ピッチ差によるボルト・ナットの疲労強度向上と緩み止め効果*

(その3:緩み止め効果を表すプリベリングトルクについて)

1 はじめに

現在でも車両や航空機等において緩みに起 因する事故が散発している.そのため、緩み にくく破損しにくいボルト締結体が依然とし て求められており、これまでにも多くの緩み の発生とその防止に関する研究がなされてき た.ここでは、ピッチ差を有するナットをボ ルトにねじ込む際に必要となるトルク、すな わちプリベリングトルクについて述べる.プ リベリングトルクは緩み止め効果と関係する ので JIS にも規定されている.

図 1 に,著者等が先の研究⁽¹⁾で使用した NAS3350(National Aerospace Standard)に対応 する NAS 式緩み試験の実験装置を示す.実 験にはJIS M16 ボルト・ナット締結体を採用 し,5種類の異なるピッチ差 α=0,15,33,42, 50µm を試験した.ナットの締結力Fは標準の 24kN であり,振動数は 30Hz,振動加速度は 20g である.判定条件は繰返数が 30,000 回を 超えれば,緩み止め性能が十分であると規定 されている.

表 1 より, α = 33~42μm では繰返数が 30,000 回を超えている. このように, NAS 式 野田 尚昭 ** 高瀬 康 *** NODA, Nao-Aki and TAKASE, Yasushi

緩み試験で求めた適切なピッチ差 $\alpha = 33 \sim 42 \mu m$ では、十分なプリベリングト $\mu \rho T_p$ が生じており、 T_p が緩み止め性能に 大きく関係していることがわかる.

図1 NAS 式緩み試験装置

Pitch	Cycles	Prevailing	Axial
difference	for	torque	force
$\alpha(\mu m)$	dropping	T _p (Nm)	F(kN)
	п	-	
0	751	0	24
	876		
15	813	0	24
	1528		
33	30000	25	14~24
	30000		
42	30000	67	1~4
	30000	57	

表1 NAS 式緩み試験結果

-107-

^{*} 原稿受付: 2022年1月26日

^{**} 九州工業大学教授

^{***}九州工業大学野田研究室職員

2 プリベリングトルクの解析と実験

プリベリングトルクT_pは、実験で測定でき るが、ピッチ差などの条件を変化させたとき、 それを解析で求めて、議論することが便利で ある.その解析には、らせん状のねじ形状を モデル化する必要があり、疲労強度の考察に 用いた軸対称 FEM モデルに代わって、3 次元 FEM モデルを使用する.以下では、ねじ込み 過程におけるプリベリングトルクの詳細な挙 動を実験的に把握するとともに、このような 3 次元有限要素解析によるプリベリングトル クのシミュレーション結果も示す.

本解説では実験で耐緩み性が確認されてい るピッチ差付ボルト締結体の「ねじ込み過程」 におけるプリベリングトルクの 3 次元 FEM 解析結果も示す.ここで,ねじ込み過程は**図** 2 に示すように,ナットをボルトに挿入して いき,被締結物に接する迄の過程であり,被 締結物に接触した後の「締め付け過程」と区 別して用いる.通常のボルト・ナットでは, ねじ込みに要するトルクは $T_p=0$ であるが,ボ ルト・ナットのピッチ差を大きくすると,プ リベリングトルク T_p , $\neq 0$ が生じる.このよう なプリベリングトルク T_p は, ナット被締結物 に接触した後の締め付け過程における,締め 付けトルクTとは,区別して用いる必要があ る.

2.1 解析方法

図 3 に本研究で使用するボルト・ナット M12 の寸法を示し,図4にボルト・ナット間 のクリアランスおよびピッチ差の説明を示す. 軸方向のクリアランスは,片側 C_x=59µm とし た.ナットには,ボルトに比べてαだけ大き いピッチを与えた. その結果, M12 ボルトの ピッチ p=1750µm に対して、ナットのピッチ 1750+αμm となる(図4参照). 付与したピッチ 差αは、小さい順に 30µm、40µm、50µm とする. 図5にナットねじ込み過程におけるプリベリ ングトルク発生後のボルトとナットの接触状 態を示す.表2に用いたボルト・ナットの物 性値を示し、図6にボルト・ナットの応力ひ ずみ線図を示す.プリベリングトルクT_pは, ピッチ差によるボルト・ナット間ねじ同士の 接触力が最大となるナット端部から順次生じ 始める.図7に有限要素解析モデルと境界条 件を示す. ナットについてはねじ込む際にト ルクを作用させる六角部分を簡略化し、2 面 幅を丸ナットとしてモデル化する(図 6(a)). 要素分割は3次元ソリッド要素を用いて、ボ ルト・ナットねじ山の螺旋形状を考慮し、ね じの螺旋部には最小 0.048mm の四面体要素 を用いて作成した. 要素数は 9.3×104 個, ノ ードは 15.1×104 個である. 解析ソフトは ANSYS16.2 を使用し, 準静的, 弾塑性, 接触 を考慮した非線形解析を用いる. 図 6(b)に示 すように境界条件はボルト頭部を拘束し、ナ ットを時計回り(締め付け方向)に回す.

-108-

図3 ピッチ差付きボルト・ナット締結体

図 4 ピッチ差とボルト・ナット間のクリア

ランス (μm)

図 5 プリベリングトルク発生時のボルト・

ナットの接触状態

表2 ボルト・ナ	ット材料	🕸の機械的性質
----------	------	---------

	Young's modulus E (GPa)	Poisson's ratio V	Yield strength σ_y (MPa)	Tensile strength σ_R (MPa)
SCM435 (Bolt)	206	0.3	800	1200
S45C (Nut)	206	0.3	530	980

(a) FEM model M12 bolt and nut

図7 FEM 解析モデルと境界条件

3 ねじ込み過程におけるプリベリングトル クの実験と解析の比較

3.1 試験片と実験条件

ねじ込み試験に用いる JIS M12 のボルト・ ナットは、ボルトは強度区分 8.8 の SCM435, 黒染処理材、ナットは強度区分 8 の S45C 材 で、精密切削にて精度±0.003mm を目標にね じ加工を施した.ナット高さ 10mm, ねじ山 数5.71(面取りを除き4.34山)のものを用いる. 試験方法は、JIS B1056 に規定されている(JIS B 1056: 2011)が、ここでは、図8に示すよう に、ダイヤル式トルクレンチ((株)東日製作所 製 DB50N)を用い、ボルト・ナット端面のね じ開始位置を合わせ(回転角 0°)、そこからナ ット回転数とトルクT_pの関係をピッチ差α毎 に計測する.45°回転させる毎にトルクを読み 取り記録した.ナット全高(ねじ山数約 5.7)が ボルトにねじ込まれた後、さらに回転させ計 8 回転させた. 潤滑油には二硫化モリブデン グリーススプレーPRO((株)エーゼット製)を 用いた.

図8 ダイヤル式トルクレンチ

3.2 プリベリングトルクの実験結果

図 9(a)に実験で求めたプリベリングトルク T,の結果を、ナットの回転数との関係として 示す. ここで, 図 9(a)中の A→B→C→D→E は、図9(b)に示すねじ込み過程のナットの位 置である. すなわち点Aはナットがボルトに 初めて接触した位置, 点 B はプリベリングト ルクT,が初めて発生する位置,点 C はT,が 増加している途中の位置, 点 D はナットのね じ山が全部ねじ込まれた位置,点Eはナット が8周した位置である. 図9(a)にはナットね じ込み過程のトルクの他に、ナットねじ戻し 過程, $E \rightarrow D \rightarrow C \rightarrow B \rightarrow A$ のトルクも示してい る. 図9に示すように、プリベリングトルク T,はねじ込み過程の進行に応じて変化する. まず,ねじ込み方向のプリベリングトルクは, 7 周から8周にかけてほぼ一定となるので、 その平均値に注目しT_p^{EXP-S}とする.一方,ね じ戻し方向のプリベリングトルクは、5 周か ら7周の平均値に注目し T_{pAVE}^{EXP-U} ,ねじ戻し初 期の値に注目しT_{pMAX} とする. ねじ戻し過程 では、プリベリングトルクT_{pMAX} がねじ込み 過程のこの*T^{EXP-S}*とほぼ一致している. プリ ベリングトルクの変動を見ると,点 B から点 D にかけて線形的に増加している. これは, 点 B 時点における未ねじ込み部(図9(b)の点 B 参照)のピッチ差により,点 D まで接触面と 接触圧力が増加しているためと考えられる. また,点 D 以降のトルクの変動は,接触面に 介在する摩耗片の生成,変形,脱落による現 象と考えられる.

図 9 (a) プリベリングトルクの実験結果 (α=40 μm) と (b) ナットのねじ込み位置

-110-

J. Japan Res. Inst. for Screw Threads & Fasteners Vol. 53 No. 4 (2022)

3.3 プリベリングトルクの解析結果

実験と同様,FEM シミュレーションで $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ のナットのねじ込みと, $E \rightarrow D \rightarrow C \rightarrow B \rightarrow A$ のナットのねじ戻しを解析 し,図10にプリベリングトルクのナットの 回転数との関係として示す.図10より,ピ ッチ差α=40µmでは,ねじ込み方向の解析結 果と実験結果がほぼ一致している.ねじ戻し 過程において,プリベリングトルクの実験値 はねじ込み過程と非対称的な挙動で減少して いるのに対して,解析では対称的に減少して いる.これは,解析では摩耗片が生成されな いため,摩耗片の影響によるトルクのばらつ きが表現できていないと考えられる.以上の 解析では,摩擦係数µ=0.12を用いている.

図 10 プリベリングトルクの実験と解析の 比較 (α=40μm)

4 プリベリングトルクに関する他の研究との 比較

表 3(a), (b)にピッチ差付ナットの結果⁽²⁾を まとめて示す.表3(b)は、ウエブに掲載され てる値からの引用である.すなわち、表3に はプリベリングトルク*T*^{*p*}が生じる,U-ナット ⁽³⁾,スーパースリットナット⁽⁴⁾,アウターキ ャップナット⁽⁵⁾が示されている.ピッチ差付 ナット以外では,スーパースリットナットが 最も*T*^{*p*}が大きい.呼び径が M16 のスーパー スリットナットと M12 のピッチ差付ナット とのプリベリングトルクを比較するためにこ こでは,このトルクが呼び径に比例すると過 程し,補正して比較する.スーパースリットナ ットの最大値 19Nm を補正した 14.3Nm に対 してピッチ差付ナットのピッチ差α=50µm が 60%ほど大きい.以上の結果から,他の特殊 ナットとの緩み止め性能の優位性が示唆され る.

表3 特殊ボルト・ナット締結体のプリベリ ングトルクの比較

Tuna	Pitch differenc	Material	Yield Strength	Prevailing torque by experiment		Prevailing torque by FEM	
type	e α (μm)	(bolt/nut)	σ, (MPa)	T_{p}^{EP-3} (Nm)	$T_{p\underline{u}\alpha}^{EBP-0}$ (Nm)	T_p^{FEM-S} (Nm)	T_r^{HM-U} (Nm)
Pitch	30			4.7	7.0	4.2 (µ =0.12)	4.1 (μ=0.12)
difference nut IIS M12	40	SCM435 S45C	800 530	14.6	15.0	16.8 (μ=0.12)	15.5 (μ=0.12)
(This study)	50			29.9	32.0	23.2 (µ =0.12)	21.2 (µ =0.12)
Ú-nut JIS M12	4	SCM435	800	1.5	0.6	not indicated	not indicated
Super slit nut JIS M16	-	S45C SGD3M	530 320	13.5	not indicated	17-19 (μ=0.15)	15-18 (μ=0.15)
Outer cap	-	SUP9	785	not indicated	not indicated	0(µ=0.15)	1.2(µ=0.15)
nut JIS M12	-	SUP10	1080	not indicated	not indicated	0(µ=0.15)	3.3(µ=0.15)

論文から

(a)

-111-

Nut type	Company	size	Prevailing torque (Nm)
U-Nut	Fuji Seimitsu Co., Ltd	M12	1.5
GU-Nut	Fuji Seimitsu Co., Ltd	M12	5.0
TWIN FU-Nut	Fuji Seimitsu Co., Ltd	M16	6.0
V-Nut	Comwell Fujisawa Co., Ltd.	M12	1.5
Super slit Nut	Tokyo Univ. and Daiki Industry Co., Ltd.	M16	15~19
Edge lock Nut	Osaka Forming Co., Ltd	M12	1.5
Super Lock Nut	Daiki Industry Co., Ltd	M16	12.3~18.5
Nylon insert nut	Nishi Seiko Co., Ltd	M12	7.8
Looseness-free Nut	Kawasaki Steel Corporation	M12	10~20

Uナット U-Nut (株式会社富士精密) Fuji Seimitsu Co., Ltd

Vナット V-Nut (株式会社コムウェルフ ジサワ) Comwell Fujisawa Co., Ltd.

ナイロンナット **Nylon nut** (西精工株式会社) Nishi Seiko Co., Ltd

9

フランジナット flange nut (大阪フォーミング 株式会社) Osaka Forming Co., Ltd

5 ねじ込み過程に続く締め付け過程の解析
 5.1 通常のボルト・ナット(α=0)におけるト
 ルク Τ の数値解析と理論計算式の比較

通常のボルト・ナットにおける被締結体を 締め付ける際に生じる締め付けトルクTの計 算式を式(1), (2), (3)に示す⁽⁶⁾.

$$T = KdF \tag{1}$$

$$T = \frac{F}{2} \left(\frac{d_2}{\cos \beta} \mu + \frac{p}{\pi} + d_w u_w \right)$$
(2)

$$d_{w} = \frac{2(d_{0}^{3} - d_{h}^{3})}{3(d_{0}^{2} - d_{h}^{2})}$$
(3)

ここで,締め付けトルク T,締結力 F,ね じの呼び径 d,トルク係数 K,ねじの有効径 2d,ねじのピッチ p,座面における摩擦の等 価直径 w_d,ねじ山の半角 β ,ボルト座面外径 d_0 ,ボルト孔径 h_d である. **表** 4 に M12 ボルト・ ナットにおけるそれぞれの値を示している. 式(2)のように,締め付けトルクはねじ面摩擦 トルク F/2・d₂/cos β·μ, 軸力トルク F/2・p/π, 座面摩擦トルクF/2・d_wμwの3つから構成され る. 図 11 に計算式(2)で求められるα=0μm の 締め付けトルクの他に,解析で求められた締 め付けトルク T と締結力 F の関係を同時に示 す.通常のα=0μm においては締め付けトルク T 計算式(2)と FEM 解析結果とは誤差 5%以内 で一致する.

表4	FEM	の解析条件	ŧ
			•

n'a i	Half	Friction co	efficient	D'i l	Bolt bearing	
diameter d_2 (mm)	angle of thread β (°)	thread surface μ	bearing surface μ_w	Pitch surface outer diar difference diameter d_{s} (mm) d_{s} (mm)	diameter d_k (mm)	
10.863	30	0.12	0.12	1.75	18	13.2

-112-

図 11 締め付けトルク Tと締結力 Fの関係

5.2 締め付け過程の解析結果(α>0)

図11より、ピッチ差付ナットにおける締め 付け過程の解析では, 締め付けトルク T がプ リベリングトルクT^{FEM-S}を超えてから締結 力が発生し始める. そのため, 通常のナット と比べると、同じトルクの大きさで締め付け たとき、締結力が小さくなる.また、ピッチ 差が大きくなると、締結力を付加するために 必要なトルクが大きくなるので、同じトルク の大きさでは、ピッチ差が大きいほど、締結 力が小さくなる. 通常のナットと比べ, ピッ チ差付ナットではトルクTに対する締結力増 加の傾きが大きい. また, ピッチ差α=30, 40µm で, トルク T を大きくしてくと, 通常 のナットα=0µm の挙動と一致する. ピッチ差 付加によるこれらの変化は、締め付けにより、 接触していたナットの両端のねじ山の接触状 態が変化し、ナット頭部側のねじ山の接触圧 力が小さくなり、その分が軸力に加算される. その後ナット頭部側のねじ面接触力がなくな ることで,通常のナットと同様の挙動になる.

これらから、実際の締め付けでは降伏点の 60~70%まで締め付けることを考慮すると⁶⁶、 ピッチ差付ナットでも高い締結力を得ること ができると考えられる.

6 ピッチ差の製造誤差を検出して修正するための3次元 FEM シミュレーション

6.1 ピッチ差の加工誤差

一般に目標とするピッチ差を与えようして も、加工誤差が生じる. 図 12 に M12 ボルト・ ナットのピッチ差 α を変化させて制作した一 例を、プリベリングトルク T_p とピッチ差 α の 関係として示す.実線は、3 次元 FEM シミュ レーションによって得られた結果 $T_p^{FEM}(\alpha)$ で あり、 \bullet は実験結果 $T_p^{Eq}(\alpha)$ である. ピッチ差 $\alpha=30\mu m \ 0 \ T_p^{FEM}(30) \ 2 \ T_p^{Eq}(30)$ の違いが大き いが、他の結果は、よく一致している. これ は、ナットのピッチ差の製造誤差によるもの である.これを確認して修正するために、次 の実験を行う.

6.2 接触ねじ山数 *n*_c によるピッチ差の修正

接触ねじ山数 n_c は**図9の**ねじ込み過程一に おける位置**B**のナットが接触するねじ山の番 号(n_c =1 でない方)である. **図7(a)**のメッシュ 作成の際に用いる 3D CAD により, ピッチ差 α のナットを何回転させれば接触が生じるか が,幾何学的関係から求まり,そのときの接 触ねじ山数が n_c^{Real} として与えられる. **図 13** に,このようにして求めた M12 ボルト・ナッ トの接触ねじ山数 n_c^{Real} とピッチ差 α の関係 を示す, **図 13** には, **図 9(a)**に示すような,ね じ込み実験より求めた接触ねじ山数 n_c^{Exp} (プ リベリングトルクが生じ始めるとき)と比較 して示す.

図 13 に示すように, ピッチ差 α=30µm に おける n_c^{Real}(30) =4.0 と n_c^{Eup}(30) =3.5 には違い があるが, これはピッチ差 α=30µm に加工誤 差が生じているためと考えられる. すなわち, n_c^{Eup}(30) =3.5 が実際には n_c^{Real}(34) =4.0 であり, 実際のピッチ差 α'=34µm であるためと考えら れる. 表 5 にこのようにして求めた修正後の ピッチ差 α'をまとめて示す.

図 13 接触ねじ山数 n_c とピッチ差 α の関係

表5 加工時に目標としたピッチ差 α と接触 ねじ山数 n_c により修正した実際のピッチ差

α'

Target a	Real a'	$n_c^{Exp}(\alpha) = n_c^{Real}(\alpha')$
30	34	3.5
40	39	3.1
50	50	2.4

6.3 プリベリングトルク *T_p^{FEM}*(α) による実際 のピッチ差の確認

表5 に示すように、実際のピッチ差 α 'は $n_c^{\text{Real}}(\alpha')$ から得られるので、もしこの α 'が正 確であれば、その α 'を用いた FEM の結果 $T_p^{\text{Real}}(\alpha')$ は補正前の $T_p^{\text{FEM}}(\alpha)$ と同じ値になる と考えられる、すなわち α 'の妥当性は、 $T_p^{\text{Real}}(\alpha') > T_p^{\text{FEM}}(\alpha)$ の一致から確認できる。

図 14 はピッチ差 α を変えたときのプリベ リングトルクの解析値 $T_p^{FEM}(\alpha)$ (実線) と実 験結果 $T_p^{Exp}(\alpha)$ (•) に,表 5 の α 'による実験 結果の修正値 $T_p^{Real}(\alpha')$ を加えた図である.実 験 結 果 の 修 正 値 $T_p^{Real}(\alpha')$ は 記 号 \Box (After corrected)で示されている.

図 14 に示すように、M12 の場合、 $T_p^{FEM}(30)$ と $T_p^{Exp}(30)$ の間に違いが見られるが、3D CAD により得られたピッチ差 $\alpha'=34\mu m$ より、 $T_p^{Exp}(30) \varepsilon T_p^{Real}(34)$ に修正すると、 $T_p^{Real}(34)$ は $T_p^{FEM}(\alpha)$ とよく一致する、図 14 には、他の α の $(T_p^{Exp}(\alpha)) \varepsilon$ 、 $T_p^{Real}(\alpha')$ に修正したプロ ット点□も示している.

上記の説明では、プリベリングトルク T_p が、 $T_p > 0$ となる $T_p = 0^+$ のときの接触ねじ山数 n_c からピッチ差αを修正した、その妥当性を 安定したプリベリングトルク T_p が得られた $T_p = T_p^{EXP-S}$ から確認した、実験では、 $T_p = 0^+$ と なる**図 9** のナット位置 B を求めるより, $T_p = T_p^{EXP-S}$ となる**図 9** のナット位置 D, E を求 める方が容易である.よって, $T_p = T_p^{EXP-S}$ か ら、ピッチ差αを修正し、その妥当性を T_p^{0+} か ら確認する方が望ましい.

図 14 プリベリングトルクの修正値 T_P^{Real}(α') 7 おわりに

本稿では、ピッチ差付きボルト・ナット締 結体のねじ込み過程におけるプリベリングト ルクの詳細な挙動を実験的に把握するととも に、3次元有限要素解析によるプリベリング トルクのシミュレーション結果を示した.そ の結果、プリベリングトルクの発生の過程と その大きさを求め、実験と比較してピッチ差 による影響を明らかにした.また、ピッチ差 の製造誤差を検出して修正する方法を示した.

参考文献

(1)野田尚昭,佐野義一,高瀬康,陳鑫,丸山 光,王寰,藤沢良太,異なるピッチ差によっ て疲労寿命を向上させたボルト・ナット締結 体における緩み止め性能の研究,自動車技術 会論文集,Vol.46,No.1 (2015),pp.121-126.
(2)劉渓,ピッチ差を有するボルト・ナット 締結体のねじ込みと締め付け過程の3次元有 限要素法解析,九州工業大学,(2020)博士学 位論文.
(3)株式会社富士精密,U-NUT 製品情報,

available from <</td>http://www.fun.co.jp/products/detail.php?no=Ng==>, (参照日 2018 年 8 月 5 日).

(4) 泉聡志,横山喬,寺岡卓也,岩崎篤,酒井 信介,斎藤金次郎,名川政人,野田秀樹,ゆる み止め性能を有するスーパースリットナッ トの有限要素法による機能検証,日本機械学 会論文集 A 編, Vol.71, No.703 (2005), pp.380-386.

(5) Noda, N.-A., Kuhara, M., Xiao, Y., Noma, S., Saito, K., Nagawa, M., Yumoto, A. and Ogasawara, A., Stress reduction effect and anti-loosening performance of outer cap nut by finite element method, Journal of Solid Mechanics and Materials Engineering, Vol.2, No.6 (2008), pp.801-811.

(6) 山本晃,ねじ締結の理論と計算,(1970),pp.5,39,養賢堂.