単純重ね合わせ継手に固有の2つの特異応力場の 強さを求める実用的解析法について

宮崎 達二郎*,野田 尚昭**,佐野 義一**

A Precise and Efficient Analytical Method to Obtain Two Distinct Intensities of Singular Stress Fields for Single Lap Joint

Tatsujiro MIYAZAKI*, Nao-Aki NODA**, and Yoshikazu SANO**

** 九州工業大学大学院工学研究院機械知能工学研究系 (〒 804-8550 福岡県北九州市戸畑区仙水町 1-1)

* Department of Mechanical Engineering, Faculty of Engineering, University of the Ryukyus (1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213)

** Department of Mechanical Engineering, Graduate School of Engineering, Kyushu Institute of Technology (1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550)

概要 本論文では、単純重ね合わせ継手に固有な2つの異なる特異応力場の強さを便利に求めることのできる実用的な解析 方法を提案する。この方法では、例えば突合わせ接手は、基本問題と未知問題で同じメッシュパターンを用いて有限要素法 (以降 FEM と呼ぶ)解析し、得られた界面端部のFEM 解析によって得られた応力(以降 FEM 応力と呼ぶ)の比から特異応力 場の強さを求める。一方、単純重ね合わせ継手は特異性指数に応じた異なる2つの特異応力場の強さを有するので工夫が必要 となる。そこで本論文では、特異性の違いに基づいて界面端部のFEM 応力を分離し、2つの特異応力場の強さを求める。実材 料の材料定数を考慮して提案する解析法で行い、他の解析結果と比較することで本解析法の精度および実用性について検討し た。その結果、通常解析困難とされる特異性指数が1に近い場合においても、少ない計算時間で特異応力場の強さが精度良く 求められることが確認された。

Abstract

In this paper, a precise and efficient method is proposed for the analysis of the intensity of the singular stress field (ISSF) for single lap joints (SLJs). The analysis method focuses on the FEM stress value at the interface end by applying the same FEM mesh pattern to the unknown and reference models. Previous analysis showed that accurate ISSFs can be obtained for butt joints mesh-independently. In this paper, we analyze SLJs having two distinct singular stress fields by separating the FEM stress into two values corresponding to the two ISSFs. We confirm that our method can provide the ISSFs accurately and efficiently even for the difficult cases when the singular index is nearly equal to 1.

Key Words: Adhesion, Interface, Intensity of Singular Stress Field, Finite Element Method

1. 緒 言

近年,機械,航空機宇宙,産業機器などさまざまな分野 で電子化が進められている。小型・軽量化,厳しい使用環 境に耐える耐久・信頼性などの要求を満たすため,電子部 品の開発には新しい素材,構造が積極的に導入されてい る。しかしながら,高度な微細化,高集積化によって異材 界面が増えると,それぞれの界面端部には変形のミスマッ チに起因した特異応力場が形成されるので,はく離破壊を もたらす危険性も増す。高い信頼性を確保するには,界面 端部の応力特異性を定量的に評価することが重要であり, 新しい材料,構造を導入した際にも簡便に使える実用的な 評価法が望まれる^{1)~4)}。

界面端部から生じるはく離の評価には,特異応力場の強 さを用いた破壊力学的手法が有効である^{5),6)}。そのため,さ まざまな接合体の特異応力場の強さが求められている^{7)~10)}。 通常,特異応力場の強さは FEM などの数値解析法で直接 求めることはできず,日本工業規格 (JIS) で用いられている 突合わせ継手,単純重ね合わせ継手など基本的な試験片で

さえも複雑な計算を要する ^{7)~10)}。著者らは複雑な計算を必 要とせず、市販の有限要素法 (FEM) コードで精度良く特異 応力場の強さを求めることができる方法を提案した^{11),12)}。 その方法では、特異応力場の強さを求める問題(未知問題) に対して, それと同じ特異性指数を有し, 特異応力場の強 さが既に得られている問題(基本問題)を設定する。2つ の問題を材料組み合わせ、界面端部周辺のメッシュサイズ およびメッシュパターンを揃えて FEM 解析すると、界面 端部付近のFEM 応力の比は位置および成分に関係なく1つ の値となり、それは特異応力場の強さの比に一致する。未 知問題の特異応力場の強さは、FEM 応力の比と基本問題の 特異応力場の強さを掛け合わせることで求められる。FEM 応力の比については, 界面端部(第ゼロ節点)でなくとも よいことから^{11)~15)}. 先の解析法は第ゼロ節点法¹⁶⁾を包含 する比例法 17),18) と呼ぶことができる。これまでの研究で は、 突合わせ継手のような特異応力場が1つの特異関数で 表されたものが主であった^{11)~13)}。界面端部に形成される 特異応力場は、端部の形状と材料組み合わせで決まる。単 純重ね合わせ継手の場合は,多くの材料組み合わせで2つ

^{*} 琉球大学工学部工学科機械工学コース (〒 903-0213 沖縄県中頭郡西原町千原 1)

の特異関数からなる特異応力場が生じる¹⁴⁾。FEM 解析では 2つの特異応力場が重なっている場合でも FEM 応力は1つ の値でしか出力されないので,2つの特異応力場の強さを 比例法で同時に求めることはできない。単純重ね合わせ継 手のはく離強度を破壊力学的に評価するには,特異応力場 の相似性について議論する必要がある^{15),19)}。前報¹⁵⁾では FEM 解析で得られる応力の比で相似性について議論した が,それでは十分とは言えず,2つの特異応力場の強さを 簡便かつ精度良く求められる方法が望まれる。

そこで本研究では、先の比例法^{11)~15)}で2つの特異応力 場の強さを同時に求められるよう界面端部のFEM応力を 特異性の違いに基づいて2つに分離する方法を提案する。 また、比較のため、他の解析法として相反仕事経路積分 法⁷⁾(Reciprocal Work Contour Integral Method,以下では RWCIMと呼ぶ)を取り上げる。そして、応力分離法と比 例法を組み合わせた本解析法の精度および実用性につい て、実材料の材料定数を考慮して議論する。

2. 単純重ね合わせ継手の FEM 応力を特異性の違いに 基づいて分離する必要性

著者らは, 接合板 [Fig. 1(a)] を基本解として突合わせ継 手 [Fig. 1(b)] の特異応力場の強さを正確に求める方法を 提案した^{11),12)}。本章では, 突合わせ継手を例にその解析法 を概説し, 単純重ね合わせ継手に適用する際の問題点につ いて述べる。

接合板および突合わせ継手の界面上の実応力 σ_{ij}^{PLT} , σ_{ij}^{BJ} (*ij* = *xx*, *yy*, *xy*) は, それぞれ次のように表される。

$$\sigma_{ij}^{PLT}(r) = \frac{K_{\sigma_{ij}}^{PLT}}{r^{1-\lambda}}$$
(1)
$$\sigma_{ij}^{RJ}(r) = \frac{K_{\sigma_{ij}}^{BJ}}{r^{1-\lambda}}$$
(2)

ここで, r は界面端部から界面上のある位置までの距離, λ は特異性指数, $K_{\sigma_y}^{PLT}$ および $K_{\sigma_y}^{BJ}$ は特異応力場の強さであ る。接合板と突合わせ継手の FEM 解析を行うと, 界面端 部 (r=0)の応力はいずれも有限値となり, 無限大に発散す

る実応力とはまったく異なるが、その点近傍の応力場を忠

$$\frac{K_{\sigma_{ij}}^{BJ}}{K_{\sigma_{ij}}^{PLT}} = \frac{\lim_{r \to 0} r^{1-\lambda} \sigma_{ij}^{BJ}}{\lim_{r \to 0} r^{1-\lambda} \sigma_{ij}^{PLT}} = \lim_{r \to 0} \frac{\sigma_{ij}^{BJ}}{\sigma_{ij}^{PLT}} \cong \frac{\sigma_{ij,0,FEM}^{BJ}}{\sigma_{ij0,FEM}^{PLT}}$$
(3)

Fig. 2 のような単純重ね合わせ継手の実応力 σ_{ij}^{SLJ} は、多くの材料組み合わせで次のように表される¹⁵⁾。

$$\sigma_{ij}^{SLJ}(r) = \frac{K_{\sigma_{ij},\lambda_{1}}^{SLJ}}{r^{1-\lambda_{1}}} + \frac{K_{\sigma_{ij},\lambda_{2}}^{SLJ}}{r^{1-\lambda_{2}}} = \frac{K_{\sigma_{ij},\lambda_{1}}^{SLJ}}{r^{1-\lambda_{1}}} \Big(1 + C_{\sigma_{ij}}^{SLJ}r^{\lambda_{2}-\lambda_{1}}\Big), C_{\sigma_{ij}}^{SLJ} = \frac{K_{\sigma_{ij},\lambda_{2}}^{SLJ}}{K_{\sigma_{ij},\lambda_{1}}^{SLJ}}$$
(4)

ここで、 λ_1 および $\lambda_2(\lambda_2 > \lambda_1)$ は特異性指数、 $K_{\sigma_y,\lambda_1}^{SLJ}$ および $K_{\sigma_y,\lambda_2}^{SLJ}$ は特異応力場の強さである。単純重ね合わせ継手の 特異応力場は式 (4) のように 2 つの特異関数からなるため、 界面端部での FEM 応力 $\sigma_{j0,FEM}^{SLJ}$ の比からは式 (5) のように $K_{\sigma_y,\lambda_1}^{SLJ}$ の比のみしか得られない¹⁵⁾。なお、以下の*は基準 となる問題に関する値であることを意味する。

$$\frac{K_{\sigma_{ij},\lambda_{i}}^{SLJ}}{K_{\sigma_{ij},\lambda_{i}}^{SLJ,\lambda_{i}}} = \frac{\lim_{r \to 0} r^{1-\lambda_{i}} \sigma_{ij}^{SLJ}}{\lim_{r \to 0} r^{1-\lambda_{i}} \sigma_{ij}^{SLJ*}} = \lim_{r \to 0} \frac{r^{1-\lambda_{i}} \sigma_{ij}^{SLJ}}{r^{1-\lambda_{i}} \sigma_{ij}^{SLJ*}} = \lim_{r \to 0} \frac{\sigma_{ij}^{SLJ}}{\sigma_{ij}^{SLJ*}} \cong \frac{\sigma_{ij,FEM}^{SLJ}}{\sigma_{ij,FEM}^{SLJ*}}$$
(5)

 $C_{\sigma_y}^{SLJ} = K_{\sigma_y,\lambda_2}^{SLJ} / K_{\sigma_y,\lambda_1}^{SLJ}$ が同じ値であれば、被着材および接着剤 の厚さ、長さが異なっていても相似な特異応力場が形成さ れる。しかしながら、界面端部でのFEM 応力から2つの 特異応力場の強さを同時に求めることはできないので、特 異応力場の相似性を議論することはできない。そこで次章 では、 $\sigma_{y_0,FEM}^{SLJ}$ から $K_{\sigma_y,\lambda_2}^{SLJ}$ を求める方法について述べる。

(a) Bonded plate used as the reference model

(b) Butt joint used as the unknown model

Fig. 1 Schematic illustrations of bonded plate and butt joint

Fig. 2 Schematic illustration of the thick adherend SLJ

3. 2つの特異応力場の特異性指数の違いに基づいて FEM 応力を分離する方法

Fig.3に単純重ね合わせ継手の模式図を示す。FEM 応力 に生じる特異性に起因した誤差を比をとることで相殺する ため、(a)~(c)の3つモデルは同じ4節点四角形平面ひずみ 要素を用い、同じ位置の界面端部の FEM 応力に注目する。 まず,3つのモデルを用いて FEM 応力を分離する式(13), (14)を導く。なお、以下で分離されるのはモデル(a)のFEM 応力である。(a)は界面端部を寸法 emin = en で要素分割し たモデルで,界面端部の FEM 応力を $\sigma_{ij0,FEM}^{SLJ(a)}|_{e_{min}=e_0}$,弾性力 学問題として解くことで得られる特異応力場の強さを $K^{SLJ(a)}_{\sigma_{u},\lambda_{t}}$ (FEM 解析で得られるものではないので,実応力の ように添え字に FEM を付けない)とする。(b) は (a) と同 じモデルを寸法 emin = neo で要素分割したもので,界面端部 での FEM 応力を $\sigma_{ij0,FEM}^{SLJ(b)}|_{e_{min}=ne_0}$ とする。モデル (b) はモデル (a)と同じモデル寸法であるので、特異応力場の強さは $K_{\sigma_{u},\lambda_{k}}^{SLJ(b)} = K_{\sigma_{u},\lambda_{k}}^{SLJ(a)}$ となる。モデル (c) はメッシュを含めてモデ ル(a)をn倍だけ相似的に拡大したのもので,界面端部の FEM 応力を $\sigma_{ii0,FEM}^{SLJ(c),n}|_{e_{min}=ne_n}$, 特異応力場の強さを $K_{\sigma_u,\lambda_h}^{SLJ(c),n}$ と する。モデル (c) の最小要素寸法は $e_{\min} = ne_0$ となるが、モ デルも n 倍大きくしているので, 要素の相対的寸法はモデ ル(a)と等しい。そのため、FEM 応力にはモデル(a)とモデ ル(c)で同じだけの特異性に起因した誤差が生じる。実際 に FEM 解析で $\sigma_{ij0,FEM}^{SLJ(c),n}|_{e_{\min}=ne_0} = \sigma_{ij0,FEM}^{SLJ(a)}|_{e_{\min}=e_0}$ となった。モデ ル(c)は式(13).(14)を導くための補助的なモデルであり.

FEM 応力を分離する際に解析するのはモデル (a), (b) の 2 つである。

モデル (a) の界面端部での FEM 応力 $\sigma_{ij0,FEM}^{SLJ(a)}|_{e_{min}=e_0}$ とモデル (b) の界面端部での FEM 応力 $\sigma_{ij0,FEM}^{SLJ(b)}|_{e_{min}=ne_0}$ の関係を,モデル (c) を介して導く。界面端部から界面に沿ってある距

離 r だけ離れた位置での実応力が式 (4) のように表される 場合,モデル (a) の界面端部での FEM 応力 $\sigma_{ij0,FEM}^{SLJ(a)}|_{e_{mn}=e_0}$ は, 次のように式 (4) の右辺の第1項目に対応した応力 $\sigma_{ij0,FEM,\lambda_1}^{SLJ(a)}|_{e_{mn}=e_0}$ と第2項目に対応した応力 $\sigma_{ij0,FEM,\lambda_2}^{SLJ(a)}|_{e_{mn}=e_0}$ 和 で表される。

$$\sigma_{ij0,FEM}^{SLJ(a)}\Big|_{e_{\min}=e_0} = \sigma_{ij0,FEM,\lambda_1}^{SLJ(a)}\Big|_{e_{\min}=e_0} + \sigma_{ij0,FEM,\lambda_2}^{SLJ(a)}\Big|_{e_{\min}=e_0}$$
(6)

特異応力場の強さ $K_{\sigma_{j},\lambda_{k}}^{SLJ(a)}$ を求めるには、 $\sigma_{jj0,FEM}^{SLJ(a)}|_{e_{\min}=e_{0}}$ を $\sigma_{jj0,FEM,\lambda_{l}}^{SLJ(a)}|_{e_{\min}=e_{0}}$ と $\sigma_{jj0,FEM,\lambda_{l}}^{SLJ(a)}|_{e_{\min}=e_{0}}$ に分離することを考える。 以下では、その方法について述べる。

モデル (b) の界面端部での FEM 応力 $\sigma_{ij0,FEM}^{SLJ(b)}|_{e_{min}=ne_0}$ は、モデル (a) の $\sigma_{ij0,FEM}^{SLJ(a)}|_{e_{min}=e_e}$ と同様に次のように表される。

$$\sigma_{ij0,FEM}^{SLJ(b)}\Big|_{e_{\min}=ne_0} = \sigma_{ij0,FEM,\lambda_1}^{SLJ(b)}\Big|_{e_{\min}=ne_0} + \sigma_{ij0,FEM,\lambda_2}^{SLJ(b)}\Big|_{e_{\min}=ne_0}$$
(7)

モデル (c) はモデル (a) のモデル寸法を n 倍大きくしたもの であるので、モデル (a) において界面端部より界面上で距 離 r_0 だけ離れた位置での実応力 $\sigma_{ij}^{SLJ(a)}(r_0)$ は、モデル (c) において nr_0 だけ離れた位置での実応力 $\sigma_{ij}^{SLJ(c),n}(nr_0)$ と等し く、式 (4) より次のような関係が得られる。

$$\frac{K_{\sigma_{y},\lambda_{1}}^{SLJ(a)}}{(r_{0})^{1-\lambda_{1}}} + \frac{K_{\sigma_{y},\lambda_{2}}^{SLJ(a)}}{(r_{0})^{1-\lambda_{2}}} = \frac{K_{\sigma_{y},\lambda_{1}}^{SLJ(c),n}}{(m_{0})^{1-\lambda_{1}}} + \frac{K_{\sigma_{y},\lambda_{2}}^{SLJ(c),n}}{(m_{0})^{1-\lambda_{2}}}$$
(8)

したがって、式(8)より次のような関係が得られる。

$$\frac{K_{\sigma_y,\lambda_1}^{SLJ(c),n}}{K_{\sigma_y,\lambda_1}^{SLJ(a)}} = n^{1-\lambda_1}, \frac{K_{\sigma_y,\lambda_2}^{SLJ(c),n}}{K_{\sigma_y,\lambda_2}^{SLJ(a)}} = n^{1-\lambda_2}$$
(9)

モデル (b) とモデル (c) の界面端部は同じ寸法 *e*_{min} = *ne*₀ お よびパターンで要素分割されているので,界面端部での FEM 応力と特異応力場の強さの間には次のような関係が得 られる。

(a) Fine mesh model with minimum element size

(b) Coarse mesh model with $e_{\min} = ne_0$

(c) n times enlarged model of the fine mesh model (a)

Fig. 3 Schematic illustration of SLJ models

$$\frac{K_{\sigma_{ij},\lambda_{1}}^{SLJ(c),n}}{K_{\sigma_{ij},\lambda_{1}}^{SLJ(b)}} = \frac{\sigma_{ij0,FEM,\lambda_{1}}^{SLJ(c),n} \left|_{e_{\min}=ne_{0}}}{\sigma_{ij0,FEM,\lambda_{1}}^{SLJ(b)} \left|_{e_{\min}=ne_{0}}}, \frac{K_{\sigma_{ij},\lambda_{2}}^{SLJ(c),n}}{K_{\sigma_{ij},\lambda_{2}}^{SLJ(b)}} = \frac{\sigma_{ij0,FEM,\lambda_{2}}^{SLJ(c),n} \left|_{e_{\min}=ne_{0}}}{\sigma_{ij0,FEM,\lambda_{2}}^{SLJ(b)} \left|_{e_{\min}=ne_{0}}}\right|$$
(10)

式 (9) を式 (10) に代入し、 $\sigma_{ij0,FEM}^{SLJ(c),n}|_{e_{\min}=ne_0} = \sigma_{ij0,FEM}^{SLJ(a)}|_{e_{\min}=e_0}$ を用いると、次のような関係が得られる。

$$\sigma_{ij0,FEM,\lambda_1}^{SLJ(b)}\Big|_{e_{\min}=ne_0} = \frac{\sigma_{ij0,FEM,\lambda_1}^{SLJ(a)}\Big|_{e_{\min}=e_0}}{n^{1-\lambda_1}},$$

$$\sigma_{ij0,FEM,\lambda_2}^{SLJ(b)}\Big|_{e_{\min}=ne_0} = \frac{\sigma_{ij0,FEM,\lambda_2}^{SLJ(a)}\Big|_{e_{\min}=e_0}}{n^{1-\lambda_2}}$$
(11)

式(11)を式(7)に代入すると、次式が得られる。

$$\sigma_{ij0,FEM}^{SLJ(b)}\Big|_{e_{\min}=ne_{0}} = \frac{\sigma_{ij0,FEM,\lambda_{1}}^{SLJ(a)}\Big|_{e_{\min}=e_{0}}}{n^{1-\lambda_{1}}} + \frac{\sigma_{ij0,FEM,\lambda_{2}}^{SLJ(a)}\Big|_{e_{\min}=e_{0}}}{n^{1-\lambda_{2}}}$$
(12)

式(6)と式(12)からなる連立方程式を解くことで、

$$\sigma_{ij0,FEM,\lambda_1}^{SLJ(a)}|_{e_{\min}=e_0}$$
および $\sigma_{ij0,FEM,\lambda_2}^{SLJ(a)}|_{e_{\min}=e_0}$ は次のように得られる。

$$\sigma_{ij0,FEM,\lambda_{1}}^{SLJ(a)}\Big|_{e_{\min}=e_{0}} = \frac{\sigma_{ij0,FEM}^{SLJ(a)}\Big|_{e_{\min}=e_{0}}}{1-n^{\lambda_{1}-\lambda_{2}}} - \frac{\sigma_{ij0,FEM}^{SLJ(b)}\Big|_{e_{\min}=ne_{0}}}{n^{\lambda_{2}-1}-n^{\lambda_{1}-1}}$$
(13)

or rep 1

$$\sigma_{ij0,FEM,\lambda_2}^{SLJ(a)}\Big|_{e_{\min}=e_0} = \frac{\sigma_{ij0,FEM}^{SLJ(a)}\Big|_{e_{\min}=e_0}}{1-n^{\lambda_2-\lambda_1}} + \frac{\sigma_{ij0,FEM}^{SLJ(b)}\Big|_{e_{\min}=ne_0}}{n^{\lambda_2-1}-n^{\lambda_1-1}}$$
(14)

基本問題および未知問題の界面端部でのFEM応力を $\sigma_{ij0,FEM}^{SLJ^*}, \sigma_{ij0,FEM}^{SLJ},$ 特異応力場の強さを $K_{\sigma_y,\lambda_k}^{SLJ^*}, K_{\sigma_y,\lambda_k}^{SLJ}$ とす る。特異応力場の強さの比 $K_{\sigma_y,\lambda_k}^{SLJ}/K_{\sigma_y,\lambda_k}^{SLJ^*}$ は、次のように式 (13), (14) によって分離されたFEM応力の比 $\sigma_{ij0,FEM,\lambda_k}^{SLJ}/\sigma_{ij0,FEM,\lambda_k}^{SLJ^*}$ から求められる。

$$\frac{K_{\sigma_{ij},\lambda_{i}}^{SLJ}}{K_{\sigma_{ii},\lambda_{i}}^{SLJ}} = \frac{\sigma_{ij0,FEM,\lambda_{i}}^{SLJ}}{\sigma_{ij0,FEM,\lambda_{i}}^{SLJ*}}, \quad \frac{K_{\sigma_{ij},\lambda_{2}}^{SLJ}}{K_{\sigma_{ii},\lambda_{i}}^{SLJ*}} = \frac{\sigma_{ij0,FEM,\lambda_{2}}^{SLJ}}{\sigma_{ij0,FEM,\lambda_{2}}^{SLJ*}}$$
(15)

式(15)のように、1つの基本問題で未知問題の2つの特異

論文

応力場の強さを求めることができる。これが界面端部での FEM 応力を分離する最大の利点である。

4. FEM 応力の分離法の検証および実用問題への適用

4.1 FEM 応力の分離法の検証

前報¹⁵⁾と同じFig.2のモデルを用い,応力分離法を組み 合わせた比例法の検証を行った。Fig. 2(b)~(d) の3つの試 験片はいずれも全長が225 mm, 被着材厚さが7 mmと同 じであり、接着層の長さしおよび厚さt,のみが異なる。 *l*₂ = 25 mm, *t*₂ = 0.15 mm とした試験片 A25 [Fig. 2(b)] を 基本問題, $l_2 = 50$ mm, $t_2 = 0.15$ mm とした試験片 A50 [Fig. 2(c)], $l_2 = 25$ mm, $t_2 = 0.90$ mm とした試験片 A25-90 [Fig. 2(d)]を未知問題とする。被着材および接着剤については、 λ, が1に近すぎないようなものをここではまず選んで用い た。その理由は、λ,=1では特異性が消失するので、初め に2つの特異応力場が明確である場合の解析法を議論する ためである。Dundurs パラメータ²⁰⁾ (α , β) を (0.4, 0.0) とし た場合の一例を Table 1 に示す。この表での被着材および接 着剤は、仮想的な材料である。以下では、Table 1の材料組 み合わせで行った検証について述べるが,本研究では同様 の検証を他の材料組み合わせでも十分に行っている。

FEM 解析では、市販の MSC Marc 2008 R1 を用いた。2 つの材料を線形弾性体で仮定し、平面ひずみの条件の下に 作用応力 $\sigma_0 = 1$ MPa で静的弾性応力解析を行った。すべて のモデルで4節点四角形要素を用い,Fig.4のように界面 端部のメッシュパターンを揃えた。界面端部には一辺の長 さが e_{min} の正方形の要素を用いているので,最小要素サイ ズは e_{min} で表される。具体的な値は,先の研究を参考に $(e_{min}, ne_{min}) = (e_0, ne_0) = (3^{-14}, 3^{-13}), (3^{-13}, 3^{-12}) とした。要素$ $サイズ<math>e_{min} = e_0$ を変化させることで,解析結果のメッシュ 依存性および解析精度についての検討を行った。

Table 2 に界面端部での FEM 応力を示す。本来,実応力 σ_y^{SLJ} および τ_{xy}^{SLJ} は界面で連続となる。しかしながら,一般 に FEM 解析では材料 1 側と 2 側で異なる値として求まる ので,材料 1 側と 2 側の平均値でそれらの応力を示してい る。メッシュサイズを変化させると,いずれの応力値も変

Fig. 4 Mesh pattern near the interface end

Table 1. Dundurs' parameter (α, β) , singular index (λ_1, λ_2) and elastic constants. The materials are not real and used to confirm the validity of the present analysis method

Dundurs' parameter		Singula	ır index	Adhe	erend	Adhesive	
α	β	λ_1	λ_2	E_1 [GPa]	v_1	E_2 [GPa]	<i>V</i> ₂
0.4	0.0	0.5262	0.7852	1.000	0.4000	2.686	0.1818

Table 2. FEM stresses at the interface end under $\sigma_0 = 1$ MPa when $(\alpha, \beta) = (0.4, 0.0)$. The values in the brackets are FEM stresses divided by Eqs. (13) and (14). All FEM stresses depend on the mesh size e_0

		T				r			
Model (l_2, t_2)	e_0	$\sigma_{x0,FEM}^{SLJ}\Big _{e_{\min}=e_0}$ $[=\sigma_{x0,FEM,\lambda_1}^{SLJ}+\sigma_{x0,FEM,\lambda_2}^{SLJ}]$		$\sigma^{SLJ}_{x0,FEM}\Big _{e_{\min}=ne_0}$		$\left. \sigma_{y0,FEM}^{SLJ} \right _{e_{\min}=e_0} = \sigma_{y0,FEM,\lambda_1}^{SLJ}$	$\sigma_{y0,FEM}^{SLJ}\Big _{e_{\min}=ne_0}$	$\left. au_{xy0,FEM}^{SLJ} ight _{e_{\min}=e_0} = au_{xy0,FEM,\lambda_1}$	$\left. au_{xy0,FEM}^{SLJ} ight _{e_{\min}=ne_0}$
. 2. 2/		Mat. 1	Mat. 2	Mat. 1	Mat. 2	$+\sigma^{SLJ}_{y0,FEM,\lambda_2}]$		$+ au_{xy0,FEM,\lambda_2}^{SLJ}$]	
		12,039.73	8,587.874	7,158.173	5,113.436	11,224.60	6,657.840	-4,405.695	-2,618.905
	3 ⁻¹⁴	[=12,018.85	[=8,534.379			[=11,285.42		[=-4,400.526	
A25		+ 20.88]	+ 53.495]			- 60.82]		- 5.169]	
(25, 0.15)		7,158.173	5,113.436	4,256.635	3,046.672	6,657.840	3,946.705	-2,618.905	-1,556.962
	3 ⁻¹³	[= 7,141.814	[= 5,071.338			[= 6,706.053		[= -2,614.862	
		+ 16.359]	+ 42.098]			- 48.213]		- 4.044]	
		9,268.279	6,612.960	5,510.625	3,938.041	8,636.723	5,122.237	-3,391.413	-2,016.032
	3 ⁻¹⁴	[= 9,251.150	[= 6,569.116			[= 8,686.645		[= -3,887.166	
A50		+ 17.129]	+ 43.844]			- 49.922]		-4.247]	
(50, 0.15)		5,510.625	3,938.041	3,277.064	2,346.760	5,122.237	3,035.925	-2,016.032	-1,198.584
	3-13	[= 5,497.265	[= 3,903.533			[= 5,161.826		[= -2,012.739	
		+ 13.360]	+ 34.508]			- 39.590]		- 3.292]	
		14,162.00	10,107.99	8,420.614	6,020.229	13,190.04	7,821.649	-5,181.894	-3,080.467
	3 ⁻¹⁴	[= 14,134.10	[= 10,036.45			[= 13,271.66		[=-5,174.990	
A25-90		+ 27.90]	+ 71.54]			- 81.62]		- 6.904]	
(25, 0.9)		8,420.614	6,020.229	5,007.843	3,588.276	7,821.649	4,635.022	-3,080.467	-1,831.483
	3-13	[= 8,398.850	[= 5,963.910			[= 7,886.355		[= -3,075.106	
		+ 21.764]	+ 56.319]			- 64.706]		- 5.361]	

n = 3 is used in all analyses. The smallest element size of the coarse model is three times as large as that of the fine model.

		-				
		RWCIM				
SLJ/SLJ*	e_0	$rac{K^{SLJ}_{\sigma_x,\lambda_1}ig/K^{SLJ^*}_{\sigma_x,\lambda_1}}{K^{SLJ}_{\sigma_x,\lambda_2}ig/K^{SLJ^*}_{\sigma_x,\lambda_2}}$		$\frac{K_{\sigma_y,\lambda_1}^{SLJ} / K_{\sigma_y,\lambda_1}^{SLJ^*}}{K_{\sigma_y,\lambda_2}^{SLJ} / K_{\sigma_y,\lambda_2}^{SLJ^*}}$	$K^{SLJ}_{ au_{xy},\lambda_1} / K^{SLJ^*}_{ au_{xy},\lambda_1} \ K^{SLJ}_{ au_{xy},\lambda_1} / K^{SLJ^*}_{ au_{xy},\lambda_2}$	$\frac{K_{\sigma_{ij},\lambda_{1}}^{SLJ}}{K_{\sigma_{ij},\lambda_{1}}^{SLJ}} \frac{K_{\sigma_{ij},\lambda_{1}}^{SLJ*}}{K_{\sigma_{ij},\lambda_{1}}^{SLJ}}$
		Mat. 1	Mat. 2	· y · · 2 / · · y · · 2	xy' 27 xy' 2	
	3 ⁻¹⁴	0.770	0.770	0.770	0.770	
450/425		0.821	0.820	0.821	0.822	0.770
A30/ A23	3 ⁻¹³	0.770	0.770	0.770	0.770	0.820
		0.817	0.820	0.821	0.814	
	2-14	1.176	1.176	1.176	1.176	
125 00 (125	5	1.336	1.337	1.342	1.336	1.176
A23-90/A25	2-13	1.176	1.176	1.176	1.176	1.341
	5	1.330	1.338	1.342	1.326	

Table 3. The ISSF ratios $K_{\sigma_y,\lambda_1}^{SLJ}/K_{\sigma_y,\lambda_1}^{SLJ^*}$ and $K_{\sigma_y,\lambda_2}^{SLJ}/K_{\sigma_y,\lambda_2}^{SLJ^*}$ under $\sigma_0 = 1$ MPa when $(\alpha, \beta) = (0.4, 0.0)$. The $K_{\sigma_y,\lambda_1}^{SLJ}/K_{\sigma_y,\lambda_1}^{SLJ^*}$ and $K_{\sigma_y,\lambda_2}^{SLJ}/K_{\sigma_y,\lambda_2}^{SLJ^*}$ are independent of the mesh size e_0

SLJ: unknown SLJ model, SLJ*: reference SLJ model

Fig. 5 λ₂ contour map. The circle marks are λ₂ values for the real material combinations of various metals and structural adhesives. Many material combinations have two real singular indexes. The λ₂ values are larger than 0.99 when the metals are bonded by the structural adhesive

化し、メッシュ依存性が確認される。Table 3 に試験片 A25 を基本問題にした試験片 A50 および A25-90 の特異応力場 の強さの比を示す。また、解析精度を確認するため、 RWCIM で求めた特異応力場の強さ¹⁷⁾の比も同時に示す (詳しくは付録を参照されたい)。界面での応力の連続性よ り、 $K_{\sigma_i,\lambda_i}^{SU}$ のみ材料 1 側と 2 側で異なる値をとる。 $K_{\sigma_i,\lambda_i}^{SU}$ の比は、Table 2 の FEM 応力のようなメッシュ依存性は見ら れず、成分に関係なくほぼ等しい値が得られている。 $K_{\sigma_i,\lambda_i}^{SU}$ の比は、本解析法と RWCIM で 3 桁目に多少の違いが見ら れたが、その差は約 1% 以下であり、良好な結果が得られ ていることが確認される。本解析法は、界面端部の 1 点の FEM 応力のみに注目するものであり、RWCIM に比べて遥 かに少ない計算で精度の良い解を得ることができる。

4.2 実用問題への適用

Fig. 5 に λ_2 の等高線図を示す。丸印は一般的な金属材 料²¹⁾ ($E_1 = 70.3 \sim 206$ GPa, $v_1 = 0.249 \sim 0.300$)と構造用接 着剤²²⁾ ($E_2 = 0.037 \sim 3.6$ GPa, $v_2 = 0.294 \sim 0.498$)の組み合 わせにおける λ_2 の値である。4.1 節では、界面端部応力の 分離が可能であることを検証するために λ_2 が1 に近すぎな

Table 4	. R	eal material	constants	used in	the	present	analysis ¹),23)
	• • • •					F		

A	Adherend		Adhesive				
Material	E_1 [GPa]	v_1	Material	E_2 [GPa]	<i>v</i> ₂		
Al alloy	68.9	0.30	Epoxy resin	4.20	0.45		
Cu alloy	112.7	0.30	Die-bonding material	11.76	0.30		
Alloy 42	145.5	0.30	Encapsulant resin	21.07	0.30		

Table 5. Dundurs' parameter (α, β) and singular index (λ_1, λ_2) of the real material combinations in Table 4

A	Dundurs'	parameter	Singular index		
Adherend/ Adhesive	α	β	λ_1	λ_2	
Al alloy/Epoxy resin	-0.8699	-0.06642	0.6061550	0.9989428	
Cu alloy/Die-bonding material	-0.8110	-0.2317	0.6675308	0.9962746	
Alloy 42/Encapsulant resin	-0.7463	-0.2132	0.6543982	0.9934870	

いような材料組み合わせを選んだ。しかしながら,実際に はFig. 5 に示すように λ_2 が 1 に近くなるような場合が多く 見られる。そこで本節では,被着材/接着剤に前報¹⁵⁾のア ルミ合金/エポキシ系接着剤²³⁾,銅合金/ダイボンディン グおよび 42 合金/封止樹脂¹⁾を用い,本解析法の実用性 について検討を行う。Table 4 に解析で用いた被着材および 接着剤の材料定数,Table 5 にそれらの材料組み合わせでの Dundurs パラメータ²⁰⁾ (α , β), 特異性指数 (λ_1 , λ_2) をそれぞ れ示す。 λ_2 は,いずれの材料組み合わせも1に非常に近い 値となっている。Fig. 6 に解析全体の流れを示す。本解析 法では,まずメッシュサイズを相似的に変えながら基本問 題および未知問題の FEM 解析を行う。得られた FEM 応力 を式 (13), (14) で分離し,式 (15) で特異応力場の強さを求 める。そして,後述する式 (16) を使って,精度の高い特異 応力場の強さを決定する。

Fig. 7に $e_0 = 3^{-14}$ の密メッシュモデルで得たアルミ合金/ エポキシ系接着剤の界面端部での $\sigma_{y,FEM}^{SLJ}$ の等高線図を示 す。いずれも界面端部で高い応力を示している。試験片 A25 と比べると、A50 は相似な分布となっている。A25-90 は同じような分布となっている。Table 6 にアルミ合金/エ ポキシ系接着剤の界面端部での FEM 応力を示す。なお、 括弧の数値は式 (13), (14) で分離した $\sigma_{ij0,FEM,\lambda_1}^{SLJ}$ および $\sigma_{ij0,FEM,\lambda_2}^{SLJ}$ である。応力値には、いずれの成分もメッシュ依 存性が見られる。また、 $\sigma_{ij0,FEM,\lambda_2}^{SLJ}$ は $\sigma_{ij0,FEM,\lambda_1}$ に比べて遥か に小さく、桁落ちしているのが確認される。桁落ちの程度 は成分によって異なり、例えば試験片 A25 の $e_0 = 3^{-14}$ の場 合、材料 1 側の $\sigma_{x0,FEM,\lambda_2}^{SLJ}$ は 7.001 と 4 桁あるが、材料 2 側 は 0.105 と 3 桁しかなく、1 桁の差が生じている。Table 7 に試験片 A25 を基本問題にした試験片 A50 および A25-90 の特異応力場の強さの比を示す。 $K_{\sigma_x\lambda_1}^{SLJ}$ の比については、す

Fig. 6 Flowchart of ISSF analysis by the present method

ベてメッシュ依存性は見られなかった。一方, $K_{\sigma_y,\lambda_2}^{SLJ}$ の比 については, 材料1側の $K_{\sigma_x,\lambda_2}^{SLJ}/K_{\sigma_x,\lambda_2}^{SLJ*}$ のみメッシュ依存性 が見られなかった。これは, 材料1側の $\sigma_{x0,FEM,\lambda_2}^{SLJ}$ が最も 桁落ちが小さかったためである。Fig. 8 に Table 4 の 3 つの 材料組み合わせで $\left(K_{\sigma_y,\lambda_2}^{SLJ*}/K_{\sigma_y,\lambda_2}^{SLJ*}\right)_{Present}/\left(K_{\sigma_y,\lambda_2}^{SLJ*}/K_{\sigma_y,\lambda_2}^{SLJ*}\right)_{RWCIM}$ の平均値, 最大値および最小値を λ_2 で整理した結果を示 す。アルミ合金/エポキシ系接着剤ほどではないが, 他 の2つの材料組み合わせについても $K_{\sigma_y,\lambda_2}^{SLJ}$ の比に差が見 られる。このように $K_{\sigma_y,\lambda_2}^{SLJ}$ の比に差が生じるのは, λ_2 が 1 に非常に近くなると, $|\sigma_{j0,FEM,\lambda_1}^{SLJ}| \gg |\sigma_{j0,FEM,\lambda_2}^{SLJ}|$ となり,

(b) A50

Fig. 7 Contour maps of $\sigma_{y,FEM}^{SLJ}$ distribution at the interface end by using fine mesh model when the material combination of the aluminum alloy and the epoxy resin in Table 4 is used

Model (l_2, t_2)	e_0	$\sigma_{x0,FEM}^{SLJ}\Big _{e_{\min}=e_0}$ $[=\sigma_{x0,FEM,\lambda_1}^{SLJ}+\sigma_{x0,FEM,\lambda_2}^{SLJ}]$		$\sigma_{x0,FEM}^{SLJ}\Big _{e_{\min}=ne_0}$		$\sigma_{y0,FEM}^{SLJ}\Big _{e_{\min}=e_0} \\ \left[=\sigma_{y0,FEM,\lambda_1}^{SLJ}\right]$	$\sigma_{y0,FEM}^{SLJ}\Big _{e_{\min}=ne_0}$	$\left. \tau^{SLJ}_{xy0,FEM} \right _{e_{\min}=e_0} = \tau^{SLJ}_{xy0,FEM,\lambda_1}$	$\left. au_{xy0,FEM}^{SLJ} \right _{e_{\min}=ne_0}$
		Mat. 1	Mat. 2	Mat. 1	Mat. 2	$+\sigma_{y0,FEM,\lambda_2}^{SLJ}$]		$+ au_{xy0,FEM,\lambda_2}^{3LJ}$]	
		1,219.634	2,018.765	793.7081	1,309.743	1,453.725	943.0149	-461.4383	-299.3449
	3-14	[= 1,212.633	[= 2,018.660			[= 1,454.046		[= -461.4974	
A25		+ 7.001]	+ 0.105]			- 0.321]		+0.0591]	
(25, 0.15)		793.7081	1,309.743	517.3754	849.7380	943.0149	611.6741	-299.3449	-194.1832
	3-13	[= 786.7254	[= 1,309.683			[= 943.3633		[= -299.4065	
		+ 6.9827]	+ 0.060]			- 0.3485]		+ 0.0616]	
		927.7130	1,535.343	603.7818	996.1034	1,105.601	717.1869	-350.9387	-227.6614
	3-14	[= 922.2484	[= 1,535.272			[= 1,105.858		[=-350.9837	
A50		+ 5.4646]	+ 0.071]			- 0.257]		+0.0450]	
(50, 0.15)		603.7818	996.1034	393.6204	646.2558	717.1869	465.1920	-227.6614	-147.6819
	3-13	[= 598.3338	[= 996.0530			[= 717.4571		[= -227.7103	
		+ 5.4480]	+ 0.0504]			- 0.2702]		+0.0489]	
		1,223.239	2,025.962	795.7958	1,314.407	1,458.949	946.4155	-463.0916	-300.4207
	3-14	[= 1,216.955	[= 2,025.872			[= 1,459.238		[=-463.1415	
A25-90		+ 6.284]	+ 0.090]			- 0.289]		+ 0.0498]	
(25, 0.9)		795.7958	1,314.407	518.4778	852.7658	946.4155	613.8953	-300.4207	-194.8836
	3-13	[= 789.5330	[= 1,314.341			[= 946.7212		[=-300.4757	
		+ 6.2628]	+ 0.066]			- 0.3057]		+ 0.0549]	

Table 6. FEM stresses at the interface end under $\sigma_0 = 1$ MPa when the material combination of the aluminum alloy and the epoxy resin in Table 4 is used. The values in the brackets are FEM stress divided by Eqs. (13) and (14). All FEM stresses depend on the mesh size e_0

n = 3 is used in all analyses. The smallest element size of the coarse model is three times as large as that of the fine model.

Table 7. The ISSF ratios $K_{\sigma_{ij},\lambda_1}^{SLJ}/K_{\sigma_{ij},\lambda_1}^{SLJ*}$ and $K_{\sigma_{ij},\lambda_2}^{SLJ*}/K_{\sigma_{ij},\lambda_2}^{SLJ*}$ under $\sigma_0 = 1$ MPa by the present method when the material combination of the aluminum alloy and the epoxy resin in Table 4 is used

SLJ/SLJ*	e ₀	$ \begin{array}{c c} K_{\sigma_{s},\lambda_{i}}^{SLJ} / K_{\sigma_{s},\lambda_{i}}^{SLJ*} \\ K_{\sigma_{s},\lambda_{2}}^{SLJ} / K_{\sigma_{s},\lambda_{2}}^{SLJ*} \\ \hline \text{Mat. 1} & \text{Mat. 2} \end{array} $		$K^{SLJ}_{\sigma_y,\lambda_1} / K^{SLJ*}_{\sigma_y,\lambda_1} - K^{SLJ}_{\sigma_y,\lambda_2} / K^{SLJ*}_{\sigma_y,\lambda_2}$	$K^{SLJ}_{ au_{xy},\lambda_1} ig/ K^{SLJ*}_{ au_{xy},\lambda_1} \ K^{SLJ}_{ au_{xy},\lambda_2} ig/ K^{SLJ*}_{ au_{xy},\lambda_2}$
		0.761	0.761	0.761	0.761
	3-14	0.781	0.678	0.800	0.761
A50/A25	3-13	0.761	0.761	0.761	0.761
		0.780	0.837	0.775	0.793
	3-14	1.004	1.004	1.004	1.004
A25-90/A25		0.898	0.859	0.899	0.843
	2-13	1.004	1.004	1.004	1.004
	3-13	0.897	1.093	0.877	0.891

SLJ: unknown SLJ model, SLJ*: reference SLJ model

Fig. 8 Comparison between $K_{\sigma_x,\lambda_2}^{SLJ}/K_{\sigma_x,\lambda_2}^{SLJ*}$ values under $\sigma_0 = 1$ MPa by the present method and RWCIM when three material combinations in Table 4 are used

論文

 $\left(K_{\sigma_x,\lambda_2}^{SLJ}/K_{\sigma_x,\lambda_2}^{SLJ^*}\right)_p$ $\left(K_{\tau_{m},\lambda_{2}}^{SLJ}/K_{\tau_{m},\lambda_{2}}^{SLJ^{*}}\right)$ $K_{\sigma_{u},\lambda_{2}}^{SLJ}/K_{\sigma_{u},\lambda_{2}}^{SLJ^{*}}$ $\frac{\left(K_{\sigma_{x},\lambda_{2}}^{SLJ}/K_{\sigma_{x},\lambda_{2}}^{SLJ*}\right)_{RWCIM}}{\left(K_{\sigma_{x},\lambda_{2}}^{SLJ}/K_{\sigma_{x},\lambda_{2}}^{SLJ*}\right)_{RWCIM}}$ $\left(K_{\sigma_{y},\lambda_{2}}^{SLJ^{*}}\right)_{RWCIM}$ $\overline{\int_{\lambda_{\gamma}} / K_{\tau_{xy},\lambda_2}^{SLJ^*}}$ SLJ/SLJ* e_0 (E_{σ}) RWCIM (E_{σ_y}) (E_{τ_m}) Mat. 1 Mat. 2 1.000 0.869 1.025 0.976 3⁻¹⁴ (0.00581)(0.00005)(0.00013)(0.00023)A50/A25 1.000 0.994 1.072 1.016 3⁻¹³ (0.00891)(0.00005)(0.00037)(0.00021)0.940 1.001 0.958 1.002 3⁻¹⁴ (0.00543)(0.00005)(0.00021)(0.00012)A25-90/A25 1.000 1.218 0.978 0.994 3⁻¹³ (0.00832) (0.00005)(0.00035)(0.00019)

Table 8. Comparison between $K_{\sigma_x,\lambda_2}^{SLJ}/K_{\sigma_x,\lambda_2}^{SLJ^*}$ values under $\sigma_0 = 1$ MPa by the present method and RWCIM when the material combination of the aluminum alloy and the epoxy resin in Table 4 is used

SLJ: unknown SLJ model, SLJ*: reference SLJ model

Fig. 9 Relation between $(K_{\sigma_{ij},\lambda_2}^{SLJ}/K_{\sigma_{ij},\lambda_2}^{SLJ^*})_{Present}/(K_{\sigma_{ij},\lambda_2}^{SLJ^*}/K_{\sigma_{ij},\lambda_2}^{SLJ^*})_{RWCIM}$ and $E_{\sigma_{ij}}$ under $\sigma_0 = 1$ MPa by the present method and RWCIM when the material combinations in Table 4 are used

して用い, $K_{\sigma_y,\lambda_2}^{SLJ}$ の比の評価を行った。 E_{σ_y} は0から1までの範囲で変化し, $\sigma_{ij0,FEM,\lambda_2}^{SLJ*}$ および $\sigma_{ij0,FEM,\lambda_2}^{SLJ}$ のいずれか一方でも小さくなると0に近づく。

$$E_{\sigma_{ij}} = \sqrt{\frac{\left|\sigma_{ij0,FEM,\lambda_{2}}^{SLJ^{*}}\right|}{\left|\sigma_{ij0,FEM,\lambda_{1}}^{SLJ^{*}}\right| + \left|\sigma_{ij0,FEM,\lambda_{2}}^{SLJ^{*}}\right|} \cdot \sqrt{\frac{\left|\sigma_{ij0,FEM,\lambda_{2}}^{SLJ}\right|}{\left|\sigma_{ij0,FEM,\lambda_{1}}^{SLJ}\right| + \left|\sigma_{ij0,FEM,\lambda_{2}}^{SLJ}\right|}}$$
(16)

 $\text{Table 8 } \& \left(\left. K_{\sigma_{ij},\lambda_2}^{SLJ} \right/ K_{\sigma_{ij},\lambda_2}^{SLJ*} \right)_{Present} \middle/ \left(\left. K_{\sigma_{ij},\lambda_2}^{SLJ} \right/ K_{\sigma_{ij},\lambda_2}^{SLJ*} \right)_{RWCIM} \ddagger \downarrow \bigcup$ 表 E_{σ_u} ε 示 の 段 の 値 $\left(K_{\sigma_{ij},\lambda_{2}}^{SLJ} \left/ K_{\sigma_{ij},\lambda_{2}}^{SLJ*} \right)_{Present} \right/ \left(K_{\sigma_{ij},\lambda_{2}}^{SLJ} \left/ K_{\sigma_{ij},\lambda_{2}}^{SLJ*} \right)_{RWCIM}$ 下段の括弧の値 で ある。 が E_{σ.}, 材 料 1 側 \mathcal{O} $\left(K_{\sigma_{x},\lambda_{2}}^{SLJ*}/K_{\sigma_{x},\lambda_{2}}^{SLJ*}
ight)_{Present}/\left(K_{\sigma_{x},\lambda_{2}}^{SLJ}/K_{\sigma_{x},\lambda_{2}}^{SLJ*}
ight)_{RWCIM}$ のみメッシュ依存性 がなく, 値も1となっている。 E_{σ} の値も約 0.005~0.009 と 他より1,2桁ほど大きいことから、桁落ちの影響が小さ かったためだと考えられる。Fig.9にFig.8の $\left(K_{\sigma_{ij},\lambda_2}^{SLJ}/K_{\sigma_{ij},\lambda_2}^{SLJ^*}
ight)_{Present} / \left(K_{\sigma_{ij},\lambda_2}^{SLJ^*}/K_{\sigma_{ij},\lambda_2}^{SLJ^*}
ight)_{RWCIM}$ を $E_{\sigma_{ij}}$ で整理した結 果を示す。 E_{σ_y} が大きくなるにつれて、 $\left(K_{\sigma_{ij},\lambda_2}^{SLJ}/K_{\sigma_{ij},\lambda_2}^{SLJ^*}
ight)_{Present}/\left(K_{\sigma_{ij},\lambda_2}^{SLJ^*}/K_{\sigma_{ij},\lambda_2}^{SLJ^*}
ight)_{RWCIM}$ は1に収束してい る。この結果より、 E_{σ_a} の値を指標にそれが最大となる成 分の応力比を選べば、精度良く $K^{SLJ}_{\sigma_y,\lambda_2} / K^{SLJ*}_{\sigma_y,\lambda_2}$ を決定できる ことがわかる。実際の実装構造では、大まかなモデル(メ

インモデル)で解析した後、その結果を用い、注目したい 部分だけを取り出した別のモデル(サブモデル)で解析す ることがある。そのような場合においても、本解析法は有 用である。ただし、この場合、界面端部のFEM解析で算 出した応力は境界条件や負荷条件によっては誤差が大きく なる場合も考えられる。それを防ぐには、解析結果がメッ シュサイズだけでなく、サブモデルのサイズにも依存して いないことを確認すればよい。また、式(16)による指標も 桁落ちの考えに基づくものであることから、サブモデルを 用いた解析にも有効である。

以上,単純重ね合わせ継手の2つの特異応力場の強さを 求める方法を提案した。予め基本解を1つ準備しておけ ば,被着材および接着層の寸法,形状を変化させても手間 なく,簡便に未知問題の解を基本解と同じ精度で得ること ができる。本解析法は,被着体および接着剤の弾性定数か ら,界面端部に形成される弾性特異応力場を評価すること ができる。特に,実材料の組み合わせではよくある λ_2 が1 に非常に近い場合 ($\lambda_2 < 0.9989$)においても適用可能である ことは大きな長所であると言える。実際の半導体パッケー ジや実装基板の異材界面端部では,局所的に粘弾性変形や 塑性変形している場合が多くある。はく離強度を特異応力 場の強さで評価する際は界面端部が小規模降伏状態にある ことが適用条件としてあげられることから,このような実 問題に対して特異応力場の強さがどの程度有効であるかは 必ずしも明確ではない。しかしながら,先の研究で,著者 らは塑性変形が大きく,小規模降伏条件を外れる黄銅(被 着材)/はんだ(接着剤)の突合わせ継手に適用し,そのは く離強度も継手破断時の特異応力場の強さ=一定で表され ることを示した²⁴⁾。また,薄鋼板用連続焼鈍炉内用ハース ロールの溶射コーティングが繰返し熱サイクルではく離す る問題についても,最適な溶射皮膜の材料特性や膜厚が特 異応力場の強さで検討可能であることを報告してい る^{25),26)}。このような知見から,弾性特異応力場の強さによ る接着強度評価は,小規模降伏条件よりある程度広い範囲 で適用可能であると考えられる。

5. 結 言

本論文では、単純重ね合わせ継手の2つの特異応力場の 強さ $K_{\sigma_y,\lambda_1}^{SLJ}$ および $K_{\sigma_y,\lambda_2}^{SLJ}$ を同時に求める簡便で実用的な解 析法を提案した。以下に、得られた知見をまとめる。

- (1) 同じモデルを異なる要素寸法で解析することで、界 面端部での FEM 応力を特異性の違いに基づいて分 離する方法を提案した。その方法を用いて界面端部 での FEM 応力を分離すれば、1 つの基本モデルで 2 つの特異応力場の強さを同時に求められることを示 した。
- (2) 特異性指数 λ_2 が1に近い場合, $K_{\sigma_y,\lambda_2}^{SLJ}$ を求めるのに 適した FEM 応力の成分があることがわかった。そ して,その適切な成分を判別するための評価関数を 提案し,その有効性を示した。適切な応力成分を用 いれば, λ_2 が1に近い場合でも基本解と同等の精度 で $K_{\sigma,\lambda}^{SLJ}$ が求められることがわかった。
- (3) 本解析法は界面端部の FEM 応力のみに注目する便利な方法であり、少ない計算時間で精度の高い結果を与える。
- (4) 予め基本解を1つ準備しておけば、被着材および接着層の寸法、形状を変化させても、本解析法であれば短時間で簡便に未知問題の解を基本解と同じ精度で得ることができる。

(2017.8.31-受理)

文 献

- 斎藤武博,松山英人,戸谷眞之:"大規模集積回路のパッ ケージにおける異種材料界面はく離の破壊力学パラメータ に関する計算手法の検討,"エレクトロニクス実装学会誌, Vol. 3, No. 6, pp. 486–493, 2000
- 2) 澁谷忠弘: "異種材料接合端部のはく離発生強度の破壊力学 的評価と電子デバイスへの適用,"エレクトロニクス実装学 会誌, Vol. 7, No. 7, pp. 639-644, 2004

- D. V. Truong, T. Kitamura, and V. V. Thanh: "Crack initiation strength of an interface between a submicron-thick film and a substrate," Materials & Design, Vol. **31**, No. 3, pp. 1450–1456, 2010
- 信頼性解析技術委員会: "最近の実装材料における信頼性解 析技術課題,"エレクトロニクス実装学会誌, Vol. 20, No. 1, pp. 20-23, 2017
- Z. Qian and A. R. Akisanya: "An experimental investigation of failure initiation in bonded joints," Acta Materialia, Vol. 46, No. 14, pp. 4895–4904, 1998
- A. Mintzas and D. Nowell: "Validation of an H_{cr}-based fracture initiation criterion for adhesively," Engineering Fracture Mechanics, Vol. 80, pp. 13–27, 2012
- W. C. Carpenter and C. Byers: "A path independent integral for computing stress intensities for V-notched cracks in a bi-material," International Journal of Fracture, Vol. 35, pp. 245–268, 1978
- 8) 陳玳珩,西谷弘信: "板状接合試験片における特異応力場の 強さ,"日本機械学会論文集A編, Vol. **59**, No. 567, pp. 2682-2686, 1993
- Y. L. Li, S. Y. Hu, D. Munz, and Y. Y. Yang: "Asymptotic description of the stress field around the bond edge of a cylindrical joint," Archive of Applied Mechanics, Vol. 68, No. 7-8, pp. 552-565, 1998
- 野田尚昭, 白尾亮司, 李俊, 杉本淳典: "強化繊維の引抜き における繊維端部の特異応力場の強さ,"日本機械学会論文 集 A 編, Vol. **72**, No. 721, pp. 1397–1404, 2006
- Y. Zhang, N.-A. Noda, P. Wu, and M. Duan: "A mesh-independent technique to evaluate stress singularities in adhesive joints," International Journal of Adhesion and adhesives, Vol. 57, pp. 105-117, 2015
- Y. Zhang, N.-A. Noda, P. Wu, and M. Duan: "Corrigendum to "A mesh-independent technique to evaluate stress singularities in adhesive joints" [International Journal of Adhesion and adhesives, Vol. 57 (2015), pp. 105–117]," International Journal of Adhesion and adhesives, Vol. 60, p. 130, 2015
- 宮崎達二郎,野田尚昭,王澤鋒,佐野義一: "異種材料接合 丸棒の特異応力場の強さの解析と異種材料接合板との比較 について,"日本機械学会論文集, Vol. 81, No. 829, DOI: 10.1299/transjsme.15-00210, 2015
- 14) 野田尚昭,張玉,高石謙太郎,蘭欣,小田和広:"単純重ね
 合わせ接着継手の特異応力場の強さ,"日本機械学会論文
 集, Vol. 78, No. 789, pp. 651–655, 2012
- 15) 宮崎達二郎,野田尚昭,李戎,内木場卓巳,佐野義一:"特 異応力場の強さに基づく単純重ね合わせ継ぎ手のはく離破 壊基準の検討,"エレクトロニクス実装学会誌, Vol. 16, No. 2, pp. 143-151, 2013
- 16) 西谷弘信,川村壮司,藤崎 渉,福田孝之: "FEM による 板材の応力拡大係数と応力集中係数の高精度決定法,"日本

機械学会論文集 A 編, Vol. 65, No. 629, pp. 26-31, 1999

- 17) 村上敬宜: "有限要素法による応力拡大係数の簡便決定法,"
 日本機械学会論文集, Vol. 42, No. 360, pp. 2305-2315, 1976
- 18) 木須博行,結城良治,北川英夫: "境界要素法による表面き 裂の応力拡大係数の解析:第2報,応力拡大係数の精度よい決定法,"日本機械学会論文集A編, Vol. 51, No. 463, pp. 660-669, 1985
- 宮崎達二郎,野田尚昭,内木場卓巳,李戎,佐野義一: "は く離強度の便利で正確な評価法の提案,"自動車技術会論文 集, Vol. 45, No. 5, pp. 895–901, 2014
- J. Dundurs: "Discussion of edge-bonded dissimilar orthotropic elastic wedges under normal and shear loading," Transaction of the ASME, Journal of Applied Mechanics, Vol. 36, pp. 650–652, 1969
- 21) 結城良治,許金泉,劉金橋: "異材接合材の界面端応力特異 性の解析,"生産研究, Vol. 44, No. 4, pp. 206-210, 1992
- 22) 日本材料学会編:接着と材料, 裳華房, 1996
- 23) J.-H. Park, J.-H. Choi, and J.-H. Kweon: "Evaluating the strength of thick aluminum-to-aluminum joints with different adhesive lengths and thicknesses," Composite Structures, Vol. 92, pp. 2226–2235, 2010
- 24) N.-A. Noda, T. Miyazaki, R. Li, T. Uchikoba, Y. Sano, and Y. Takase: "Debonding strength evaluation in terms of the intensity of singular stress at the interface corner with and without fictitious crack," International Journal of Adhesion and Adhesives, Vol. 61, pp. 46–64, 2015
- 25) 野田尚昭,内木場卓巳,植野雅康,佐野義一,飯田和樹, 王澤鋒,王国輝: "特異応力場の強さに注目した溶射被膜の 簡便なはく離強度評価法,"鉄と鋼, Vol. 101, No. 7, pp. 358-364, 2015
- 26) Z. Wang, N.-A. Noda, M. Ueno, and Y. Sano: "Optimum Design of Ceramic Spray Coating Evaluated in Terms of Intensity of Singular Stress Field," steel research international, Vol. 88, No. 7, p. 1600353, 2017

付録:RWCIM による特異応力場の強さの解析

本論文では, RWCIM を本解析法の精度を議論するため に用いている。このため RWCIM における FEM 解析では 8 節点四角形要素を用い、精度の高い特異応力場の強さが得 られるようにした。RWCIMの詳細は文献(7)の説明を参照 いただきたい。なお、本論文で提案する手法では1次要素 と2次要素で得られる特異応力場の強さは完全に一致す る。すなわち、提案する手法では、2次要素は計算負荷を 大きくするだけ精度向上に寄与せず,1次要素のみで十分 な精度が得られる。なお、RWCIMのメッシュパターンは Fig. 4 と同じものとした。Fig. A1 に RWCIM で用いた積分 経路を示す。e₀=3⁻¹⁰, 3⁻¹¹とし, 1/e₀を変化させながら得 だ (α, β) = (0.4, 0.0) での $K_{\sigma_{ij},\lambda_1}^{SLJ}/K_{\sigma_{ij},\lambda_1}^{SLJ*}$ および $K_{\sigma_{ij},\lambda_2}^{SLJ}/K_{\sigma_{ij},\lambda_2}^{SLJ*}$ を Table A1 に示す。それらの比は, eo および 1/eo に関係なく 同じ値となっている。RWCIM では、強い特異性の影響下 にある C。上は解析的な積分を行い、特異性の影響がない *C*, から *C*, 上のみ FEM 解析の結果で数値積分する (*C*, お よび C₆上は自由表面のために積分値は0となる)。RWCIM で精度の高い特異応力場の強さが得られるのは、そのため である。しかしながら, RWCIM では C_2 から C_2 上のすべ ての応力 $\left(\sigma_{x,FEM}^{SLJ},\sigma_{y,FEM}^{SLJ}, au_{xy,FEM}^{SLJ}
ight)$ および変位 $\left(u_{x,FEM}^{SLJ},u_{y,FEM}^{SLJ}
ight)$ を必要とし、複雑な計算を行わなければならず、簡便さに 欠ける。一方、本解析法では、界面端部の1点のFEM応 力のみでよく、式(13)~(16)の簡単な計算で精度の高い $K_{\sigma_{u},\lambda_{v}}^{SLJ}/K_{\sigma_{u},\lambda_{v}}^{SLJ*}$ を手間なく得ることができる。

Fig. A1 Integral path for RWCM

		able Alt	ibbi idilo	is by it it of		(0.4) = (0.4)	0.0)		
		$e_0 =$	3-10		$e_0 = 3^{-11}$				
$\frac{l}{e_0}$	A50/A25		A25-90/A25		A50/A25		A25-90/A25		
	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_1}}{K^{SLJ*}_{\sigma_{ij},\lambda_1}}$	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_2}}{K^{SLJ*}_{\sigma_{ij},\lambda_2}}$	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_1}}{K^{SLJ*}_{\sigma_{ij},\lambda_1}}$	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_2}}{K^{SLJ*}_{\sigma_{ij},\lambda_2}}$	$\frac{K^{SLJ}_{\sigma_y,\lambda_1}}{K^{SLJ*}_{\sigma_y,\lambda_1}}$	$\frac{K^{SLJ}_{\sigma_y,\lambda_2}}{K^{SLJ*}_{\sigma_y,\lambda_2}}$	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_1}}{K^{SLJ*}_{\sigma_{ij},\lambda_1}}$	$\frac{K^{SLJ}_{\sigma_{ij},\lambda_2}}{K^{SLJ*}_{\sigma_{ij},\lambda_2}}$	
10	0.770	0.820	1.176	1.341	0.770	0.820	1.176	1.340	
20	0.770	0.820	1.176	1.340	0.770	0.820	1.176	1.341	
40	0.770	0.820	1.176	1.340	0.770	0.820	1.176	1.340	
60	0.770	0.820	1.176	1.340	0.770	0.820	1.176	1.340	
80	0.770	0.820	1.176	1.340	0.770	0.820	1.176	1.340	

Table A1. ISSF ratios by RWCIM when $(\alpha, \beta) = (0.4, 0.0)$

宮崎達二郎(みやざき たつじろう) 2003年九州大学大学院機械科学専攻博士後期課程 修了,博士(工学)。同年琉球大学工学部講師。 現在,准教授。金属疲労とその補修,接着接合部 材の強度に関する研究に従事。

佐野義一(さの よしかず) 1964 年九州大学大学院機械工学専攻修士課程修 了。同年,日立金属(株)若松工場に入社。02 年 (株)日立金属若松技術顧問。04 年九州職業能力 開発大学校特任教授,九州大学学術研究員。10 年 九州工業大学支援研究員。13 年丸栄化工(株)顧 問。博士(工学),技術士(金属・金属加工部門)。

野田尚昭(のだ なおあき) 1984年九州大学大学院工学研究科機械工学専攻博 士課程単位取得満期退学,工学博士。同年九州工 業大学講師,87年助教授,03年教授。85年リー ハイ大学客員研究員,96年山東工業大学客座教 授,03年華東交通大学兼職教授,05年サリー大 学客員研究員,08年山東大学客座教授,10年河 南科技大学兼職教授。 - 著者紹介