論 文

66

焼嵌めで構成された圧延用補強ロールに生じる 残留曲がり生成メカニズムの解明

野田 尚昭* 佐野 義一**

高瀬 康** 下田 祐太朗*** 張 国偉***

Residual Deflection Mechanism for Back-Up Roll

Consisting of Shrink-Fitted Sleeve and Arbor

Nao-Aki NODA*, Yoshikazu SANO**,

Yasushi TAKASE **, Yutarou SHIMODA *** and Guowei ZHANG ***

(Received on February 3, 2016)

First, back-up rolls for rolling require toughness, particularly in the shaft portion, and high-hardness in the sleeve portion. The back-up rolls are classified into two types; one is a single-solid type, and the other is a shrink-fitted construction type consisting of a sleeve and an arbor. The shrink- fitted back up roll has several advantages, for example, different materials can be chosen and the arbor can be reused by replacing the damaged sleeve. Therefore, the shrink-fitted back-up rolls are economical. However, residual deflection becomes a major problem for the shrink-fitted back-up roll. Elucidating the mechanism of the occurrence of residual deflection and devising countermeasures are important issues. Unfortunately conducting a real experiment is difficult because of much time and huge cost. In this paper, we reproduce this phenomenon by elastic FEM analysis, establish a simulation method, and elucidate the mechanism behind underlying residual deflection.

Key words: finite element method, friction joint, fixing, rolling, roll.

1. 緒 言

圧延補強ロールは高い圧延荷重に耐えるために強じんで あることが要求される.特に,また胴部は作動ロールとの 転がり接触の繰返しによるスポーリングに対する強さを得 るため高硬度が要求される.現在補強ロールには一体式の ものが主流であるが,Fig.1に示すアーバ(軸部)にスリー ブ(胴部)を焼嵌めするものもある.このスリーブ組立式 補強ロールではアーバとスリーブそれぞれに適した材料を 選ぶことができ,また使用中に最も損傷の激しいスリーブ のみを交換することでアーバを再使用することができるこ とから,一体式よりも経済的な利点もある.

圧延補強ロールは、圧延製品断面の寸法精度に対する要求からロール軸心の真直度が軸部つけ根の振れで 0.02mm

九州工業大学工学研究院機械知能工学研究系 〒804-8550 北九州市戸畑区仙水町 1-1 Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-chome, Sensui-cho, Tobata-ku, 804-8550, Japan. * 九州工業大学工学部機械知能工学科 同上 程度以下であることが求められる.そのため使用中に発生 するロール曲がりが問題となることがあり、スリーブ組立 式で比較的多い.先行研究では小型ロールを用いた実験に 基づく調査,解析¹⁾が行われてきたが,残留曲がりの要因 やメカニズムについて十分に明らかにされたとはいえない. また負荷時の曲がりと除荷後の残留曲がりとの比較もなさ れていない.

以上の経緯を考えると、スリーブ組立式補強ロールの残 留曲がりの発生のメカニズムを解明し、その対策を立てる ことは重要である.実物試験を行うと結果を得るまでに長 時間を要する上、膨大な費用がかかるなどの問題がある.

Fig. 1 Dimensions of back up roll simply supported [mm]

Department of Mechanical and Control Engineering, Kyushu Institute of Technology, ibid.

^{***} 九州工業大学大学院工学研究科 同上

Department of Mechanical and Control Engineering,, Kyushu Institute of Technology, ibid.

Material properties	Value		
Yield points [MPa]	616		
Tensile strength [MPa]	970		
Young's modules [GPa]	216		
Reduction of area after fracture [%]	53.5		
Breaking elongation [%]	18.5		

 Table 1
 Material properties of Cr-Mo steel

そこで本研究では有限要素法を用いた弾性解析によりこの 現象を再現し、シミュレーション方法を確立し、実験結果 と比較し、そのメカニズムの解明に取り組む.

2. 残留曲がりの実験および解析

2.1 残留曲がり試験¹⁾

対象とするスリーブ組立式補強ロールのモデルを Fig. 1 に示す. 胴部スリーブが焼嵌めによりアーバ(軸部)に組 立てられており,下田等により曲げ試験が行われている. 胴径に対するスリーブ肉厚の比は実物よりもやや大きくし, また長さによる影響をより明確にするために胴径に対する 胴長の比を実物より大きくしている.曲げの測定には 100 ×9.8kN 油圧プレスを用い,3 点曲げによる方法を用いた.

残留曲がりの測定には、測定精度を高めるため、非接着 抵抗線形変換器と自動平衡記録計とを組み合わせて、触針 法でロール軸平行線とロールとの距離を記録する方法が用 いられた.そして、無負荷状態で、小型ロールを 6rpm 一定 速度で回転させ、軸方向に 8 等分する位置それぞれの負荷 方向に生じている残留曲がりを記録用紙から読み取る.

2.2 残留曲がりの解析方法

Fig.1 に示したロールモデルの胴部(スリーブ)は軸(アー バ)に焼嵌め接合され,実圧延で負荷される分布荷重を集中 荷重 Wに置き換えた.アーバ,スリーブ共に Cr-Mo 鋼を使 用し,焼嵌め代 $\delta \varepsilon \delta$ スリーブ内径 d=100mm で除したもの を焼嵌め率 δ/d と定義し,実験と同様に $\delta/d = 1.0 \times 10^{-3} \varepsilon$ 解析に用いた.

Table 1 にモデルロールで用いる Cr-Mo 鋼の物性値を示 す.解析では、W,摩擦係数μそれぞれを変化させて、荷重 負荷時、荷重除荷後および除荷過程においてロール中心軸 のy軸方向たわみで曲がり挙動を評価する.

負荷条件がアーバの塑性域に達しない範囲にあるため, 解析は3次元弾性解析とする.Fig.2に解析モデルを示す. FEM 要素分割には最小寸法1.25mmの六面体一次要素を使 用し,要素数は78600である.解析は対称性を考慮し,全 体の1/2を解析対象とする.

3. 残留曲がりの解析結果

3.1 負荷による曲がりと残留曲がり

Fig.3 にロールのスリーブ中央に $W=30 \times 9.8$ kN を負荷した時のアーバの曲がりについて μ を変化させて解析した結果を示す. Fig.3 から μ の減少に伴って曲がりは増加することがわかる.

Fig. 2 Analytical model and FEM mesh for back up roll

Fig. 3 Deflection at $W=30 \times 9.8$ kN

次に、 $W=30 \times 9.8$ kN を負荷した後、荷重を取り除いた時 の残留曲がりの解析結果を Fig. 4 に示す. Fig. 4 には下田 らが行った実験値 ($\mu=0.2$) もプロットしており、実験値と 本解析により得られた残留曲がりの最大値はロール中央で 15%以内で一致する. なお、曲がりの形状については、実 験誤差の大きさ及び曲がり測定実験においてロール中央部 の値が詳細に測定されてないなどの理由で、解析との関連 性について比較、考察できなかった.

 $\mu=0$ の時,アーバ、スリーブはそれぞれ相互に弾性的に 自由に動く.軸方向に干渉しないため、残留曲がりは発生 しない. $\mu=\infty$ の時、アーバ、スリーブは一体となって弾性 的な挙動をするため残留曲がりは発生しない.

Fig.3とFig.4よりµ=0.2で負荷時の最大曲がり114µmに

68

Fig. 4 Residual deflection after unloaded from $W = 30 \times 9.8$ kN

Fig. 5 Effect of friction coefficient μ on residual deflection of contact area

対する,除荷後の最大残留曲がりは 9.7µm と,負荷時の曲 がりの約 10%である.

3.2 摩擦係数,荷重の残留曲がりへの影響

Fig. 5 に Wを 15×9.8kN, 30×9.8kN, 60×9.8kN と変化 させたときの荷重除荷後の接触部分中央(z=0)での残留曲 がり $\Delta = \delta_{y(z=0)} - \delta_{y(z=175)} \ge \mu \ge 0$ 関係を示す. Fig. 5 より, 残留曲がりは Wの大きさにおおよそ比例する.また, μO 増加($\mu = 0 \rightarrow 1$)に対して残留曲がり Δ は $\Delta = 0$ から直線的に 増加し $\mu = 0.1 \sim 0.2$ 付近で最大となり, その後漸減する. W=15×9.8kN の場合は $\mu \cong 0.1$, W=30×9.8kN の場合は $\mu \cong$ 0.12, W=60×9.8kN の場合は $\mu \cong 0.17$ でそれぞれ残留曲が りは最大になり, そのピークを示す μ は荷重によって変化 する.

4. 残留曲がり生成メカニズムの考察

4.1 軸に対するスリーブの相対すべり

解析や実験結果から,残留曲がりは接合面の摩擦条件す なわち摩擦係数,摩擦面応力および摩擦すべり条件を満た す範囲(4.2 節の"応力準平衡域"に対応)などによって支配 されることが予想される.そこで,**Fig.6**に定義するスリ ーブ・アーバ間の相対すべり $U_z = u_z^{\text{sleve}} - u_z^{\text{arbor}}$ について 考える. 残留相対すべりは荷重を除荷した後のアーバに対 するスリーブの z 軸方向変位である.**Fig.7**に接合部端部 (z=175)における円周方向と相対すべり $U_z(z=175)$ の関係を示 す.Fig.7より,円周方向で残留相対すべりの最大値が生じ るロール下側($\theta = 0^\circ$)の接触面に注目する.

Fig. 8 に Wを 15×9.8kN, 30×9.8kN, 60×9.8kN と変化 させたときの荷重除荷後のロール下側の残留相対すべりの 最大値と摩擦係数との関係を示す. Fig. 8 と, 残留曲がりを 整理した Fig. 5 とを比較すると, W=30×9.8kN では残留曲 がりは μ =0.12, 残留相対すべりは μ =0.08 でそれぞれ最大を 示し, 両者は比較的近い値である. また μ による変化も両者 は μ が 0.3 より小さい域では同じ傾向を示す. このように残 留曲がりと相対すべりとは, ほぼ同じ生成挙動をとるもの と考えられる.

4.2 残留曲がりと焼嵌め面の応力状態

残留曲がりの発生に相対すべりの関与が示唆されること から、ロールの接合面での応力状態やすべり条件を満たす 範囲を明らかにすることは重要と考える.そこで、Fig.5 に おいて、例えば残留曲がり Δ =12 μ m 一定条件での応力状態を W=60×9.8kN の条件で残留曲がりが Δ =12 μ m となるのは、 a 点と d 点で、それぞれの点は、 μ =0.04, 0.5 に相当する.同 様に、W=30×9.8kN で Δ =12 μ m となるのは、b 点、c 点で、

Fig. 6 Definition of relative displacement between sleeve and arbor

Fig. 7 Distribution of relative displacement $U_{z(\theta, z=175)}$ along circumference at roll end

それぞれの μ =0.07, 0.15 に相当する. これら a 点~d 点の 4 点は、等しい残留曲がりの状態にあるが、それぞれ荷重と 摩擦係数のいずれかが異なる. Fig. 9 にこれら 4 条件にお ける接触部のせん断応力 τ (実線)と摩擦応力 $\mu\sigma$ (破線)の z 方 向の分布をそれぞれ示す. 図中, z=0mm, 175mm 付近にみ られる τ の突起は、Fig. 9(a)に示すように、境界条件(*1, *2)、および端面効果(*2) それぞれの誤差によるものと考 える. 接触面を摩擦応力に対してせん断応力が小さい領域 L_u と等しい領域 L_b に分けて考察する目的に対して、この誤 差は影響しないと考えられるので、ここでは無視する. な お、応力分布は相対すべりが最も大きく現れる荷重点と反 対側の接合面 (r=50mm)、円周位置(θ =0°))で代表させる. ここでは座標系による τ_{rz} , σ_r をそれぞれ τ , σ と表し, θ =0° 上の+z方向の τ を+とする.

応力状態で分けられる2つの接触面のうち,μσに対して, τ が小さい領域を L_{μ} ($\tau < |\mu\sigma|$)とする.一方, $\tau \ge \mu\sigma$ それぞ れの,解析精度を考慮して,両者の差が1MPa以内で等し い領域を便宜上 L_b ($\tau \cong |\mu\sigma|$)とする. この両応力がほぼ等 しいL_bは"応力準平衡域"と呼ぶこともできる.この応力準 平衡域の存在が残留曲がりの生成と直接関係している. す なわち、Lhがなければ曲がりが残らない.次に、残留曲が りとL_bとの関連性を検討する. Table 2 に Fig. 9 の残留曲が りが等しい4条件 a, b, c, dにおける W, μ , L_b , $L_b \times \tau_b^*$, $L_b \times \tau_b^* \times (L_u + L_b/2)$ を示す. ここで τ_b^* は L_b における平均せ ん断応力である. Table 2 より, この応力準平衡域面積(せん 断力)と距離($L_u + L_b/2$)の積は 10%以内で一致することが わかる.しかし、Lbをせん断応力と摩擦応力との差が1MPa 以内で等しいと定義している点に対して、例えば Fig. 9(d) の条件では、L_b=8.75mmよりも大きく見て取れL_bの定義の 厳密性に課題が残されている.したがって、定量的な厳密 性は十分ではないが、Lbの存在によって接触面に生じる摩 擦力 $L_b \times \tau_b^*$ が残留曲がりの大きさに強く関係することは 明らかである. なお、Lbの大きさと残留相対すべりの大き さとの関連は認められない.

Point	W	μ	L_b	$L_b \times \tau_b^*$	$L_b imes au_b^* imes$	
	[×9.8kN]		[mm]	[N/mm]	$(L_u + L_b/2)$ [N]	
а	60	0.04	122	578	6.32×10^{4}	
b	30	0.07	55	458	6.41×10^{4}	
с	30	0.15	22.5	389	6.10×10^{4}	
d	60	0.5	8.75	404	6.56×10^4	

Table 2 Shearing force $L_b \times \tau_b^*$ and $L_b \times \tau_b^* \times (L_u + L_b/2)$ when $\Delta = 12 \mu m$ for point a, b, c, d in Fig. 5

4.3 除荷過程における曲がりおよび焼嵌め面の応力変化

次に、Wを負荷した状態から除荷する過程での曲がり、 および接合面における応力状態の変化を解析し、残留曲が りの生成メカニズムを考察する.まず、Fig.5中のd点と 同じ条件である μ =0.5 にて、W=60×9.8kNを負荷した後、 30×9.8kN、20×9.8kN、10×9.8kN、5×9.8kNと段階的に除 荷させた場合のアーバの曲がりを Fig. 10 に示す.Fig. 10 よ り残留曲がりを基準にすると荷重と曲がりの大きさがおお よそ比例することがわかる.また、W=60×9.8kN 負荷後に 30×9.8kN に軽減させた場合の曲がりの大きさは、無負荷 から荷重を 30×9.8kN にした場合(Fig. 3)の曲がりよりも 11%大きい.これは曲がりが残留曲がりと同様(Fig. 5)、前 歴の負荷過程の影響を受けることを示すものである.

Fig. 11 は除荷過程におけるスリーブとアーバ接触面下側のせん断応力τのz方向の分布を示す. Fig. 11 において除荷後のせん断応力をもとに比較するとτの分布形状はほぼ一定の形を保ち,60×9.8kN 負荷時には負側の応力準平衡域を,除荷過程の30×9.8kN,0×9.8kNでは正側の平衡域を有する分布をとる.このように,同一荷重の場合においても荷重の増,減いずれの過程でその荷重に到ったのかによって,応力準平衡域におけるせん断応力の正負が変わってくる.荷重増加時には負側の応力準平衡域の影響を受け,減少時はその逆となる.なお,Fig. 12 には,同一荷重30×9.8kNにおいて,0×9.8kN→30×9.8kNの場合,それぞれの接合面下側での応力分布を示す.両者の応力分布は大きく異なるが,曲がりの大きさは荷重増加時の方が減少時よりも11%小さい.

5. 結 言

有限要素法を用いて,焼嵌めによりスリーブ(胴部)が軸 (アーバ)に組み立てられた圧延用補強ロールに生じる残留 曲がりの解析を,小型ロールを用いて行い,以下の結論を 得た.

- (1)荷重 W=30×9.8kN を除荷した後のアーバの残留曲が りは、先行の曲げ試験により得られた結果と本研究で得られた解析値とは15%以内で一致した。
- (2)除荷後のアーバ残留曲がりは、摩擦係数の減少と共に 増加するが、摩擦係数 0.1~0.2 の範囲でピークを示し、 それ以降は減少し、0 に至る.なお残留曲がりがピーク を示す摩擦係数は荷重によって変化する.
- (3) 残留曲がりと相対すべりそれぞれに対する摩擦係数の 影響は類似の傾向を示す.
- (4) 残留曲がりが等しい条件では、応力準平衡域(接合面に

Fig. 10 Deflection and residual deflection on arbor when load was reduced from 60×9.8 kN ($\mu = 0.5$)

Fig. 11 Shear stress τ and frictional stress $\mu\sigma$ along arbor surface contacted with sleeve when load is changed $(\mu = 0.5)$

Fig. 12 Shear stress τ and frictional stress $\mu\sigma$ along arbor surface contacted with sleeve when $W=0\rightarrow 30\times 9.8$ kN and $W=30\times 9.8$ ($\mu=0.5$)

おけるせん断応力と摩擦応力の差が 1MPa 以下で一致す る領域)に作用するせん断力とこの領域から z =0 までの 距離の積はほぼ一致する.このことから残留曲がりに対 して応力準平衡のせん断力が強く関係することがわかった.

参考文献

- 下田秀夫・小野寺真作・堀清・土肥修:日本機械学会 論文集,233 (1966),1-7.
- 下田秀夫・小野寺真作・堀清・土肥修:日本機械学会 論文集,235 (1966),440-446.
- 下田秀夫・小野寺真作・堀清・土肥修:日本機械学会 論文集,237 (1966),689-694.
- 下田秀夫・小野寺真作・堀清・土肥修:日本機械学会 論文集,245 (1967),11-18.
- 5) 大小森義洋・栄中・村上敬宜: 材料, **50**-3 (2001), 249-255.
- 6) 堀清:鉄と鋼, 51-11 (1965), 200-202.

- 河合正吉・木月清彦・野崎義雪・竹内秀光・三浦勝重: 鉄と鋼, 49-10 (1963), 1613-1615.
- 大小森義洋・北川幾次郎・篠塚啓吾・宮本立三・矢崎 誠一・井上睦彦:鉄と鋼, 73-6 (1987), 691-698.
- 9) 堤三郎・原千里・吉井省三:鉄と鋼, 7-5 (1971), 818-822.
- 野田尚昭・佐野義一・王旭・中川雄策・管文海・小野 騰・胡可軍:自動車技術会論文集,46-4 (2015),831-837.
- 11) 佐野義一:第148・149 回西山記念技術講座, (1993), 193-226.
- 田中俊章・神崎昌久・寺門良二・田部博輔・工藤浩一・ 後藤宏:鉄と鋼, 53-10 (1967).
- Zhua, Z. & Sunb, D. : Appl. Mech. Mater., 1-5 (2012), 139-142.
- 14) Dong, Y., Wang, M. & Su, Y. : Adv. Mater. Res., **413** (2012), 320-325.
- Frolish, M. F. & Beynon, J. H. : Ironmak. Steelmak., 31-4 (2004), 300-304.