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A general finite element procedure based on the proportional crack opening displacements
for obtaining the stress intensity factors is presented. The procedure is applied to the non-
singular 3-node linear, 4-node linear, 8-node parabolic, 8-node axisymmetric elements and
8-node hexahedral solid elements for a test. It is found that the current method exhibits
good element type adaptability and significantly less mesh dependency, and accurate
results can be obtained effectively using rather coarse meshes. The accuracy of the current
procedure is evaluated by applying it to two-dimensional interface cracks, three-
dimensional penny-shaped cracks as well as circumferential surface cracks. Comparison
with the published data from the literature shows that the current procedure gives accu-
rate stress intensity factors. Furthermore, the current method is fairly efficient and less
computational resource consuming and can be used as an effective tool in the reliability
analysis of the bonded multi-layers.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bi-material interfaces are widely observed in the modern composite structures. The presence of an interface crack may
eventually cause a through thickness crack which results in the final failure of a structure. The singular stress field around
an interface crack was firstly discovered by Williams [1], then his work was followed and extended by Rice and Sih [2],
Erdogan [3,4], England [5], Willis [6] and many others. Following their pioneering research, a variety of algorithms have been
developed based on LEFM and in conjunction with the analytical method or the numerical method. The analytical methods
for solving the stress intensity factors (SIFs) for the interfacial crack problems are only limited to a few specific cases due to
the inherent mathematical difficulties. Therefore, general numerical methods are necessary to be employed to treat the more
general cracked bodies in the practical applications. In this paper, a brief summary regarding the numerical methods avail-
able for computing the SIFs of the interface cracks using FE analysis will be reviewed and discussed. Then, a finite element
procedure using the proportional relative crack opening displacement (COD) for obtaining the SIFs of the interfacial cracks
will be proposed.

Just mention a few of those procedures using FE analysis, Matos et al. [7] proposed a numerical method using FE analysis
to compute the SIFs of an interface crack. This method is based on the evaluation of the J-integral by the virtual crack exten-
sion method. Then, individual stress intensities were obtained from further calculations of J perturbed by small increments.
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Nomenclature

Latin symbols
a length of an edge interface crack or half-length of a central interface crack
emin minimum element size of the FE model
E1; E2 Young’s moduli of material 1 and 2
FI; FII normalized stress intensity factors of an edge interface crack
G strain energy release rate
i imaginary unit, equal to the square root of �1
KI;KII general stress intensity factors of the given unknown problem
K�
I ;K

�
II general stress intensity factors of the reference problem

K 0
I;K

00
II general stress intensity factors using a reference length l ¼ 2a1

r polar distance away from the singular point/crack tip
S; T remote shear and tension applied to the reference problem
ux;uy nodal displacement components
W width of the bonded strip

Greek symbols
dx; dy relative crack opening displacement components
dT¼1�
y;A1 ; dT¼1�

x;A1 crack opening displacement of Problem A1 subjected to pure unit tension T ¼ 1

dS¼1�
y;A2 ; dS¼1�

x;A2 crack opening displacement of Problem A2 subjected to pure unit shear S ¼ 1
d�y;A; d

�
x;A crack opening displacement of the reference problem (Problem A)

dy;B; dx;B crack opening displacement of the given unknown problem (Problem B)
e bi-elastic constant
h1; h2 angles of the traction-free edges intersect the interface
jm Kolosov constant
lm shear modulus of material m
mm Poisson’s ratio of material m
r1
x1;r1

x2 remote transversal tension applied to the bonded half-planes

Sub/superscripts
m m = 1, 2, material 1 or 2
A, B the reference problem (problem A) and the given unknown problem (problem B).
I, II mode I and II components
x, y x direction and y direction of the coordinate at the crack tip
⁄ reference problem

Abbreviations
BEM boundary element method
COD crack opening displacement
FEM finite element method
LEFM linear elastic fracture mechanics
SIF stress intensity factor
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Chow and Atluri [8] got the SIFs of the interfacial cracks using the virtual crack closure integral with relatively coarse finite
element meshes. In their procedure, the strain energy release rates should be computed in advance using the method pro-
posed by Rybicki and Kanninen [9] as well as Raju [10]. Sun and Qian [11] used finite elements in conjunction with the crack
closure method to obtain strain energy release rates [12] from which the SIFs could then be derived. The aforementioned
procedures resorted to the use of the strain energy release rate to produce the final SIFs. Yuuki and Cho [13] determined
the SIFs of the interface cracks by means of the extrapolation of the crack surface displacement. In this method, it needs skills
to select the effective data area to determine the slope of the extrapolated line. Oda et al. [14] obtained the SIFs of the inter-
face cracks using the ratios of the crack tip stresses. His concept was extended from the crack tip stress method proposed by
Teranishi and Nisitani [15] for the homogeneous cracks. Noda and Lan [16] investigated the robustness of Oda’s method and
proposed a linear extrapolation technique to improve the accuracy. However, both the very refined meshes and the extrap-
olation technique add to the extra computational costs which lead to the lower efficiency.
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As aforementioned, Oda’s method [14] does not directly give accurate results for the deep crack case as well as the strong
material mismatch situations. Furthermore, FE element type and the grid size also affect the accuracy to some extent. There-
fore, in this research, the authors tend to use the ratio of the relative crack opening displacement (COD) behind the crack tip
to improve the accuracy. The robustness of the current procedure is investigated by a convergence study on the element type
adaptability and mesh size dependency. It is found that the oscillatory singularity is successfully avoided by investigating the
CODs of the FE nodes behind the crack tip instead of using the crack tip stresses. Meanwhile, the procedure for treating the
case where the reference and the given unknown problems have different crack lengths is also depicted to deduce the mod-
eling time. Therefore, the current procedure can give reliable results with rather coarse meshes more effectively and rapidly.

2. Analysis method

2.1. Formulation for the interface crack problems

Consider two isotropic elastic materials joined along the x-axis as indicated in Fig. 1 with material 1 above the interface
and material 2 below. The stress distributions along the interface are defined as shown in Eq. (1) [17].
ry þ isxy ¼ KI þ iKIIffiffiffiffiffiffiffiffiffi
2pr

p r
2a

� �ie
; r ! 0 ð1Þ
here, ry; sxy denote the normal and shear stress components near the crack tip respectively, r is the radial distance behind
the crack tip, a is the half crack length and e is the bi-elastic constant given by:
e ¼ 1
2p

ln
j1

l1
þ 1
l2

� ��
j2

l2
þ 1
l1

� �� 	
ð2Þ

jm ¼ 3� 4mm ðplane strainÞ
3� mm=1þ mm ðplane stressÞ



ð3Þ
where lm ðm ¼ 1;2Þ and mm ðm ¼ 1;2Þ are the shear moduli and Poisson’s ratios of either respective materials. The associated
crack flank displacements dd ¼ udðr; h ¼ pÞ � udðr; h ¼ �pÞ; ðd ¼ x; yÞ for nodes i; i0 at a distance r behind the crack tip shown
in Fig. 1, are given by [18]
dy þ idx ¼ KI þ iKII

2ð1þ 2ieÞ coshðepÞ
j1 þ 1
l1

þ j2 þ 1
l2

� 	
r
2p

� �1=2 r
l

� �ie
ð4Þ
where l is an arbitrary reference length which scales with specimen size or crack length, for the definition of Eq. (1), we have
l ¼ 2a without loss of generality.

Considering ðr=lÞie ¼ cosðe lnðr=lÞÞ þ i sinðe lnðr=lÞÞ and rearranging Eq. (4), then the stress intensity factor components
KI;KII can be separated as:
KI ¼ S ðdy � 2edxÞ cos e ln
r
l

� �h i
þ ðdx þ 2edyÞ sin e ln

r
l

� �h in o
ð5Þ

KII ¼ S ðdx þ 2edyÞ cos e ln
r
l

� �h i
� ðdy � 2edxÞ sin e ln

r
l

� �h in o
ð6Þ
and
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Fig. 1. Stress distribution and relative crack displacement of an interface crack.
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S ¼ 2 coshðepÞðr=2pÞ�1=2

j1þ1
l1

þ j2þ1
l2

� � ð7Þ
we can rewrite Eqs. (5) and (6) as
KI

dy
¼ S ðcosQ þ 2e sinQÞ þ ðsinQ � 2e cosQÞ dx

dy


 �
ð8Þ

KII

dx
¼ S ðcosQ þ 2e sinQÞ � ðsinQ � 2e cosQÞ dy

dx


 �
ð9Þ
and
Q ¼ e lnðr=lÞ ð10Þ

From Eqs. (8) and (9), when Q ; e; dy=dx are kept the same for two different interface cracks, then we get a relationship as
KI=dy ¼ const; KII=dx ¼ const ð11Þ

Considering two interface crack problems A and B (say, problems in Fig. 2), by satisfying the preconditions as shown in

Eqs. (12) and (13), then the stress intensity factors KI;KII behave proportional relationship with dy; dx as depicted in Eq. (14).
Where, the relative crack opening displacement dy; dx can be computed by FE analysis, assuming one of the two problems is
analytically well solved in advance, say, KI;KII of problem A are given in advance, then the SIFs of problem B can be easily
obtained from Eq. (14).
QA ¼ QB

eA ¼ eB

� �
! ½e lnðr=lÞ�A ¼ ½e lnðr=lÞ�B

eA ¼ eB

� �
ð12Þ

½dy=dx�A ¼ ½dy=dx�B ð13Þ

½KI=dy�A ¼ ½KI=dy�B; ½KII=dx�A ¼ ½KII=dx�B ð14Þ

and the strain energy release rate for the crack advance in the interface is
G ¼ 1

16cosh2ðepÞ
j1 þ 1
l1

þ j2 þ 1
l2

� 	
K2

I þ K2
II

� �
ð15Þ
(a) 

Material1

Material2

xy S

y T

y T

1x

2x

xy

xy

xy

1x

2x

2a

1 1,

2 2,

 (b)

Material1

Material2

a

W
L

1 1,

2 2,

Fig. 2. Geometric configuration for (a) the reference problem A and (b) the given unknown problem B.
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2.2. Application of the proportional COD method

The problem that SIFs have been solved in advance can be treated as the reference. Therefore, a central cracked dissimilar
bonded half-planes subjected to remotely uniform tensile and shear stresses as shown in Fig. 2(a) is selected as the reference
problem for generality. Its analytical solution was firstly derived by Rice and Sih [19], and takes the form
x

2x
K�
I þ iK�

II ¼ r1
y þ is1xy

� � ffiffiffiffiffiffi
pa

p ð1þ 2ieÞ ð16Þ
where an asterisk (⁄) is employed to denote the SIFs for the reference problem. r1
y ; s1xy are the remote uniform tension and

shear applied to the bonded half-planes. a is the half crack length of the center crack. Furthermore, the transversal tension
r1

x1;r1
x2 in Fig. 2(a) behave
r1
x2 ¼ 1

1þ j2

l2

l1
ð1þ j1Þr1

x1 þ 3� j2 � l2

l1
ð3� j1Þr1

y


 �� 	
ð17Þ
As aforementioned, the preconditions in Eqs. (12) and (13) should be firstly met to ensure the current method available.
Eq. (12) can be easily satisfied by making the bi-elastic constant e and the relative distance behind the crack tip r=l the same
for the two problems. Here, some extra techniques should be employed to make Eq. (13) satisfied. We consider the reference
problem shown in Fig. 2(a), the relative COD dy; dx can be solved in an indirect manner using the principle of linear super-
position. As schematically shown in Fig. 3, the reference problem (Problem A) can be solved in two steps (Problem A1 and
A2). Namely, they are Problem A1 in Fig. 3 subjects to pure remote tension T and Problem A2 in figure. Three subjects to pure
remote shear S. Let d�y;A; d

�
x;A denote the COD of Problem A subjected to combined T; S, dT¼1�

y;A1 ; dT¼1�
x;A1 denote those of Problem A1

subjected to pure unit tension T ¼ 1, and dS¼1�
y;A2 ; d

S¼1�
x;A2 denote those of Problem A2 subjected to pure unit shear S ¼ 1, respec-

tively. Using the theory of linear superposition, then the relative CODs d�y;A; d
�
x;A of the reference problem (Problem A) take the

following form
d�y;A ¼ dT¼1�
y;A1 � T þ dS¼1�

y;A2 � S ð18Þ

d�x;A ¼ dT¼1�
x;A1 � T þ dS¼1�

x;A2 � S ð19Þ

Recall Eq. (13) and substitute dy; dx with d�y;A; d

�
x;A for problem A, then we have
d�y;A
d�x;A

" #
A

¼ dT¼1�
y;A1 � T þ dS¼1�

y;A2 � S

dT¼1�
x;A1 � T þ dS¼1�

x;A2 � S

" #
A

¼ dy;B
dx;B

� 	
B

ð20Þ
Rearranging Eq. (20) gives the solution of S=T ,
S=T ¼ dx;B � dT¼1�
y;A1 � dy;B � dT¼1�

x;A1

dy;B � dS¼1�
x;A2 � dx;B � dS¼1�

y;A2

ð21Þ
Using T; S in Eq. (21) as the boundary condition for Problem A, then Eq. (13) is satisfied and eventually Eq. (14) sets up.
Finally, the SIFs for the target unknown problem (problem B) can be yielded using the proportional relationship as given in
Eq. (22).
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Fig. 3. Schematic representation of superposition method for the reference problem.
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KI;B ¼ dy;B
dy;A

� KI;A; KII;B ¼ dx;B
dx;A

� KII;A ð22Þ
2.3. Formulation for the problems with different crack lengths

Recall Eqs. (1) and (4), the aforementioned proportional COD method only sets up when the reference lengths (l ¼ 2a) are
set the same for the problems A and B. New FE models for the reference should be repeatedly created each time when the
crack length of the given unknown problem changes. This means quite a lot computational costs in the practical application.
Consider the case where the reference problem A and the given unknown problem B have different crack lengths aA and aB.
Then the SIFs of Problem B should be computed according to the following process.

1. The FE mesh patterns and the minimum element size around the crack tip are kept the same for the two problems A and
B. Then, node pairs i; i0 of problem A and B in Fig. 4 will be used for the computation.

2. Calculating the SIFs K 0
I;K

00
II using the aforementioned proportional COD method by assuming the same reference length

l ¼ 2a1 for the given unknown problem B. Here, K 0
I;K

00
II denote the SIFs of Problem B with a reference length l ¼ 2a1.

3. Revising the computed SIFs by a constant phase factor which is introduced by the difference of the reference crack
lengths. Let KI;KII denote the SIFs of the given unknown problem with different reference lengths l ¼ 2a2, then KI;KII with
the reference lengths l ¼ 2a2 can be expressed as
KI

KII

� �
¼

cos e ln a2
a1

� �h i
� sin e ln a2

a1

� �h i
sin e ln a2

a1

� �h i
cos e ln a2

a1

� �h i
�������

�������
K 0

I

K 00
II

 !
ð23Þ
In the practical application, the current method is fairly efficient since only one FE model of the reference problem is nec-
essary for all the unknown problems with different crack lengths.

3. Method robustness and convergence study

In this section, the efficiency and accuracy of the current procedure will be demonstrated by pursuing a convergence
study. The mesh-size dependency, the location of the nodes selected for computation and the mesh adaptability will also
be investigated and depicted.

3.1. Specifications and configurations of the FE models

The MSC.MARC 2007 [20] finite element analysis package is used to compute the COD in this research. Fig. 5(a) shows the
FE model geometric configurations for the reference problem A. The crack length is set to 2a ¼ 2 mm. It should be noted that
the relative COD values for the reference problem converge as the width of the model is larger than 1500 times the crack
length a. Then a plate width of W ¼ 1620� 2a ¼ 3240 mm and a length of L ¼ 2W ¼ 6480 mm are used to model the ref-
erence problem A (L ¼ 2W;W=a ¼ 1620). Fig. 5(b) shows the FE model geometric configuration for a single-edge cracked
bonded strip (an example for the given unknown problem B). The crack length for the given unknown problem B is fixed
to a ¼ 1 mm which is the half crack length of the reference problem A. The width of the bonded strip W varies from
a=W ¼ 0:1—0:9, the length L is assumed to be much greater than the widthW (L ¼ 2W is assumed in the FE model). Further-
more, the minimum finite element sizes emin are kept the same for the reference and the given unknown problems.
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Fig. 4. FE model idealizations for node scheme of problem A and B.
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Fig. 5(c) shows the FE mesh pattern around the singular region. The singular region around the crack tip are well refined
in a self-similar manner by increasing the number of layers, and the element size for each inferior layer is one-third of the
superior one. The meshes are made of 4-node/8-node quadrilateral elements in plane stress or plane strain conditions. Fur-
thermore, the meshes of the reference problem A and the given unknown problem B are kept the same to make sure a high
computational accuracy. It should be noted that although highly accurate dy; dx near the crack tip cannot be obtained by FE
analysis. The ratios dy=dx are fairly accurate since the same FE meshes and model density are assumed in the computation.
3.2. Determination of the location of the nodes used for computation

The computational accuracy is investigated for an edge-cracked bonded strip shown in Fig. 2(b) by varying the node posi-
tion behind the crack tip. Fig. 6 shows a finite element idealization with linear quadrilateral elements. The SIFs are computed
using different pairs of nodes (say, i; i0 and j; j0, etc.) and for four cases of minimum element size
(emin ¼ 2a=33;2a=34;2a=35;2a=36). The material combinations are fixed to E1=E2 ¼ 100; m1 ¼ m2 ¼ 0:3, and the relative crack
length a=W ¼ 0:1. The SIFs are normalized by r

ffiffiffiffiffiffi
pa

p
as depicted in Eq. (24) and are plotted against the node position behind

the crack tip in Fig. 7(a) and (b), respectively.
FI ¼ KI=r
ffiffiffiffiffiffi
pa

p
; FII ¼ KII=r

ffiffiffiffiffiffi
pa

p ð24Þ

It can be seen that for all types of minimum element size, the SIFs behave linearity with the distance from the node pairs

selected in the computation to the crack tip. The normalized SIFs FI and FII approach the published data 1.251 and 0.424
obtained by Miyazaki et al. [21] and Matsumto et al. [22]. The closer the distance between the node pairs used in the com-
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putation and the crack tip, the more accurate the results are. The refined meshes also contribute to a better computational
accuracy. However, it should be noted that the nodes within the oscillatory singularity zone are not recommended in the
computation. Furthermore, the current method is less sensitive to the FE mesh size. Therefore, unless otherwise specified
in this paper, all the node pairs used in the computation are those who are closest to the crack tip but not located within
the oscillatory singularity zone to improve the accuracy.

3.3. Convergence studies for mesh-size dependency

It suggests that the discretization in the near-tip region has an important role in the accuracy of the FE method. The accu-
racy must be balanced with the computational efficiency by investigating the total number of elements required. Here, a
convergence study is carried out to investigate the effects of the minimum element size emin and the model density on
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the accuracy. Different FE models using the 4-node quadrilateral elements and the 8-node parabolic quadrilateral elements
as well as using 6 different minimum element sizes are tested. The mesh pattern, model density and minimum element size
for each pair of models are fixed the same. Namely, the minimum element size for each pair of models is
a=33; a=34; a=35; a=36; a=37; a=38 which corresponding to the total number of mesh layers NL ¼ 7;8;9;10;11;12, respectively.
Without loss of generality, a material combination G1=G2 ¼ 100; m1 ¼ m2 ¼ 0:3 and plane stress condition are assumed for an
edge interface crack a=W ¼ 0:2. Similar conclusions can also be found from other cases. The results FI and FII are plotted in
Fig. 8(a) and (b), respectively. It can be seen that the normalized SIFs converge with deceasing the minimum element size. FI

converge when emin < a=34, and FII converge when emin < a=35. The relative higher error for FII is believed to be purely
numerical resulting from a small FII value. It can be concluded that the current method does not show particularly great sen-
sitivity with the element size. Say, FI; FII has 3-digit accuracy when emin < a=34, and 4-digit accuracy when emin < a=35. Fur-
thermore, the convergence speed of the current procedure reaches the same level accuracy is faster than that of the crack tip
stress method [14]. In this research, without special notification, a minimum element size of emin ¼ a=35 is selected to obtain
a better tradeoff between computational cost and accuracy.
3.4. Mesh adaptability and element type dependency

It is known that the higher order elements can better catch the stress singularity in the FE analysis. In order to investigate
the effect of the element type dependency, the two-dimensional single-edge cracked bonded strip shown in Fig. 2(b) is
computed using 3 different types of finite elements. The material combinations E1=E2 ¼ 4; m1 ¼ m2 ¼ 0:3 and plane stress
condition are assumed in the computation, the minimum element size is fixed to emin ¼ a=36. Four different cases of nodes
and element types as tabulated in Table 1 are investigated and compared in the analysis. Namely, they are Nodes i and i0 of
the3-node triangle element in Fig. 9(a), nodes i and i0 of the 4-node linear quadrilateral element in Fig. 9(b), the corner nodes



Table 1
The finite element nodes and element types used in the computation.

No. Name Nodes and element types used in the computation

1 Case 1 Nodes i and i’ of the 3-node linear triangular element shown in Fig. 8a
2 Case 2 Nodes i and i0 of the 4-node linear quadrilateral element shown in Fig. 8b
3 Case 3 Corner nodes j and j0 of the 8-node parabolic quadrilateral element shown in Fig. 8c
4 Case 4 Mid-side nodes i and i0 of the 8-node parabolic quadrilateral element shown in Fig. 8c
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Fig. 9. Non-singular elements around the crack tip (a) 3-node linear triangular element, (b) 4-node linear quadrilateral element and (c) 8-node parabolic
quadrilateral element.

Table 2
The COD dy; dx for the reference and unknown problems, E1=E2 ¼ 4; m1 ¼ m2 ¼ 0:3, Plane stress.

FE models Relative CODdy Relative CODdx

Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

RefT 0.9526 1.0132 1.0430 0.6499 �0.4401 �0.4972 �0.5822 �0.3395
RefS 0.4856 0.5716 0.5958 0.4284 0.7422 0.9004 1.0606 0.5898
a/W = 0.1 1.1972 1.2770 1.3153 0.8232 �0.4817 �0.5395 �0.6316 �0.3704
a/W = 0.2 1.3421 1.4305 1.4738 0.9213 �0.5583 �0.6268 �0.7341 �0.4299
a/W = 0.3 1.6138 1.7194 1.7715 1.1066 �0.6848 �0.7697 �0.9015 �0.5274
a/W = 0.4 2.0450 2.1785 2.2446 1.4016 �0.8743 �0.9832 �1.1517 �0.6736
a/W = 0.5 2.7342 2.9130 3.0024 1.8748 �1.1652 �1.3101 �1.5349 �0.8977
a/W = 0.6 3.9132 4.1705 4.3007 2.6863 �1.6434 �1.8463 �2.1634 �1.2659
a/W = 0.7 6.2018 6.614 6.8230 4.2648 �2.5286 �2.8358 �3.3238 �1.9467
a/W = 0.8 11.7801 12.5783 12.9901 8.1284 �4.5551 �5.0913 �5.9705 �3.5033
a/W = 0.9 34.7330 37.1709 38.4847 24.1098 �12.0352 �13.3628 �15.6921 �9.2413

RefT: The reference problem (Problem A1) in Fig. 3 subjected to pure uniform tension.
RefS: The reference problem (Problem A2) in Fig. 3 subjected to pure uniform shear.
a/W = 0.1–0.9: The given unknown problem in Fig. 2(b) subjected to pure uniform tension.
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j and j0 of the 8-node parabolic quadrilateral element in Fig. 9(c) and mid-side nodes i and i0 of the 8-node parabolic element
in Fig. 9(c). Furthermore, it is known that SIFs vary greatly and decrease with the reducing of the relative crack length a=W
under the same loading conditions. Oda et al. [14] pointed out that the relative crack length has an effect on the accuracy of
the extended crack tip stress method, and the absolute error is believed to be considerable large for the deep crack case.
Therefore, we used the same a=W to be able to compare our results with those predicted by other researchers to investigate
the crack size effect. In this research, all the relative crack lengths a=W of different crack problems vary from 0.1 to 0.9 with
an increasing step of 0.1, then we can investigate the robustness and accuracy from the shallow crack case to the very deep
crack case.

The intermediate relative COD results for each case are presented in Table 2, and their final FI; FII results are listed in
Table 3. It can be seen from these tables that FI; FII are in good agreement for different types of FE element, though their
FE intermediate values dI; dII exhibit significant differences, and FI; FII of the current method agree well with those published
data by Miyazaki et al. [21] for a=W ¼ 0:1—0:8. Furthermore, the current procedure gives reliable results independent of the
relative crack length. This leads us to a conclusion that though the intermediate relative CODs obtained from FEA may be
different for various element types, the final results agree quite well. The current method resorts to the selection of the CODs
instead of the crack-tip stresses to avoid the strong singularity, and consequently aids to reduce the numerical error and pro-
duce the optimal KI;KII results. Therefore the proposed proportional COD method can determine KI;KII with extremely high
accuracy. It should also be noticed that the current procedure can give reliable computational accuracy without using too
much refined meshes. Moreover, it also exhibits good FE mesh type adaptability and higher computing efficiency.



Table 3
The normalized SIFs FI ; FII computed using different types of finite element.

a/W FI FII

Case 1 Case 2 Case 3 Case 4 Miyazaki et al. [21] Case 1 Case 2 Case 3 Case 4 Miyazakiet al. [21]

0.1 1.209 1.209 1.209 1.208 1.209 �0.239 �0.239 �0.239 �0.239 �0.239
0.2 1.368 1.367 1.368 1.367 1.368 �0.251 �0.250 �0.250 �0.250 �0.250
0.3 1.653 1.653 1.654 1.653 1.654 �0.288 �0.288 �0.288 �0.288 �0.288
0.4 2.100 2.099 2.101 2.099 2.101 �0.359 �0.359 �0.359 �0.358 �0.359
0.5 2.805 2.804 2.807 2.805 2.807 �0.483 �0.483 �0.484 �0.483 �0.483
0.6 3.998 3.998 4.003 3.999 4.006 �0.716 �0.715 �0.717 �0.715 �0.716
0.7 6.286 6.285 6.296 6.287 6.304 �1.207 �1.206 �1.209 �1.205 �1.208
0.8 11.774 11.775 11.805 11.781 11.820 �2.532 �2.530 �2.538 �2.529 �2.538
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4. Numerical results

4.1. Homogeneous crack subjected to tensile and bending loadings

In the aforementioned discussion, when e ¼ 0, it is analogous to that of a crack in a homogeneous material. In this case,
the oscillatory singularity vanishes and the stress field becomes square-root singular. Therefore, the current procedure
should also be applicable to the homogeneous crack. The first example considered here is an edge cracked panel subjected
to tensile and bending loads as shown in Fig. 10(a). Fig. 10(b) and (c) shows the tension applied at the top and bottom bound-
aries to counter the tensile load and the bending moment applied to the homogeneous plate, respectively. The crack length is
set to a ¼ 1 mm and the size of the panel varies for a range of a=W ¼ 0:1—0:9. The mesh pattern, model density and min-
imum element size are fixed the same as discussed above, 8-node quadrilateral element is employed in the computation.
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Fig. 10. (a) A single-edge-cracked homogenous strip subjected to tensile and bending loading conditions, tensions at the boundaries to counter the (b)
tensile loads and (c) the bending loads.

Table 4
Normalized SIFs FI ¼ KI=r

ffiffiffiffiffiffi
pa

p
for Fig. 10(a).

a/W Uniform tension In-plane bending

Present Kaya and Erdogan [23] Noda et al. [24] Present Kaya and Erdogan [23] Noda et al. [24]

0.1 1.189 1.1892 1.189 1.045 1.0472 1.046
0.2 1.367 1.3673 1.367 1.054 1.0553 1.054
0.3 1.659 1.6599 1.659 1.124 1.1241 1.123
0.4 2.111 2.1114 2.111 1.260 1.2606 1.259
0.5 2.824 2.8246 2.823 1.497 1.4972 1.495
0.6 4.031 4.0332 4.032 1.913 1.9140 1.913
0.7 6.352 6.3549 6.355 2.724 2.7252 2.725
0.8 11.95 11.955 11.95 4.673 4.6764 4.675
0.9 34.60 34.633 34.62 12.45 12.462 12.46
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The normalized SIFs computed by the present method are tabulated and compared to those predicted by Kaya and Erdogan
[23] and Noda et al. [24] in Table 4. It can be seen that the results and those of Kaya and Erdogan [23] as well as Noda et al.
[24] are in very good agreement for the two loading conditions. Specifically, the errors are within 0.1% for both the two load-
ing conditions.
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Fig. 11. Dundurs’ material combinations used in the computation together with those of some typical engineering materials compiled by Suga et al. [25].

Table 5
Normalized SIFs FI ¼ KI=r

ffiffiffiffiffiffi
pa

p
; FII ¼ KII=r

ffiffiffiffiffiffi
pa

p
for the central and edge interface crack problems (v1 ¼ v2 ¼ 0:3, plane stress).

E1/E2 a/W Central interface crack Edge interface crack

FI FII FI FII

Present Matsumto et al. [22] Present Matsumto et al. [22] Present Matsumto et al. [22] Present Matsumto et al. [22]

2 0.1 1.001 1.019 �0.072 �0.072 1.195 1.190 �0.129 �0.127
0.2 1.019 1.053 �0.071 �0.070 1.367 1.367 �0.137 �0.137
0.3 1.052 1.104 �0.071 �0.072 1.658 1.657 �0.158 �0.156
0.4 1.103 1.180 �0.073 �0.073 2.108 2.109 �0.198 �0.195
0.5 1.179 1.296 �0.078 �0.077 2.818 2.819 �0.267 �0.268
0.6 1.294 1.477 �0.086 �0.084 4.021 4.024 �0.396 �0.398
0.7 1.475 1.799 �0.101 �0.101 6.331 6.348 �0.670 �0.668
0.8 1.796 – �0.132 �0.131 11.892 11.930 �1.406 �1.401
0.9 2.542 0.981 �0.215 – 34.330 – �4.891 –

4 0.1 0.987 1.006 �0.129 �0.128 1.209 1.199 �0.239 �0.237
0.2 1.006 1.037 �0.127 �0.126 1.368 1.368 �0.251 �0.251
0.3 1.038 1.086 �0.127 �0.126 1.653 1.655 �0.288 �0.288
0.4 1.088 1.163 �0.130 �0.131 2.100 2.102 �0.359 �0.358
0.5 1.161 1.273 �0.138 �0.136 2.805 2.806 �0.484 �0.483
0.6 1.271 1.446 �0.151 �0.148 3.998 4.001 �0.716 �0.714
0.7 1.445 1.752 �0.177 �0.175 6.284 6.298 �1.208 �1.204
0.8 1.750 – �0.229 �0.226 11.768 11.780 �2.532 �2.515
0.9 2.457 0.962 �0.370 – 33.735 – �8.797 –

10 0.1 0.968 0.987 �0.175 �0.172 1.229 1.222 �0.340 �0.336
0.2 0.986 1.017 �0.172 �0.168 1.369 1.366 �0.349 �0.348
0.3 1.018 1.065 �0.171 �0.171 1.648 1.648 �0.399 �0.394
0.4 1.065 1.135 �0.174 �0.172 2.089 2.090 �0.495 �0.491
0.5 1.135 1.239 �0.183 �0.181 2.787 2.789 �0.664 �0.661
0.6 1.238 1.400 �0.199 �0.196 3.967 3.968 �0.979 �0.973
0.7 1.400 1.685 �0.231 �0.226 6.224 6.227 �1.648 �1.634
0.8 1.684 – �0.295 �0.292 11.611 11.590 �3.450 �3.414
0.9 2.338 0.943 �0.470 – 32.984 – �11.968 –

100 0.1 0.946 0.964 �0.206 �0.207 1.252 1.251 �0.425 �0.424
0.2 0.964 0.994 �0.202 �0.201 1.370 1.376 �0.429 �0.429
0.3 0.995 1.039 �0.201 �0.198 1.642 1.647 �0.485 �0.470
0.4 1.039 1.104 �0.203 �0.200 2.078 2.083 �0.598 �0.569
0.5 1.105 1.202 �0.212 �0.208 2.770 2.772 �0.799 �0.793
0.6 1.200 1.350 �0.229 �0.226 3.937 3.906 �1.173 �1.171
0.7 1.350 1.611 �0.262 �0.257 6.165 6.157 �1.972 �1.957
0.8 1.610 – �0.329 �0.325 11.459 11.43 �4.121 �4.075
0.9 2.210 �0.517 – 32.267 – �14.277 –
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4.2. Interfacial cracks subjected to tension

The second example is the two-dimensional plane-stress problems of a central interface crack and an edge interface
crack. The FE models are built in a similar manner as depicted in Section 3.1. The crack length is set to a ¼ 1 mm and the
width of the bonded strip varies from a=W ¼ 0:1—0:9. The length is set to 2 times the width of the bonded strip. The same
elastic parameters E1=E2 ¼ 2;4;10;100; m1 ¼ m2 ¼ 0:3 and the plane stress condition which were adopted by other research-
ers [13,21,22] are assumed in the computation. Their Dundurs’ parameters a; b are plotted in the half a� b space in Fig. 11
together with those of some typical engineering materials complied by Suga et al. [25]. As can be seen from Fig. 11, the elas-
tic parameters used in the computation are representative since their a; b are widely distributed along the densely dis-
tributed area for the typical engineering materials. The computed SIFs are also normalized by r

ffiffiffiffiffiffi
pa

p
, and they are

tabulated in Table 5 together with those predicted by Matsumto et al. [22], for the central and edge interface crack problems
respectively. As shown in this table, the results of the current procedure coincide with those predicted by Matsumto et al.
[22]. Specifically, the largest errors of the strong material mismatch and the relative deep crack cases are within 0.2% for the
center interface crack case, and those of the edge interface crack are less than 0.5%. It can be found that the deep crack length
and the strong material mismatch do not affect the computational accuracy. Therefore, the current procedure is generic, and
it can get accurate SIFs more effectively without using high model density or any post-processing techniques. Furthermore, it
is known that the SIFs do not behave simple uniform varying relationship with a; b and a=W [26]. However, the SIFs in Table 5
increase monotonically with the increment of E1=E2, since m1; m2 are kept the same and the plane stress condition is assumed
in the analysis. This leads us to a conclusion that the SIFs grows with the stronger material mismatch for this specific
condition.

4.3. Axisymmetrical crack problems in a cylindrical bar

To thoroughly assess the mesh dependence and the applicable possibility on treating the case where the reference prob-
lem and the given unknown problem have different FE models, anaxisymmetrical3-D crack, a penny-shaped crack and a cir-
cumferential surface crack are analyzed in this section. The calculated SIFs are compared with those from the literature.
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Fig. 12. (a) A penny-shaped crack and (b) a circumferential surface crack in a cylindrical bar under tension (c) 3-D FE mesh geometry of the circumferential
crack.



Table 6
Normalized stress intensity factors KI=r

ffiffiffiffiffiffi
pa

p
of a single circumferential crack in a round bar.

a/R Penny-shaped crack Circumferential surface crack

Axisy model 3-D model Benthem and Koiter [27] Axisy model 3-D model Nisitani and Noda [28]

0.1 0.6369 0.6369 0.6369 1.181 1.183 1.180
0.2 0.6393 0.6394 0.6396 1.262 1.262 1.261
0.3 0.6462 0.6462 0.6468 1.393 1.393 1.393
0.4 0.6600 0.6600 0.6616 1.602 1.602 1.602
0.5 0.6855 0.6856 0.6881 1.939 1.939 1.940
0.6 0.7294 0.7294 0.7335 2.514 2.514 2.516
0.7 0.8067 0.8067 0.8123 3.615 3.615 3.618
0.8 0.9551 0.9552 0.9613 6.238 6.238 6.243
0.9 1.3218 1.3217 1.3251 16.66 16.66 16.67
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Requirements of the mesh patterns are further investigated and discussed. Similarly, the 8-node quadrilateral element in
plane strain condition is used in building the reference problem, and two different mesh types as the 8-node axisymmetric
solid element and 8-node hexahedral solid element are used to mesh the penny-shaped and circumferential surface crack
problems as shown in Fig. 12(a) and (b), respectively. The 2-D axisymmetric model is refined in a similar way as shown
in Fig. 5(c), and the 3-D FE model idealizations and its boundary conditions are demonstrated in Fig. 12(c). The normalized
SIFs for the penny-shaped and circumferential cracks as well as those predicted by Benthem and Koiter [27] and Nisitani and
Noda [28] are tabulated and compared in Table 6, respectively. It can be seen from this table that the normalized SIFs com-
puted by the axisymmetric models coincide with those predicted by 3-D solid models. Furthermore, the SIF values of the
penny-shaped crack predicted by the current method are in good agreement with those by Benthem and Koiter [27], and
the largest error is around 0.7% for the deep crack case. For the circumferential surface crack, the values of the current pro-
cedure coincide with those predicted by Nisitani and Noda [28] with the largest error within 0.1%. This means the current
method is also useful for the axisymmetrical crack problems, and the computational accuracy of the current method is inde-
pendent of the FE element types for the reference and target unknown problems.
5. Conclusions

In this paper, the proportional relative crack opening displacement (COD) behind the crack tip was employed based on
the crack tip stress method to compute the stress intensity factors. The robustness of the current procedure was investigated
by a convergence study. It was found that the current procedure gave reliable results with rather coarse meshes more effec-
tively and rapidly, and it exhibited good element type adaptability and less mesh dependency. Furthermore, the accuracy
was also tested via several numerical examples. It was confirmed that resorting to the selection of the COD values behind
the crack tip instead of the direct crack tip stresses could avoid the strong singularity, and aid to produce a better accuracy.
Comparing with that of the crack tip stress method, the accuracy was not affected by the relative deep crack and the strong
material mismatch. Meanwhile, a procedure on treating the case where the reference problem and the given unknown prob-
lem have different crack lengths was also depicted to reduce the modeling time. Therefore, the current method is fairly effi-
cient and can be used as an effective tool in the reliability analysis of the bonded multi-layers.
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