}_{\sigma,\lambda_1}/K^{@}_{\sigma,\lambda_1}$ しか求めることができない. $K^{@}_{\sigma,\lambda_1}$, $K^{\mathbb{O}}_{\sigma,\lambda_2}$, $K^{\mathbb{Q}}_{\sigma,\lambda_1}$, $K^{\mathbb{Q}}_{\sigma,\lambda_2}$ そのものを求めることができないこと から、はく離強度の絶対値での議論はなされていない.

そこで本研究では、先の研究^{(20),(21)}で明確にされていなかっ た2つの特異応力場の強さを、相反仕事経路積分法⁽²⁶⁾ (Reciprocal Work Contour Integral Method,以下では、RWCIM と呼ぶ)により正確に求める。そして、応力特異性の強い方 と弱い方の特異応力場の強さを比較しながら、特異応力場の 相似性について検討を行う。さらに、単純重ね合わせ継手が

Fig. 7 Mesh pattern near the interface edge corner

Table 2 K_{σ,λ_1} and K_{σ,λ_2} of specimen A25 under $\sigma_0 = 1$ MPa

	$e_{\min} = 3^{-11} \mathrm{mm}$		$e_{\min} = 3^{-9} \mathrm{mm}$	
l/e_{\min}	$K_{\sigma,\lambda_{\mathrm{l}}}$	K_{σ,λ_2}	$K_{\sigma,\lambda_{\mathrm{l}}}$	K_{σ,λ_2}
5	0.1011	- 0.5553	0.1011	- 0.5510
10	0.1010	- 0.5500	0.1010	- 0.5491
20	0.1010	- 0.5492	0.1010	- 0.5486
40	0.1010	- 0.5484	0.1010	- 0.5486
80	0.1010	- 0.5485	0.1010	- 0.5484
K_{σ,λ_1} : MPa · m ^{1-λ_1} , K_{σ,λ_2} : MPa · m ^{1-λ_2}				

破壊に至る際の特異応力場の強さ $K_{\sigma c}$ を応力特異性の強い方の特異応力場の強さで表せること、 $K_{\sigma c} = -$ 定ではく離破壊基準を表せることの妥当性について議論する.

図6に解析で用いた積分経路Cを示す.有限要素解析では, 平面ひずみ状態を仮定した.コードには,市販のMSC Marc 2008 R1を用いた.図7に界面端部近傍での要素分割の様子を 示す.積分経路を含む界面端部およびその周辺の要素は一辺 が emin の正方形状の8節点四角形要素,それ以外では4節点 四角形要素を用いた.

3.3 解析結果および考察

試験片 A25 の場合を代表例として,その解析結果について 述べる.表2に図6の積分経路において e_{\min} および l/e_{\min} を変 化させながら求めた $\sigma_0 = 1$ MPa のときの特異応力場の強さを 示す.特異性の強い λ_1 における特異応力場の強さ K_{σ,λ_1} は,そ れぞれ l/e_{\min} の小さい領域から一定の値に収束している.一方, 特異性の弱い λ_2 における K_{σ,λ_2} は, l/e_{\min} が大きくなるにつ れて一定値に収束する傾向が見られた.作用応力 $\sigma_0 = 1$ MPa のときの試験片 A25 の特異応力場の強さは, $K_{\sigma,\lambda_1} = 0.1010$

Fig. 8 Comparison between stress distribution of Specimen A 25 by Equation (3) and FEM

Table 3 Intensities of singular stress field under $\sigma_0 = 1$ MPa

Specimen	$K_{\sigma,\lambda_{ m l}}$	K_{σ,λ_2}	$K_{ au,\lambda_1}$	$K_{ au,\lambda_2}$
A10	0.1065	- 0.6469	- 0.04981	- 0.01378
A15	0.1083	- 0.6021	-0.05068	- 0.01282
A20	0.1056	- 0.5735	- 0.04940	- 0.01222
A25	0.1010	- 0.5485	- 0.04723	- 0.01168
A30	0.09606	- 0.5237	- 0.04494	- 0.01116
A35	0.09107	- 0.4985	- 0.04261	- 0.01062
A40	0.08618	- 0.4741	- 0.04032	- 0.01010
A50	0.07680	- 0.4280	- 0.03593	- 0.009118
A25-30	0.09796	- 0.5022	- 0.04583	- 0.01070
A25-45	0.09777	- 0.4884	- 0.04574	- 0.01040
A25-90	0.1013	-0.4888	- 0.04738	- 0.01041
A30-30	0.09294	- 0.4785	- 0.04348	- 0.01019
A30-45	0.09246	- 0.4644	- 0.04325	- 0.009893
A30-90	0.09482	- 0.4631	- 0.04436	- 0.009865

 K_{σ,λ_1} , K_{τ,λ_1} : MPa·m^{1- λ_1}, K_{σ,λ_2} , K_{τ,λ_2} : MPa·m^{1- λ_2} MPa·m^{1- λ_1}, $K_{\tau,\lambda_1} = -0.04723$ MPa·m^{1- λ_1}, $K_{\sigma,\lambda_2} = -0.5485$ MPa·m^{1- λ_2}, $K_{\tau,\lambda_2} = -0.01168$ MPa·m^{1- λ_2}であった. これらの 値を式(3)に代入して得られた界面上の θ 方向応力 σ_{θ} , せん 断応力 $\tau_{r\theta}$ および FEM より得られたそれらの応力値を図 8 に 示す. 線は RWCIM よって得た特異応力場の強さを式(3)に代 入して得た応力値,点は FEM より得られた応力値である. $r \le 0.01$ mm の範囲で点は曲線上によく分布していることが わかる.

表3にすべての試験片の $\sigma_0 = 1$ (図5参照)での特異応力 場の強さを示す.ここで、式(3)に示すように K_{σ,λ_i} および K_{τ,λ_i} は K_1 で表されることから、 $K_{\tau,\lambda_i}/K_{\sigma,\lambda_i}$ は接着層の長さ l_2 、厚 さ t_2 に関係なく一定値となる.同様に、 $K_{\tau,\lambda_2}/K_{\sigma,\lambda_2}$ もまた一 定値となる.本解析では、 $K_{\tau,\lambda_i}/K_{\sigma,\lambda_i} \equiv -0.4678$ 、 $K_{\tau,\lambda_2}/K_{\sigma,\lambda_2} \equiv 0.02130$ となっている.表4に $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_i}$ およ び $K_{\tau,\lambda_2}/K_{\tau,\lambda_i}$ の値を示す.試験片A10、A15を除くと、 $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_i}$ は約-5.574~-4.827、 $K_{\tau,\lambda_2}/K_{\tau,\lambda_i}$ は約0.2198~ 0.2538と l_2 および t_2 に関係なくほぼ一定の値となっている.

Table 4	$K_{\sigma,\lambda_2}/K_{\sigma,\lambda_1}$	and	$K_{\tau,\lambda_2}/K_{\tau,\lambda_1}$	
---------	---	-----	---	--

Specimen	$K_{\sigma,\lambda_2}/K_{\sigma,\lambda_1}$	$K_{ au,\lambda_2}/K_{ au,\lambda_1}$
A10	- 6.075	0.2766
A15	- 5.557	0.2530
A20	- 5.431	0.2473
A25	- 5.430	0.2473
A30	- 5.452	0.2483
A35	- 5.474	0.2492
A40	- 5.501	0.2505
A50	- 5.574	0.2538
A25-30	- 5.125	0.2334
A25-45	- 4.995	0.2274
A25-90	- 4.827	0.2198
A30-30	- 5.148	0.2344
A30-45	- 5.022	0.2287
A30-90	- 4.885	0.2224

 $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_1}$, $K_{\tau,\lambda_2}/K_{\tau,\lambda_1}$: m^{λ_1 - λ_2}

Fig. 9 Relationship between, $\sigma_{\theta}/(K_{\sigma,\lambda_{1}}/r^{1-\lambda_{1}})$ $\tau_{r\theta}/(K_{\tau,\lambda_{1}}/r^{1-\lambda_{1}})$ and r

これは、 σ_{θ} と $\tau_{r\theta}$ に次のような相似に近い関係があることを 意味している.

$$\sigma_{\theta} \cong \frac{K_{\sigma,\lambda_{1}}}{r^{1-\lambda_{1}}} \left(1 + C_{\sigma} r^{\lambda_{2}-\lambda_{1}} \right), \quad \tau_{r\theta} \cong \frac{K_{\tau,\lambda_{1}}}{r^{1-\lambda_{1}}} \left(1 + C_{\tau} r^{\lambda_{2}-\lambda_{1}} \right) \quad (4)$$

ここで、 C_{σ} および C_{τ} は定数である. 図 8 で点が曲線とよく 重なっている $r \leq 0.01 \text{ mm}$ において、 $\sigma_{\theta}/(K_{\sigma,\lambda_i}/r^{1-\lambda_i})$ および $\tau_{r\theta}/(K_{\tau,\lambda_i}/r^{1-\lambda_i})$ をrで整理した結果を図 9 にそれぞれ示す. 試 験片 A10、A15 を除いて $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_i}$ および $K_{\tau,\lambda_2}/K_{\tau,\lambda_i}$ が最大 となる A50、最小となる A25-90 も付け加えた. 試験片 A10、 A15 以外はすべて薄墨の領域内を通ることから、 $\sigma_{\theta}/(K_{\sigma,\lambda_i}/r^{1-\lambda_i})$ の値はほぼ 1 となる.

式(3)に示すように K_{σ,λ_i} および K_{r,λ_i} は1つの実定数 K_1 で決まることから、それらの1つで代表することができる. K_{σ,λ_i} で代表すると、単純重ね合わせ継手がはく離破壊しないため

Fig. 10 Relationship between K_{σ,λ_1} and l_2

Fig. 11 Relationship between $K_{\sigma c} = K_{\sigma, \lambda_1}|_{P=P_{af}}$ and l_2 の条件は次のように表される.

 $K_{\sigma,\lambda_1} \le K_{\sigma c} \tag{5}$

ここで, $K_{\sigma c}$ ははく離破壊に対する限界の特異応力場の強さである.

4. 特異応力場の強さによるはく離破壊基準の記述

3 章で述べたように、界面端部近傍の特異応力場は λ_i で支配され、特異応力場の強さは K_{σ,λ_i} で代表することができる. 以下では、これを基にはく離破壊に対する限界の特異応力場の強さについて議論する. l_2 、 t_2 を変化させたときの相対値での議論は前報^{(20),(21)}でも行っている.本論文は RWCIM を用いることにより初めて可能となった絶対値での議論を行う. 図 10 に t_2 を 0.15mm に固定し、 l_2 を変化させながら求めた $\sigma_0 = 1$ MPa における特異応力場の強さ K_{σ,λ_i} を示す. l_2 が15mm より大きくなると、 K_{σ,λ_i} は減少傾向にあることがわかる. 図 11 に $t_2 = 0.15$ mm の試験片 A20 から A50 のはく離破壊基準 K_{\sigmac} を示す. ここで、 K_{\sigmac} は破断荷重 $P = P_{af}$ での特異応力場の強さ $K_{\sigma,\lambda_i}|_{P=P_{af}}$ である.実線は丸印の平均である. 多少のばらつきは見られるが、 K_{\sigmac} は l_2 に関係なく一定となっている.

図 12 に $l_2 \ge 25$, 30mm に固定し, $t_2 \ge 30$ 化させながら求め た $\sigma_0 = 1$ MPa における $K_{\sigma,\lambda_1} \ge 7$ ・実線は $l_2 = 25$ mm, 破線 は 30mm の場合である. K_{σ,λ_1} は、いずれの場合も t_2 に関係な くほぼ一定となっている. 図 13 に $l_2 = 25$ mm の試験片 A25 から A25-90, $l_2 = 30$ mm の A30 から A30-90 の $K_{\sigma c} \ge 7$.

Fig. 12 Relationship between K_{σ,λ_1} and t_2

Fig. 13 Relationship between $K_{\sigma c} = K_{\sigma, \lambda_1}|_{P=P_{af}}$ and t_2

Fig. 14 Debonding fracture criterion $K_{\sigma c}$

丸印は $l_2 = 25 \text{ mm}$, 三角印は 30mm の試験片の $K_{\sigma c}$, 実線は それらの平均である.試験片 A30-30 ($l_2 = 30 \text{ mm}$, $t_2 = 0.3 \text{ mm}$) に比較的大きなばらつきが見られるが, それを含めても 10% 程度の範囲内で丸印, 三角印は実線の周りに 分布しており, $K_{\sigma c}$ は l_2 に関係なく一定となっている.

図 14 に図 11 および図 13 の $K_{\sigma c}$ を示す.実線は $K_{\sigma c}$ の平均 値 $K_{\sigma c,ave}$ であり、その値は 4.030 MPa·m^{1-Ai} であった。10%程 度のばらつきはあるが、 $K_{\sigma c}$ は接着層の長さLおよび厚さ t_2 に関係なくほぼ一定となっているのが確認される。本研究で 取り扱う重ね合わせ継手の問題で寸法 L_2 および t_2 を変化させ るとき、 $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_1}$ および $K_{\tau,\lambda_2}/K_{\tau,\lambda_1}$ はほぼ等しい値をとる。 よって、特異応力場には相似に近い関係が生じるため、特異 性の強い特異応力場の強さのみで破壊基準を記述できるもの と考えられる。なお、陳・西谷⁽²⁷⁾が指摘しているように、一

Vol.45,No.5,September 2014.

般に2つの異なる特異場で表される問題を、特異性の強い指数のみに注目して取り扱うと正確な評価ができない.

以上,本論文では単純重ね合わせ継手の界面端部に形成される特異応力場の相似性および破壊モードごとに分けて接着 強度を評価する方法について述べた.JIS 規格では,実験によって得られた破壊荷重を破壊モードの区別なく接着強度としている.そのため,接着強度は破壊基準として評価に用いることはできない.一方,特異応力場の強さで表された破壊基準は破壊じん性値のように固有の物性値であり,はく離破壊の破壊力学的評価を可能にする.また,複数個の特異応力場の強さが現れる場合においても特異応力場の相似性から応力 特異性の強い方の特異応力場の強さでははく離破壊を評価することができる.特異応力場の強さは市販の有限要素解析コードを用い,*H*-integral⁽⁸⁾⁻⁽¹⁰⁾, RWCIM⁽²⁶⁾,第ゼロ節点法⁽²⁰⁾. (^{21),(23)-(25)}などで精度良く求めることができるので,本評価法は既存の設備と必要最小限度の材料試験ではく離強度を評価できる点で非常に有用であると考えられる.

5. 結 言

本研究では、接着接合体の強度試験片の特異応力場の強さ を正確に求めるとともに、種々の接合強度の簡便な評価法を 示した.提案する方法は種々の接着継手の評価に応用できる. 得られた知見をまとめると以下のようになる.

- (1) 接着層長さが極端に短い場合の破壊条件は接着層の平均 せん断応力で表されるが、それ以外の場合は特異応力場の 強さで接着層の長さおよび厚さに関係なく表現できる.
- (2) 応力特異性の強い方の特異応力場の強さK_{σ,λ} で l₂ および t₂ に関係なく,±10%程度のばらつきではく離破壊基準を 表すことができる.
- (3) 4 つの特異応力場の強さ K_{σ,λ_1} , K_{σ,λ_2} , K_{τ,λ_1} , K_{τ,λ_2} を正 確に求め、その比 $K_{\sigma,\lambda_2}/K_{\sigma,\lambda_1}$, $K_{\tau,\lambda_2}/K_{\tau,\lambda_1}$ に注目すると これらは種々の接着層の長さ l_2 および厚さ t_2 に対してあ まり変化せず、ほぼ等しい値をとることがわかった.
- (4) 接着部の寸法 l₂ および t₂ を変化させるだけであれば、特 異応力場には相似に近い関係があることがわかった. こ のことが結論(1),(2)の簡便な評価が可能となる理由であ ると考えられる.
- (5) 著者らは,先の研究^{(20),(21)}で*l*₂,*t*₂が異なっても特異応 力場が相似となることを仮定して相対的なはく離強度 の評価を行った.本論文では,RWCIMを用いて初めて 可能となったはく離破壊に対する限界値そのものでの 直接的な議論を行った.

参考文献

- (1) 野津英夫ほか:自動車工業における接着剤およびシー リング剤の最近の進歩,自動車技術, Vol. 31, No. 10, p. 902-911 (1977).
- (2) 野沢旭ほか: 自動車用接着剤・シーリング材の現状と 動向, 自動車技術, Vol. 32, No.9, p. 836-841 (1978).

- (3) 井出正: 自動車における接着技術, 溶接学会誌, Vol. 60, No. 3, p. 219-226 (1991).
- (4) 芦田正: 自動車への接着接合の応用, 溶接学会誌, Vol. 70, No. 2, p. 248-252 (2001).
- (5) 日本材料科学会編: 接着と材料, 東京, 裳華房, 1996, 230p.
- (6) 原賀康介:高信頼性接着の実務,東京,日刊工業新聞 社,2013,196p.
- (7) JIS K6850: 1999, 接着剤ー剛性被着材の引張せん断接 着強さ試験方法.
- (8) Mintzas, A. et al.: Validation of an H_{cr}-based fracture initiation criterion for adhesively bonded joints, Eng. Fract. Mech., Vol. 80, p. 13-27 (2012).
- (9) Qian, Z. et al.: An experimental investigation of failure initiation in bonded joints, Acta Mater., Vol. 46, No. 14, p. 4895-4904 (1998).
- (10) Akisanya, A. R. et al.: Initiation of fracture at the interface corner of bi-material joints, J. Mech. Phys. Solids, Vol. 51, p. 27-46 (2003).
- (11) Noda, N. -A. et al.: Debonding strength analysis for bonded plate based on the intensity of singular stress fields, Proc. ACMFMS 2012, p. 813-816 (2012).
- (12) 野田尚昭ほか: 接着接合板における特異応力の強さを 用いた接着強度の簡便な評価法について、エレクトロ ニクス実装学会誌, Vol. 17, No. 2, p. 132-142 (2014).
- (13) 服部敏雄ほか:界面破壊力学:2.接着・接触端の応力特 異場パラメータ,材料, Vol.49, No.1, p. 123-129 (2000).
- (14) 澁谷忠弘: 異種材料接合端部のはく離発生強度の破壊 力学的評価と電子デバイスへの適用, エレクトロニク ス実装学会誌, Vol. 7, No. 7, p. 639-644 (2004).
- (15) Park, J. -H. et al.: Evaluating the strengths of thick aluminum-to-aluminum joints with different adhesive lengths and thicknesses, Composite Structures, Vol. 92, p. 2226-2235 (2010).
- (16) 能野謙介ほか: 接着継手の予想強度と実験値の比較, 日本機械学会論文集 A 編, Vol. 52, No. 479, p. 1698-1707 (1986).
- (17) 結城良治ほか:界面の力学,東京,培風館,1993,283p.
- (18) Bogy, D. B.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, Trans. ASME, J. Appl. Mech., Vol. 35, p. 460-466 (1968).
- (19) Bogy, D. B.: Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions, Trans. ASME, J. Appl. Mech., Vol. 38, p. 377-386 (1971).
- (20) 宮崎達二郎ほか:特異応力場の強さに基づく単純重ね 合わせ継ぎ手のはく離破壊基準の検討,エレクトロニ クス実装学会誌, Vol. 16, No.2, p. 143-151 (2013).

- (21) Miyazaki, T. et al.: Examination on a criterion for a debonding fracture of single lap joints from the intensity of singular stress field, Proc. 13th Int. Conf. Fract., S11-029 (2013).
- (22) Dundurs, J.: Discussion: "Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading", Trans. ASME, J. Appl. Mech., Vol. 36, p. 650-652 (1969).
- (23) 野田尚昭ほか:単純重ね合わせ接着継手の特異応力場の強さ、日本機械学会論文集 A 編, Vol. 78, No. 789, p.
 651-655 (2012).
- (24) 張玉ほか: 接着接合板における接着層厚さが特異応力の強さに与える影響,日本機械学会論文集A編, Vol. 77, No. 774, p. 360-372 (2011).
- (25) 張玉ほか: 接着接合板における接着層厚さが特異応力 場の強さに与える影響(面内曲げと引張りの比較),日 本機械学会論文集 A 編, Vol. 77, No. 784, p. 2076-2086 (2011).
- (26) Carpenter, W. C. et al.: A path independent integral for computing stress intensities for V-notched cracks in a bi-material, Int. J. Fract., Vol. 35, p. 245-268 (1987).
- (27) 陳玳珩ほか: 接合異材角部の特異応力場について、日本機械学会論文集 A 編, Vol. 57, No. 542, p. 2509-2515 (1991).