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Abstract

Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional
transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced
to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is
shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elas-
tic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the
crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and
boundary element method, which the square root models of the displacement and electric potential discontinuities in ele-
ments near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of
some examples are given.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The piezoelectric materials have coupled effects between the elastic and the electric fields, and have become
of major interest as the functional materials such as actuators and sensors. It is possible to make a system of
intelligent composite materials by combining these piezoelectric materials with structural materials. On the
other hand, both electrical and mechanical disturbances are present in piezoelectric components, and the
strength of the piezoelectric materials is weakened by the presence of defects such as voids and cracks. The
reliability of these structures depends on the knowledge of applied mechanical and electric disturbances. When
cracks are present, they may grow under service load and affect the performance of structures. Due to the dis-
advantage of brittleness and low fracture toughness of piezoelectric materials, a considerable number of
research works have been carried out to investigate the fracture behavior (Deeg, 1980; Pak, 1990; Suo and
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Kuo et al., 1992; Wang, 1992; Norris, 1994; Park and Sun, 1995; Shang et al., 2003; Kumar and Singh, 1996;
Hill and Farris, 1998; McMeeking, 1999; Qin, 2001; Wang and Huang, 1995; Liu and Fan, 2001; Rajapakse
and Xu, 2001; Khutoryansky and Sosa, 1995; Dunn and Wienecke, 1996; Daros and Antes, 2000; Chen and
Lin, 1995; Wang and Zhang, 2005).

Because of mathematical difficulties to treat the coupled electromechanical fields in piezoelectricity, the
majority of the literature concerning crack problems is based on two-dimensional assumptions. Comparative-
ly, few exact solutions are available in the literature for three-dimensional crack problems in piezoelectric
materials. Wang and Huang (1995) obtained the solution for an elliptical crack under uniform tractions
and electric disturbance, if the plane of transversal isotropy is parallel to the crack. Closed-form solutions
for other 3D crack configurations in an infinite piezoelectric body are yet to be found. Thus, to assess
crack-like defects in piezoelectric materials under combined mechanical and electric loadings more efficiently,
it is necessary to establish appropriate numerical tools. There are two important numerical methods. One is
the finite element method (FEM), and another is the boundary element method (BEM). Shang et al. (2003)
have analyzed penny-shaped and elliptical cracks subjected to combined mechanical tension and electric fields
by FEM, and presented some numerical results of the stress intensity factors and energy release rates. BEM is
a powerful tool for the solution of field problems of mathematical physics, since it offers some inherent advan-
tages over FEM, like the discretization of the boundary only and an improved accuracy in flux calculations.
Many publications have already been devoted to the development of fundamental solutions and BEM for pie-
zoelectricity (Deeg, 1980, 2001,), but only a very limited number of them deals with three-dimensional anal-
yses, due to the problems involved resulting from the anisotropy of piezoelectric materials. A 3D Green’s
function for static piezoelectricity and its derivatives have been presented by Deeg (1980) for piezoelectrics
of general anisotropy. Dynamic piezoelectric Green’s functions have been presented by Norris (1994) in the
frequency domain and by Khutoryansky and Sosa (1995) in the time domain. For the particular case of trans-
versely isotropic piezoelectricity, Dunn and Wienecke (1996) for piezoelectrostatics, and Daros and Antes
(2000) for transient analysis developed simplified expressions for the Green’s functions. BEM for static piezo-
electricity with corresponding numerical results for 3D analysis has been presented by Chen and Lin (1995),
and by Hill and Farris (1998). Wang and Zhang (2005) have applied the electrical field saturation model to the
fracture prediction of piezoelectric materials containing electrically impermeable cracks, and obtained the
stress intensity factor and the energy release rate in closed-form. Zhao and Shen et al. (1997) has investigated
the crack problems in piezoelectric materials by BEM and hypersingular integral equation, and given a solu-
tion for circular crack. A set hypersingular integral equations and some numerical results for a planar crack in
an infinite transversely isotropic piezoelectric media has been given by Chen (2003), in which the unknown
function is approximated with a product of the fundamental density function and polynomials. Qin and Noda
(2004) have derived a set of hypersingular integral equations of a three-dimensional crack problem in piezo-
electric materials, and obtained the exact analytical solutions of the singular stresses and electrical displace-
ments near the crack front in a transversely isotropic piezoelectric solid, but not given the numerical
method and solutions.

In this paper, based on the exact analytical solution of the singular stresses and electrical displacements
near the crack front, a numerical method for the crack problems in a three-dimensional transversely isotropic
piezoelectric solid was proposed by the finite-part integral method and boundary element method. It is shown
that for impermeable cracks, the numerical values of the dimensionless intensity factors of Kj and Ky are
equal to that of the dimensionless intensity factor of mode I for elastic isotropic materials.

2. Basic of piezoelectricity

The linear governing equations and constitutive relations for a piezoelectric material in static equilibrium
can be expressed as two separate equations, one representing conservation of momentum and the other con-
servation of electric charge (Deeg, 1980; Pak, 1990; Suo and Kuo et al., 1992; Wang, 1992). To use these two
equations in conjunction with the developed boundary integral equation method, they are combined into one.
In these equations, lowercase indices 7,/ can have values of 1, 2, or 3, and uppercase indices / can take on values
of 1, 2, 3, and 4. The modified governing equation for the piezoelectric material in static equilibrium can be
written as (Deeg, 1980)
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Z,‘J‘i—f—b‘/zo (1)

where X;; is the stress-electric displacement matrix, defined as
i for J=;=1,2,3

DI / 2)

D; for J=4

and by is the body load (force and charge) column vector. A subscript comma denotes the partial differenti-
ation. The combined constitutive equation is written as

2iJ = EiJKIZKl (3)
where E;;g; is the electroelastic constant matrix
Ciji for J,K=1,2,3
e for J=1,23 K=4

Euki = 4
K e for J=4, K=1,2,3, )
—ay for J=4 K=4
and the strain-electric field matrix Zg; takes the form
P & for K=k=1,23 s
K= b, for K=4 5)
In addition, Uk is the elastic displacement-electric potential matrix
w, for K=k=1,2,3
Ug = (6)
¢ for K=4

where 1, and ¢ are the elastic displacement and electric potential, respectively.
3. General solutions for a crack in piezoelectric materials
3.1. Boundary condition of a crack surface

The mechanical boundary condition of cracks in piezoelectric materials is always defined by stress-free
crack surfaces. Several electric boundary conditions were proposed in literature. Among these electric bound-
ary conditions, two different conditions are applied widely. Those are permeable and impermeable conditions.
For the first one, the electric potential and the normal electric displacement should be continuous across the
crack surface

Dy =Dy ¢ " =¢° (7)

where the superscripts + and — denote the upper and lower crack surfaces, respectively. This aspect has been
supported by McMeeking (1999), and Dunn and Wienecke (1996). Pak (1990), and Suo and Kuo et al. (1992)
proposed impermeable conditions on the crack faces

Dy =Dy =0 (&)

This paper presents an analysis for the crack problems in piezoelectric materials based on boundary condition

(8).
3.2. General solutions for a crack in a three-dimensional infinite piezoelectric solid

Consider a flat crack S in an infinite three-dimensional piezoelectric solid. A fixed rectangular Cartesian
system Xx; (i = 1,2,3) is used. The crack is assumed to be in the x; x, plane, and normal to the x; axis. Using
the fundamental solution of the piezoelectric material, the elastic displacements and the electric potential at an
interior point p can be expressed as (Qin and Noda, 2004)
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Ul(p):_/w TI+J 7Q)UJ(Q)dS(Q)7 I’J:1727374 (9)

where O (or Q") is a point on the upper crack surface S*, and T,(p,0)=Typ,0")=— ng, Q") is the value
of the fundamental solutions of the piezoelectric material T}, at upper crack surface S*, which is related the
Green’s function as follows (Hill and Farris, 1998)
oG (p,
Ty(p, Q) :EkJMn%Q)nk (10)
where ; is the unit outward normal vector, &, is the coordinate of point Q, U is the elastic displacement or
electric potential discontinuity, and can be written as

OJ:{Q,:M;—MJ. for J=j=1,23

dp=¢"—¢  for J=4 (1

Using solution (9) and constitutive Eq. (3), the corresponding stress and electric displacements are expressed
as

%) =~ | Skl Q)Ux(Q)ds(Q) (12)
S+
where the integral kernel is as follows
or , or ,
Skis (Ps Q) = Eipn %Q) = —Eim % (13)

3.3. Green’s solution

For the transversely isotropic piezoelectric material, the electro-elastic constants can be written as follows:

Cijit = €12040k1 + Co6(0i 01 + 0410 ;1) + (c13 — €12)(04;03,031 + 03:03;0k1)
+ (cas — co6)(0x03:031 + 040303 + 0;103;03 + 0;103;03;)

+ (c11 + ¢33 — 2¢13 — 4caa) 03030303 (14)
ejj = e310;;03 + e15(0;03; + 6;103:) + (e33 — c31 — 2e15)03:03;03 (15)
ay = andy + (as — aq) 0303 (16)

here cgs = (c11 — c12)/2. For transversely isotropic piezoelectric, Green’s function can be written as an explicit
expression. Here we use the solutions given by Dunn and Wienecke (1996) by a potential method. The gov-
erning equations are expressed as

Ox:

up = {(013915 — cues) % (a_’% + g) + [(caq + c13)e33 — c33(ers + e31)] ﬁ;z}g - %

59|

— ? o* 2 o 5
Uy = {(013615 — cue31) 5o (§7 +$7) + [(cas + c13)ess — ex3(ers +e31)] 557 18 + %
x| 2 20Xy

2

— &, ) oM & (* , @&
uz = —cueis W"’a_xg —044633@4' [c13(e1s + e31) + cases —011833]@ @—F@ g
2 2\ &

2

2
_ & &* ot 2\ (& o
¢ = [cucn (axz + axl) + CaaC33 77+ (cniess — 2cmers — cf3) 2lart3z) 8
1 2 -3 -3 1 2

where the potentials g and iy must satisfy following equations:
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62+62+162 62+62+162 62+62+162 o (18)
wam vald )\ Tl TR ad)\a Tar T e )t T
o0 o 1@
4~ 4 =0 1
<6x% + ox3 + v 6x§> v (19)
here vy = \/cg6/cas, and —1/vi, —1/v3, —1/v3 are the roots of the following cubic equation:
s3+gs2+§s+§=0 (20)
where
a = cyi(ancss + 2eises3) — anciz(cis + 2ca) + cas(assen + 651) — 2esciz(esr +eis)

S8
|

= cufancy + ancn +esi(es +eis)] — cizass(cis + 2caa) + (ers + e3r)(cxers — 2cizess)

+ess(criess — 2cagesr) (21)
¢ = culases + €§3)
d = cn(anca + efs)

If the above Egs. (18) and (19) are solved for a point charge or force, the Green’s functions can be obtained
from the solutions u; and ¢.

3.3.1. Point force charge
For a unit point charge at point &(&,¢5, £3), the elastic displacements and electric potential at point x(x;,x,,
x3) can be expressed as

3 3 .
wy =Y AN uy =) A0 S
i=1 i=1 (22>
: W 3 ¢ 1
Uz = ZA,'/Li R%-’ (f) = ZAiii RT
i=1 i=1
where
_ 2 2 2
R = \/(xl &)+ —&) +z
R =R +z, i=0,1,2,3 (23)
zZi = Vi(x3 - 53)
A= [(c13 + caa)ess — caz(ers + 631)]\’,-3 + (case31 — c13e1s)v;
A= —cusensv! — [esi(c13 + cas) — exscnr + erscis|vi — criers (24)

20 = cxzeaavt + [eis(crs + 2cas) — cnies)v? 4 cacn
and 4; is determined by following equations:
: - n 3 ne 1
DAHZ0 FATIT0 A 29

here

l’l? = 2[);‘(013 + C44V?) + V,‘/‘L:-V(C44 — C33> + V,‘;»;b(els — 633)}
le 2[—/1”(@31 + 615\1[-2) =+ V,'},?7<€33 — 615) + v,«i?(a“ — 033)}

i

3.3.2. Point force in xs-direction
For a unit point force in x3-direction at point &(&;, &,,&3), the elastic displacements and electric potential at
point x(x1,x5,x3) is expressed as
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ZBAf”}eR“a ZB/U”ER“

(27)
—S B 0=y B
where B; satisfies following equations
3 3 3
n¢ 1 n¢

Blllu — 07 Bi ! —_ Bl ! 28
2N 2 T 2 0

3.3.3. Point force in x;-direction
For a unit point force in xj-direction at point &(&,¢,,€3), the elastic displacements and electric potential at
point x(x1,x,x3) is expressed as

=Dy |:Ro_ o~ ;2 } ZD/“ [ F v121512)2}
uz—(xl—fl)(xz—fz)( R2+ZD)1RR*>
(29)
ED i“/ ’(1 A:,]
¢ = zDﬂag
where D; satisfies
3 3
DOV() -+ ZD[V[’)&? = 0, ZDI'/’{;V =0
i=1 i=1
, , , (30)
ZDI/I?) = Oa 12 = 21_7.,:
i=1 i=1
here
I’lf :V[;L?(C44—Cll)+;u (C44+C1;V )-’-/1 (815 +€31Vi2) (31)

4. Hypersingular integral equations

Using the boundary conditions, the hypersingular integral equations for a flat crack in an infinite trans-
versely isotropic piezoelectric solid can be obtained. Let the source point p be taken to the upper crack surface
and represented by P, using the elastic and electric boundary conditions of the crack surface, the hypersingular
integral equations can be obtained as (Qin and Noda, 2004)

—F S B = rary) + k(6 = 3N Q)ASQ) = ~p.(P) 1. f= 1, 2P € 8" (32)
— 7§ }% [k3313(Q) + k34(?)(Q)]ds(Q) = —py(P) PeS* .
—F S haia(©Q) + kd(QI(Q) = ~ay(P) PES' "

where :74 means that the integral must be interpreted as a finite-part integral, and p{P) and ¢o(P) represent

the mechanical and electrical loads on the crack surface due to internal or external loads, and k;; is determined
as
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3
ki =Y [caa(B;i + Divi) + ersd;][cas(vid{ + A7) + 615/1?)]
i=1
3 )
ksz = Y (essdivi 4 c13Bvi — c13D;) (—cisdt + cxvid) + exzvid?)
i=1
3
k34 = Z(—a33A,-v,- + 6333,-\1,- — 631Di)(—C13/1? =+ C33V,-)vlv-v =+ 633\1,-2?) (35)
i=1
3 7 0
kay =Y (es3sdiv; + c3Biv; — cisDj) (—esi A + ex3vid! — azvill)
i=1
3 "
kas =Y (—asdv; + exsBiv; — e31D;)(—es A + e3vid) — a33v,-if’)
i=1

Notice that Eq. (32) is not coupled with Egs. (33) and (34), and can be solved independently. It means that
shear modes are independent of mode I and electric mode. Eqgs. (32)—(34) are hypersingular integral equations,
and can be numerically solved. Solving these equations, all the unknowns can be obtained. Then the mechan-
ical stress intensity factors corresponding to the crack modes I, IT and III as well as the “electric field intensity

factor” K, are defined as
K;= lﬂirr(} o33 (r, 9)‘9:0\/57 Ky = ling o3(r, 9>|0=0‘/57
" - (36)
K”[ = }ﬁl_I}l’(}(ig,](l’, 0)‘0:0\/5 K]V = lrl_Iylng,(}"7 0)‘0:0\/5

where r is the distance from point p, to the crack front point Q,, where (3,n,7) are the local coordinates.

5. Numerical technique

Egs. (32)—(34) are hypersingular integral equations, and can be numerically solved by use of the boundary
element method combined with the finite-part integral method (Qin and Tang, 1993, 1997). Assuming that the
crack surface St is divided into a number of quadrangular or triangular elements, Eqgs. (32)—(34) can be
reduced to a set of linear algebraic equations:

M

Zaacﬂmn(Pnan)l}ﬂ(Qm) = _pz(Pn) OC,ﬁ = 1a27 n= 17 ce . aM Pﬂva € S+ (37)
m=1

M M N

chmn(an 0,)u3(0,,) + Zc2mn(Pna 0,)0(0,) = —p;(P,) (38)
m=1 m=1

M M

Zdlmn(an Qm)il3(Qm) + ZdZmn(an Qm)d)(Qm) = 7q0(Pn) (39)
m=1 m=1

where M is the number of the total nodal points located on the surface S*, P, and Q,, are the nodal points,
Qs pmns Clmns C2mn> A1mn a0d db,,,, are the components of coefficient matrix which can be determined by summing
all the following integrals relating the reference nodal point P, with all the elements in S

1 ~
I, = /S 3 [€3aDov3 (2055 — 317 ) + kiy (805 — 3o p)]iipdé dEy o, f=1,2 (40)
! 1 ~ 1" 1 -
L= / ﬁmdél dé I, = / r_3¢d§1 dé, (41>
S S

Now the main task is to numerically calculate these integrals. Notice that integrals 7/, and I/, are similar to
integral I,,, and can be evaluated similarly. To improve the numerical solution precision, the elements of
S" are divided into two groups. One is the crack front element group which is joined with the crack front,
and the other is the internal element group. The integrals over the latter elements can be calculated as paper
(Qin and Tang, 1993). Here the integrals over the crack front elements will be treated as follows. Among these
integrals, there are not only general integrals, but also hypersingular integrals. If the reference point is not in
the integrating element, the integrals are normal. For a quadrangular element, #; is assumed as follows
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= T M0 = = 30— i M1+ 90 el Hia+ 0] @)
where (&,n7) are the local dimensionless coordinates, cl(”) and cfb) are unknown constants related to the crack
front point a and b, respectively. The relative integrals can be calculated as normal one. It is noticed that
0; defined by (42) has the /r behavior near the crack front, which is consistent with the analytical theory
(Qin and Noda, 2004). If the reference point coincides with one of the nodes of the integrating element, the
integrals are hypersingular, which can be written as follows. Firstly, it is assumed that the reference point
P, coincides with internal point d. Linking point d with b, the quadrangular element is divided into two tri-
angular elements S,,; and S, as shown in Fig. 1. The displacement discontinuities can be expressed as

= /(- %) [Lda§d> + Ll —I—L;,cfh)} 0 € Sy (43)

ii; = [1 —(1-S8.) ﬂ {Ldaf-”’) + Ll + Lbc;@} Q€S (44)

where L,, Ly, L., and L, are the area coordinates of S,,; and S,,», respectively, S, is the area coordinate of
point w, and R is the distance between point d and point w.
The hypersingular integrals related to (43) can be written as

1 r
L :% » [€34D0v0(20,5 — 3rar ) + ki (9 — 3rar )y /1 = zLadads
Sml

1 r r
zjé (D03 (20, = 3rarg) +kua(0ap = 3ror )] 1 = 51 = D)d&y &y
S T
1
1
=3A(1 —2In2) / 0] [c34Dovg (28,5 — 3R,R g) + k11 (25 — 3R 4R 4)]dS), (45)
0

1 / r
L :/ = [ci4D0vé(25“/f —3r,rp) + ki (0ap — 3r,zxr</f)j| 1- ELadél dé,
St
1 r
- / (D26 — 3rg) + iy (6 = 3rar )]y /1= 5(1 = §y) £dér dés

S

1
1
= — 4A(l —1In 2) /0 R3—(9) [cﬁ4D0vé(25“ﬁ — 3R,,7_R‘ﬁ) + k“(éaﬁ — 3R,MR7/;)] (1 — S},)dS], (46)

1 r
I :][ (D028 = 3rarg) + kia(Bp = Brar )]y [1 - TLad s

Sml
L L pnes, -3 ey (3 — 3 1—28,2d¢d
= 3 [Cas 0V (2044 rarp) + ki (Oup V,al”,/;)] p—dé;dé
Sm T R R
1
1
= — 4A(1 —In 2) / R3—(0) [cﬁ4D0vé(25aﬁ — 3R,D(RJ;) + kl](éa/j — 3R7aR,/;)]deSb (47)
0
a
b w a
\
R(ei\y;

d,P, 4 d, P,

Element S Element §,,

ml

Fig. 1. A crack front element.
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where A is the area of element S,,1,# is the symbol of principal-value integral, and S}, is the area coordinate of
point w on the side ab. The hypersingular integrals related to (44) can be analogously treated, here only give
the computing formula for the first one

1 r
[dd = % r—3[Ci4D0Vé(25a/; — 3?“17,[;) —+ k“(é(x/; — 31"#}",/;)] 1 — (1 — SC) ]_edeél dfz
J S

m,

=2A /0 %(9){[0341)0\%(251[; —3R,Ry) + ki1 (6,5 — 3R,R )] [% (348.) —3/S.+(3-5.)
x In B (1+ \/ST)] }dS. (48)

Secondly, if the reference point P, infinitely tends to crack front point a, link point a with ¢, and the element is
divided into two triangular elements S,,,; and S,,» as shown in Fig. 2. The displacement discontinuities can be
expressed as

iy = \[Se |Lil® + Lael” + 1" | 0 € S (49)
i:li = \/;[Lcilf() + Ldﬁl(d) +Lacl(’a)j| Q € SmZ (50)

The hypersingular integrals related to (49) can be written as

[aa :%
Sml

RO ¥ r
:/ [CilD()V(z)(z(Sa[; — 3]"{]11"7/0 + k“(é“f — 3}’"“7”,/;)] \/S_CdG%O r_2 \/;(1 - E)d}” (51)

o

1 r
3 [ci4D0v§(25aﬁ —3rarp) + ki1 (0up — 3r11rvﬂ)] \ /ESL-Lad@ dé,

1
1
=- 8A/ [0) [c34Dov (20,5 — 3R ,R ) + k11 (045 — 3R R )] \/S.dS.
0

1 [r
[ab :7[ ]/‘73 [ci4D0v§(25w — 3]”@}",/;) + kll(éxﬁ — 31’:11"‘/;)] EScLbdél dfz

m

1
—4A / R31(6) (3 DoV2 (28,5 — 3R,R 5) + ki1 (0,5 — 3R R )] \/S.(1 — S.)dS. (52)
0
1., ) r
Iac = r_3 [044D0V0(25aﬁ — 37’7“}”?/3) + kll(éxﬁ — 37"_’11’"5)] ESL'LCdél déz
Sml
1
1
—4A / G [2D072 (26,5 — 3RLR ) + k11 (85 — 3R R 5)]SV2dS, (53)
0

The hypersingular integrals related to (50) can be analogously treated. For the case that the reference point P,
coincides with point ¢ or infinitely tends to point b, the related hypersingular integrals can be analogously
treated as above. After computing the integrals over all the elements, Eqgs. (37)—(39) can now be solved,

b a, P,

Fig. 2. A crack front element.
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and then all the nodal values of ©; and ¢ are known, from which the intensity factors at point Q, on the crack
front can be calculated as follows:

Ki(Qy) = m Jim [kssits(0) + ksad] - (2/p)' (54)
Kip(Qo) = m lim [kisits(0) + kuu] - (2/ )" (55)
Kn(Qy) =~k Jim 7,(0) - (2/p)'"* (56)
Ku(Qy) = meiyDovg Jim (0) - (2/p)'"? (57)

where (3,n,7) are the local coordinates.
6. Comparison with elastic isotropic materials

Compared Egs. (33) and (34) with that for the crack problems in elastic isotropic materials (Qin and Tang,

1993), it can be found that if the term [ks3it3(Q) + k3¢ (Q)] in Egs. (33) and (54) is replaced with Etis(Q)/
8n(1 — v?), Egs. (33) and (54) will be changed as following

E 1_ .
Sn(l — ) %y ﬁus(Q)dS(Q) =-—p3(P) PeS (59)
Ki(00) = gy Jim 1(0) - /) )

Eq. (59) is the same as that for a planar crack in an elastic isotropic material under normal load (Qin and
Tang, 1993), and the stress intensity factor (60) will be converted into that for elastic isotropic materials. Sim-
ilarly, if the term [ky3it3(Q) + kasp] in Eqs. (34) and (55) is replaced as Eti3(Q)/8n (1 — v?), and the electric load
qo 1s instead of the elastic load ps, the electric displacement intensity factor K;;- will be equivalent to the stress
intensity factor Kj (60) for elastic isotropic materials. For mixed mode problems, let that

2 2
v:1+c44k'ﬂ, E=—8(1 — )k (61)
11

Then, Eq. (33) is turned to

1
ﬁ = j% SUU=20)05 + 3vrarlug(Q)ds(Q) = —p,(P) @, f=1,2% Pes (58)

which is the same as that for elastic isotropic materials under shear loads. The formula to evaluate the mixed
mode stress intensity factors (56) and (57) can be replaced as

E o 1/2
Kn(Qo) = g —ay Jim (Q) - 2/p)" (62)
K (Qy) = i(0) - (2/p)""? (63)

8(1 +v) 020,

Formulae Egs. (62) and (63) are the same as those for elastic isotropic materials (Qin and Tang, 1993). There-
fore, it can be seen that the intensity factors for piezoelectric materials can be obtained from those for elastic
isotropic materials.

7. Numerical results
In order to verify above method and illustrate its application, numerical calculations are performed for a

crack embedded in an infinite transversely isotropic piezoelectric solid. The piezoelectric materials PZT-4 and
PZT-6B are used for the computations.
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7.1. Rectangular crack embedded in an infinite body under normal mechanical loads

Consider a rectangular crack embedded in an infinite transversely isotropic piezoelectric body as shown in
Fig. 3. The solid is subjected to normal mechanical load ¢35 and electrical load DS° in infinite. In demonstrating
the numerical results, the following dimensionless intensity factors will be used

F]ZK]/O';;\/E F]V :K]V/Dgo\/g (64)

In case of a/b = 1, the number of the total nodes is taken as 19 x 19. Dimensionless stress and electric displace-
ment intensity factors are listed in Table 1, and compared with those given by Chen (2003). It is shown that the
present results are satisfied. For general cases, the dimensionless stress and electric displacement intensity fac-
tors along the crack front x, = +b are shown in Fig. 4 for different ratios of a/b. It can be noticed that the
stress intensity factors Fy is only related to the mechanical load ¢35, and the electric displacement intensity
factor Fyy is related to the electrical load DS°.

7.2. Elliptical crack embedded in an infinite body

Let us consider an elliptical crack embedded in an infinite transversely isotropic piezoelectric solid as
shown in Fig. 5. The solid is subjected to normal mechanical load ¢35 and electrical load D5 in infinite. In

Ax,

+—a —p|e+—3a —>»

Fig. 3. A rectangular crack.

Table 1

Dimensionless intensity factors Fj,Fy{a/b=1)

xi/a 0 0.143 0.286 0.429 0.571 0.714
Present 0.7533 0.7488 0.7349 0.7095 0.6684 0.6031
Chen 0.7534 0.7488 0.7341 0.7076 0.6645 0.5960

1.00

. [ St —
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Fig. 4. Dimensionless intensity factors F,F;y along the crack front x, = =+ b.
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4
\\/a X1
Fig. 5. An elliptical crack.

demonstrating the numerical results, the dimensionless intensity factors are the same as (64). In case of uni-
form mechanical load and electrical load, the exact solutions of the stress and electric displacement intensity
factors have been obtained by Wang and Huang (1995) as follows:

(1 — K cos? p)'/*
E(k)

where E(k) is the complete elliptical integral of the second kind with argument k*> = 1 — (b/a)’. For different
values of ratio a/b, Table 2 gives the maximal dimensionless stress and electric displacement intensity factors
Fi.Fr (xo=b). In case of a/b =2, Table 3 gives the dimensionless stress and electric displacement intensity
factors Fp,F- along the crack front. It is observed that present results are closed to the exact solutions given
by Wang and Huang (1995). For general cases, the dimensionless stress and electric displacement intensity
factors along the crack front are shown in Fig. 6 for different ratios of a/b.

F]:F]V: (65)

Table 2

The maximal dimensionless intensity factor Fj,Fy (x; = b)

alb 1 4/3 3/2 2
Present 0.6366 0.7230 0.7536 0.8297
Exact 0.6366 0.7239 0.7564 0.8267
Table 3

The dimensionless intensity factor Fy,Fyy (a/b=?2)

¢(degree) 0 15 30 45 60 75 90
Present 0.5774 0.5975 0.6569 0.7198 0.7828 0.8253 0.8297
Exact 0.5839 0.6112 0.6716 0.7342 0.7839 0.8151 0.8257
Chen 0.5787 - - 0.7277 - - 0.8184
Shang 0.5827 - - 0.7445 - - 0.8356
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Fig. 6. Dimensionless intensity factors F,F;y along the crack front.
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8. Conclusion

A flat crack embedded in a three-dimensional infinite transversely isotropic piezoelectric solid subjected to
mechanical and electrical loads is analyzed by the finite-part integral method and boundary element method.

1) A set of hypersingular integral equations of an impermeable crack in a three-dimensional infinite trans-
versely isotropic piezoelectric solid subjected to mechanical and electrical loads is derived. It can be
observed that crack mode II and mode III are coupled, but independent with mode I and electric mode.

2) Based on the analytical solutions of the singular stresses and electrical displacements near the crack
front, a numerical method is proposed by the finite-part integral method and boundary element method,
where the square root models of the displacement and electric potential discontinuities in the elements
near the crack front are applied. The numerical solutions of the stress and electric field intensity factors
of some examples are given. The numerical results show that this numerical technique is successful, and
the solution precision is satisfied.

3) From the numerical solutions, it is shown that for an impermeable crack, the mechanical loads will gen-
erate the stress intensity factors, and the electric load will generate the “electric field intensity factor”
K. Moreover, the dimensionless intensity factors of K; and Kj;- are independent of the material
constants

4) It is shown that the numerical values of the dimensionless intensity factors of K; and K;; are equal to
that of the dimensionless stress intensity factor of mode I for elastic isotropic materials. So, in the case
of impermeable cracks, the solutions of intensity factors K; and Kj;- can be obtained from the stress
intensity factor K; for elastic isotropic materials.
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