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A B S T R A C T

Heat-curing adhesives are widely used after being cured by heating to a temperature higher than room tem-
perature. To evaluate the adhesive strength, therefore, it is necessary to consider both the thermal stress
generated during heat curing and external loads such as tensile stress. Butt joint specimens are essential for
evaluating tensile adhesive strength but also thermal strength. The interfacial strength can be discussed from the
stress intensity factor (SIF) of a fictitious edge interfacial crack assumed at the interface end. This is because the
SIF is controlled by the intensity of singular stress field (ISSF) at the crack-free interface end and a constant term
associated with the thermal load. In this paper, a useful thermal SIF solution is proposed by superposing the SIF
under tensile stress and the SIF under uniform interface stress associated with thermal loading. This general SIF
expression provided under arbitrary material combination can be applied for predicting the tensile strength σc
and critical temperature change ΔT without performing new FEM calculations. The usefulness of the expression
is confirmed through the adhesive strength of Aluminum/Epoxy butt joint experimentally obtained. Once the
critical SIF K1C can be obtained from the tensile strength σc and the temperature change ΔT, the adhesive
strength can be expressed as K1C = constant of an assumed fictitious interface, and this can be used to predict
critical σc for various temperature change ΔT and for various adhesive bondline thickness h.

1. Introduction

Adhesive joints offer lots of advantages such as improved appear-
ance, excellent sealing properties, high strength/weight ratio, and
relatively low stress concentration. For this reason, in recent years, the
use of adhesives for assembly structural members has become wide-
spread in various industrial fields. For example, in recent years, they are
primarily used in aircraft and vehicle construction to join metallic and
non-metallic parts and to attach microchips to printed circuit boards
[1–6]. To evaluate adhesive strength, the fictitious crack modeling as
shown in Fig. 1 has some advantages. For example, (1) The original
singular stress field without crack is not necessarily to be analyzed. (2)
Although several problems whose original singular stress fields without
crack are different, fictitious cracks always provide the same singular
fields, which are controlled by the SIFs. (3) If the critical SIF is obtained
from the maximum load for one problem, the critical SIF = const can be
applied to other problems since they have the same singular fields.

It should be noted that the edge crack under thermal load in Fig. 1(a)
and the edge crack under tensile load in Fig. 1(b) have some similarity

but also have some difference. Thermal stress causes failure in dissimilar
materials and electronic devices because of the elastic-thermal
mismatch of the joined materials induces singular stress field at the
edge of the interface [7–12]. Munz et al. [13–19] presented asymptotic
solutions of thermal singular stress fields generated at joint corners for
AB joint due to uniform temperature change stating that specific con-
stant terms are included in thermal stress. Chen et al. [20,21] analyzed
two-layer and three-layer adhesive plates, which are corresponding to
AB joint and ABA joint, subjected to uniform temperature change clar-
ifying the intensity of the singular stress field (ISSF) for arbitrary ma-
terial combinations. Qian-Akisanya [22,23] and Reedy [24] analyzed
the ISSF, which is named H parameter to estimate the adhesive joint
strength under thermal stress.

In the authors previous study [25], the difference of the stress in-
tensity factor (SIF) was discussed in the AB joint. Fig. 2 shows F1, F2 of
the edge interface cracks in the AB joint. Note that the AB joint is equal
to the ABA joint when h/W ≥ 1 in Fig. 1. As shown in Fig. 2, regarding
the singular stress fields of the AB joint, the followings are known [25].
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1) Under the same value of Dundurs parameter, the singularity expo-
nents at the interface end are the same.

2) Under the remote tensile stress named equivalent stress σy0, the ISSFs
are the same when no crack.

3) Even under the same ISSFs, the singular stress distributions in Fig. 1
(a) and Fig. 1(b) are totally different. This is because under the
thermal loading, a large tensile stress often appears only near the
surface, but a compressive stress appears inside [25].

However, to design real adhesive structures, butt joints (named ABA
joints in this study) are essential. This is because the tensile adhesive
strength σc obtained for ABA joint has been used. Similarly, to evaluate
the adhesive strength under thermal loading, it is necessary to under-
stand the specific thermal singular stress field of ABA joints. For
example, it was reported that the ISSF varies depending on the adhesive
layer thickness in the ABA joint under tensile load [26,27]; however,
there is no systematical study of the SIF by varying the crack length, the
adhesive layer thickness under arbitrary material combination.

Therefore, in this study, interface edge cracks in the ABA joints
subjected to thermal stress will be analyzed. The thermal stress problem

can be represented by superposing the tensile load problem the uniform
stress problem. For this purpose, consider the ABA joints under tensile
loads first. Then, the effects of crack length and adhesive layer thickness
on the SIF will be investigated. Next, consider the ABA joints under
thermal stress under arbitrary material combination. Finally, the val-
idity of the SIF obtained will be confirmed through the experimental
results [23] by assuming a fictitious crack. The discussion in this paper is
especially useful for heat-curing adhesives. There are two types of
thermosetting adhesives. One is room temperature curing type and the
other is heat curing type, and the latter usually has a denser three-
dimensional network structure and is said to be stronger than the
room temperature curing type. The discussion in this paper is especially
useful for heat-curing adhesives because they are widely used after
being cured by heating to a temperature higher than room temperature.
To evaluate the heat-curing adhesive strength, it is necessary to consider
both the thermal stress generated during heat curing and external loads
such as tensile stress.

Nomenclature

a Length of the interface edge crack in the unknown problem
2a* Length of the interface crack in the reference problem
C1, C2 Dimensionless factors for short interface edge crack based

on a/W
C*1, C*2 Dimensionless factors for short interface edge crack based

on a/h
E Young’s modulus
e Minimum element size at the crack tip in the unknown

problem
e* Minimum element size at the crack tip in the reference

problem
F1, F2 Dimensionless SIFs for interface crack based on applied

stress
Fσ Dimensionless ISSF at the interface end based on W
F*σ Dimensionless ISSF at the interface end based on h
G Shear modulus
h Bondline thickness of butt joint
K1, K2 SIFs of an interface crack in the unknown problem
K*1, K*2 SIFs of an interface crack in the reference problem
Kσ ISSF at the interface end
r Distance from the interface crack tip

T0 Temperature
T, S Tensile and shear stresses applied to the reference problem
W Width of the bonded plate
α,β Dundurs composite parameter
ΔT Uniform temperature change
ε Oscillation singular index of an interface crack
η Thermal expansion coefficient
σ Applied remote stress
σy0 Equivalent stress associated with thermal loading
σy(r) Singular stress along the interface
σy0,FEM,τxy0,FEM Stress values at the crack tip node calculated by FEM

in the unknown problem
σ*y0,FEM, τ*xy0,FEM Stress values at the crack tip node calculated by FEM

in the reference problem
λ Order of the stress singularity at the interface end without

the crack
ν Poisson’s ratio

Abbreviations
AB joint Bi-material joint made of materials A and B
ABA joint Butt joint using adherend A and adhesive B
SIF Stress intensity factor
ISSF Intensity of singular stress field

Fig. 1. Butt joint named ABA joint in this paper under thermal loading compared to tensile loading assuming a fictitious crack length “a”. Note that equivalent stress

σy0 =
8GAGB(η*B − η*A)ΔT

GA(κB − 1)− GB(κA − 1)− 2(GA − GB)
provides the same ISSF for (a), (b) when no crack. Here, Material A, B have elastic constants GA, κA, GB, κB and thermal expansion

coefficients η*m = ηm(plane stress), η*m = (1+ νm)ηm(plane strain), m = A,B, F1 + iF2 = (K1 + iK2)/σy0
̅̅̅̅̅̅
πa

√
, σy(r) + iτxy(r)→K1+i K2̅̅̅̅̅̅

2πr
√

(
r
2a*

)iε
.
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2. ISSF of ABA joint without crack under tension and thermal
loading

Before discussing the SIF of an edge interface crack under thermal
loading, in this Section 2, the Intensity the Singular Stress Field (ISSF) of
ABA joint will be described for thermal loading. This is because the SIF
of the edge crack in Fig. 2 should be discussed based on the double
singularities before and after cracking as shown in the previous studies
[28,29]. In the previous studies, Bogy pointed out the existence of log-
arithmic singularity in dissimilar bonded plates under surface traction
without mentioning the equivalent tensile stress of the thermal loading
[7]. Chen et al [21] explained that the stress distribution due to thermal
loading can be expressed by the stress distribution under tension and the
constant uniform stress without mentioning that the meaning of the
constant stress value [11,12,30]. Therefore, in this Section 2, the
interfacial stress distributions under tension and thermal loading will be
indicated focusing on the difference of the singular stress distribution.
Though the explanation, the value of the constant stress will be clarified
to understand the edge interface crack problem [21,25].

Fig. 3(a) illustrates the interface stress σy(r) of the ABA joint when
α = 0.8, β = 0.3 in comparison with the AB joint subjected to σ∞

y (x). The
remote tensile stress can be chosen as σ∞

y (x) = σy0, which will be defined
later in Eq. (6) as shown in Fig. 3 (a) without losing generality. The
singular stress distribution σy(r) can be expressed in Eq. (1) at the
interface edge.

σy(r) =
Kσ

r1− λ due to σy0,Kσ = F*σσy0h1− λ (1)

Here, Kσ is the intensity of the singular stress field (ISSF) and λ is the
edge singularity index whose value is given by the characteristic equa-
tion of Eq. (2) [27]. The ISSF Kσ of the ABA joint under tension σy0 in
Fig. 3(a) discussed in Ref. [27] are indicated in Appendix A under
arbitrary material combinations as F*σ = Kσ/σh1− λ.

[
sin2

(π
2

λ
)
− λ2

]2
β2+2λ2

[
sin2

(π
2

λ
)
− λ2

]
αβ+ λ2(λ2 − 1)α2 + sin

2
(λπ)
4

= 0
(2)

In Eq. (2), Dundurs parameters α, β are determined from the material
combination as follows [31].

α =
GA(κB + 1) − GB(κA + 1)
GA(κB + 1) + GB(κA + 1)

, β =
GA(κB − 1) − GB(κA − 1)
GA(κB + 1) + GB(κA + 1)

, (3)

κm =

{
(3 − νm)/(1+ νm)(plane stress)

3 − 4νm(plane strain)
, (m = A,B) (4)

Fig. 3(b) shows the stress distribution σy(r) at the interface edge due
to the thermal loading by cooling the plate’s temperature uniformly as
ΔT = T0 < 0. Fig. 3(b) is an example when α = 0.8, β = 0.3, T0 = − 100
deg, and linear expansion coefficient ratio ηA/ηB = 10. To conform the
constant term associated with the thermal loading, Fig. 3(c) shows the
subtracted distribution of Fig. 3(b) from Fig. 3(a). As shown in Fig. 3(c),
a constant interface stress distribution σc

y(r) = σy0 is confirmed as can be
expressed σc

y(r) = σa
y(r) − σb

y(r) = σy0. The dashed line in Fig. 3(b) is the
stress σy at the interface due to the uniform temperature change ΔT =

− T0 < 0 subtracting the constant term σy = σy0 in Fig. 3(c).
From Fig. 3(c), it can be confirmed that the singular stress distribu-

tion under thermal loading in Fig. 3(b) at the interface end σy(r) can be
expressed in Eq. (5).

σy(r) =
Kσ

r1− λ + σy0 due toΔT (5)

In other words, under the bad pair condition satisfying α(α − 2β) > 0
the power function type singular stress field r1− λ occurs in the case of the
thermal load as well as in the case of the mechanical load causing
σy(r)→∞ as r→0. The constant term σy0 is known as the equivalent
remote tensile stress that should be applied to the bimaterial plate (see
Fig. 3(a)) to produce the same ISSF (see Fig. 3(b)). Under the remote
tensile stress σy0 defined in Eq. (6), the same intensity of the singular
stress Kσ due to the uniform temperature change ΔT = − T0 < 0 can be
obtained [21,25,30].

σy0 =
8GAGB

(
η*B − η*A

)
ΔT

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η*m =

{
ηm (plane stress)
(1+ νm)ηm(plane strain)

(m = A,B) (6)

Here, GA,GB,are shear modulus, νA, νB are Poisson’s ratio and η*A, η*B
are thermal expansion coefficient of material A, B, respectively.

The singularity index λ < 1 obtained from Eq. (2) characterizes the
presence of the singular stress in Fig. 3 in the following way.

1) When α(α − 2β) > 0 (Bad pair), 0 < λ < 1.
2) When α(α − 2β) = 0 (Equal pair), λ = 1.
3) When α(α − 2β) < 0 (Goodpair), λ > 1.

Fig. 2. Difference of the SIF between under thermal loading and under tensile loading in F1 − a/W relation in AB joint whenα = 0.8, β=0.3, ηA/ηB = 10,K1 + iK2 =

(F1 +iF2)σy0
̅̅̅̅̅̅
πa

√
(1+2iε),σy(r) + iτxy(r)→K1+i K2̅̅̅̅̅̅

2πr
√

(
r
2a*

)iε
, r→0 (r is a distance from the crack tip). Note that when no crack the ISSFs are equal. The AB joint in Fig. 2

can be regarded as ABA joint in Fig. 1 with.h/W ≥ 1.
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Fig. 3. Interface stress distribution σy(r) under mechanical loading and thermal loading for ABA joint when h/W = 0.1 and h/W ≥ 1.0 which is corresponding to AB
joint under fixed material combination α = 0.8, β = 0.3 obtained as GA/GB = 10.93, νA/νB = 0.0314, plane stress), ΔT = T0 = − 100 deg, thermal expansion co-
efficient ratio ηA/ηB = 10.
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Table 1 summarizes the difference between the singular stress fields
under mechanical loading and the one under thermal loading. The
presence or absence of the interface stress singularity was discussed in
the previous studies [12,25]. Table 1 summarizes the behaviors of the
interface stress σy(r) when r→0 in Fig. 3 under mechanical loading and
thermal loading. The interface stress behavior varies depending on
α(α − 2β) > 0, α(α − 2β) = 0, α(α − 2β) < 0. Note here that the ISSF Kσ
due to mechanical load σy0 in Eq. (1) and the ISSF Kσ due to thermal
stress ΔT in Eq. (5) are equal since the constant term σy0 in Eq. (5) does
not affect the ISSF.

Fig. 4 illustrates the idea of the analysis method used later in Section
4. The stress distribution in Fig. 4(a) under thermal loading consists of
the one under the tensile loading in Fig. 4(b) and the constant interface
stress in Fig. 4(c). The ISSF solution in Fig. 4(b) was analyzed previously.
As shown in Fig. 4(c), the uniform interface stress in Fig. 4(c) is
expressed by the sum of the compressive remote loading and the thermal
loading. In this study, the stress intensity factor of the edge crack in the
butt joint under uniform temperature change will be discussed based on
the superposition in Fig. 4. Accurate values of ISSFs F*σ = Kσ/σh1− λ of
ABA joints are indicated in Table A1 and Fig.A1 in Appendix A under
arbitrary material combinations. Also, the usefulness of these results is
indicated in Fig. A2 in Appendix A.

3. Analysis method of interfacial cracks under thermal load

3.1. Fictious crack method to analyze adhesive strength

The ABA joints are often used as a most fundamental testing method
to evaluate adhesive strength. Suzuki [32] measured the adhesive
strength of ABA joints by varying adhesive layer thicknesses stating that
the maximum principal stress value at a distance δ from the surface can
be used to predict the strength. Reedy-Guess [33,34], Reedy [35] and
Mintzas-Nowell [36] focused on the interface edge singular field stating
that the generalized stress intensity factor (ISSF) to evaluate the
strength. Noda et al. [37] analyzed the intensity of the singular stress
fields (ISSF) at the end of ABA joint interface controlling the strength by
varying the material combination and adhesive layer thickness stating
that the ISSF controls the strength. Furthermore, they explained the
stress intensity factor (SIF) of an assumed fictitious interface crack is also
useful since the adhesive strength can be expressed as a constant value of
the SIF [37]. This is because the SIF of the assumed edge crack is
controlled by the ISSF of the singular stress field at the interface end
[28,29,38].

To evaluate the adhesive strength based on the singular field at the
edge of the interface, the ISSF method and the fictitious crack method,
which assumes an interfacial crack at the interface end as shown in
Fig. 1, have been proposed [37]. In the ISSF method, the adhesive
strength is evaluated using the parameter Kσ related to the normal stress
σy at the interface. On the other hand, the strength evaluation method
using a fictitious crack investigated in this study uses the SIFs K1, K2 of
the interfacial crack as substitute parameters for the strength of the
singular field Kσ at the edge of the interface. Since not only K1 related to
σy but also K2 related to shear stress τxy can be obtained, there is an
advantage that the mechanical state of interfacial failure can be intui-
tively understood.

3.2. Proportional method to analyze thermal interface stress intensity
factors

Fig. 5 shows a butt joint with an edge interface crack subjected to
uniform temperature change ΔT, which is the target problem in this
study. In the FEM analysis, a uniform temperature change ΔT is applied
to the entire element in Fig. 4 considering elastic modulus and linear
expansion coefficient. Then, the stress value at the crack tip is calcu-
lated. In a similar way, an interface edge crack under heat flow may be
solved after analyzing temperature distribution [39]. Since the singular
field appears at the interface end of the bonded plate without crack, the
discussion in Section 2 must be useful for heat flow problems. In this
study, the SIF of the interface crack under uniform temperature change
ΔT is focused by applying the proportional method [28,29,38]. As
shown in the preceding papers as well as the following explanation in
Sections 3 and 4, the proportional method may provide exact solutions
[25,28,29,38].

In the method, stress values at the crack tip node are used and a stress
intensity factor is determined by the ratio of the crack tip stress values
between an unknown problem in Fig. 5 and the reference problem in
Fig. 6. In this study, the definition of stress intensity factor is expressed
as follows based on the interface crack length 2a*.

σy(r) + iτxy(r)→
K1 + i K2

̅̅̅̅̅̅̅̅
2πr

√
( r
2a*

)iε
, (r→0) (7)

The method gives the singular stress field equal to the unknown
problem by adjusting load stress T and S of the reference problem whose
stress intensity factor is already-known. The single interface crack in a
bonded semi-infinite plate subjected to the tension T and shear S is
selected as the reference problem because the interface crack tip is al-
ways mixed mode state. The stress values at the interface crack tip node
calculated by FEM in the reference problem under the tensile stress T= 1
(S = 0) or shear stress S = 1 (T = 0) are written by σT=1*

y0,FEM, τT=1*xy0,FEM and
σS=1*
y0,FEM, τS=1*xy0,FEM, respectively in Fig. 5. The crack tip stress values of the
unknown problem under the uniform temperature change in Fig. 5 are
also denoted by σy0,FEM, τxy0,FEM. By using the same crack tip stress con-
dition between the reference and the unknown problems, that is,
σy0,FEM = σ*y0,FEM and τxy0,FEM = τ*xy0,FEM, the external loading stress T and S
in the reference problem can be determined from the next expression
(8).

Table 1
Behaviors of the interface stress σy(r) when r→0 in Fig. 3 under mechanical
loading and thermal loading.

Material combination Under thermal loading Under tensile loading

α(α − 2β) > 0
(Bad pair)

σy(r) =
Kσ
r1− λ + σy0→∞(r→0) σy(r) =

Kσ
r1− λ→∞(r→0)

α(α − 2β) = 0
(Equal pair)

σy(r) = kσlog(r)→∞ (r→0)
(α ∕= 0)

σy(r)→finite (r→0)

α(α − 2β) < 0
(Good pair)

σy(r)→finite (r→0) σy(r)→0 (r→0)

T =
σy0,FEM⋅τS=1xy0,FEM* − σS=1

y0,FEM*⋅τxy0,FEM
σT=1
y0,FEM*⋅τS=1xy0,FEM* − σS=1

y0,FEM*⋅τT=1xy0,FEM*
, S =

σT=1
y0,FEM*⋅τxy0,FEM − σy0,FEM⋅τT=1xy0,FEM*

σT=1
y0,FEM*⋅τS=1xy0,FEM* − σS=1

y0,FEM*⋅τT=1xy0,FEM*
(8)
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From the loading stresses T and S obtained by Eq. (8), the stress in-
tensity factor of the interface crack in the reference problem in Fig. 6 can
be evaluated by Eq. (9).

K1* + iK2* = (T + iS)
̅̅̅̅̅̅̅
πa*

√
(1+ 2iε),

ε =
1
2π ln

[(
κA
GB

+
1
GB

)/(
κB
GB

+
1
GA

)] (9)

Here, ε is the oscillation singular index, κm = 3 − 4νm (plane strain),
(3 − νm)/(1+ νm) (plane stress), (m = A, B). Because the stress intensity

factor of Eq. (9) is equal to that of the unknown problem, the stress
intensity factors of the unknown problem in Fig. 5 can be obtained as

K1 = K1*, K2 = K2* (10)

From K1 = K1*, K2 = K2*, (T, S) in Eq. (8) can be regarded as
dimensionless SIFs (F1, F2) of unknown problem (see Eq. (11)). It is
noted that in the proportional method the finite element models of the
reference and the unknown problems have the same crack length and
the same FEMmesh pattern near the interface crack tip [25,28,29,38], a
= a* and e = e*. The detail of the accuracy discussion can be found in
previous papers under mechanical loading [28,29,38]. The proportional
method is useful for analyzing interface cracks by providing mesh-
independent interface SIFs F1, F2 efficiently. Since those FEM results
are mesh-independent, the obtained SIFs K1, K2 can be regarded as the
exact solution by using the exact reference solution in the bonded

Fig. 4. (a) Singular interface stress due to uniform thermal loading ΔT = T0 < 0 can be expressed by superposing (b) tensile loading and (c) constant interface stress
when α(α − 2β) > 0. The constant interface stress in Fig. 3(c) can be obtained from compressive σy0 and ΔT = T0 < 0.

Fig. 5. Unknown problem for an edge interface crack in bi-material rectangular
plate subjected to uniform temperature change ΔT. The stress values at the
crack tip σy0,FEM , τxy0,FEM are calculated by FEM considering the elastic modulus
GA, νA, GB, νB and thermal expansion coefficients ηA, ηB.

Fig. 6. Reference problem for an interface crack in a bonded semi-infinite plate
subjected to tension T and shear S.
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infinite plate K1 + iK2 = (T+ iS)
̅̅̅̅̅̅
πa

√
(1+ 2iε). In Table 2, several ex-

amples are indicated.

3.3. Effect of material combination on the thermal interface stress
intensity factors

In this study, the dimensionless stress intensity factors F1 and F2
defined in Eq. (11) will be used to discuss ABA joints by applying the
proportional method in section 3.1.

K1 + iK2 = (F1 + iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε) (11)

In Eq. (11), the equivalent stress is defined by Eq. (6).
The thermal stress intensity factor（SIF）varies depending on the

temperature change ΔT, Dundurs parameter α, β, thermal expansion
coefficient ratio ηA/ηB, and relative crack length a/W. Table 3 shows the
values of F1 and F2 for an edge interfacial crack under fixed α = 0.8,
β=0.3 and fixed geometry h/W = 0.1, a/W = 10− 5 by varying material
constants. From Table 3, it can be seen that even if thematerial constants
are different, the values of F1, F2 are the same. This is because Dundurs
parameters α, β control F1, F2.

Table 2
Mesh-independence of F1, F2 obtained by the proportional method when h/W = 0.1in Fig. 5 [K1 + iK2 = (F1 +iF2)σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε), α=0.8, β=0.3, a/W = 10− 5and a/

W = 0.1].

h/W a/W e/a Thermal loading Tension

F1 F2 F1 F2

0.1 10− 5 (3− 6)/11
(3− 7)/11
(3− 8)/11

1.643003
1.642920
1.643179

− 0.2851651
− 0.2853527
− 0.2853674

2.725190
2.725152
2.724885

− 0.230368
− 0.230969
− 0.230956

0.1 0.1 (3− 6)/11
(3− 7)/11
(3− 8)/11

− 0.0305951
− 0.0306005
− 0.0306041

− 0.0757925
− 0.0757973
− 0.0758045

0.887870
0.887860
0.887899

− 0.100019
− 0.100019
− 0.099987

Table 3
Confirmation of the thermal SIFs F1, F2 defined from K1 +iK2 = (F1 + iF2)
σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε) are controlled by α, β by taking an example when α = 0.8, β=0.3

and h/W = 0.1, a/W = 10− 5 in Fig. 4.

　Analysis
conditions

Case 1
(Plane
stress)

Case 2
(Plane
stress)

Case 3
(Plane
strain)

Case 4
(Plane
strain)

Shear modulus
[MPa]

GA 496.524 4878.049 99.999 3998.612
GB 45.426 453.515 9.091 363.625

Poisson’s ratio νA 0.007 0.025 0.000011 0.000347
νB 0.223 0.225 0.181819 0.181844

Thermal
expansion
[1/K]

ηA 10 10 5 3
ηB 1 100 2 20

Temperature
change [K]

ΔT 100 100 100 100

Equivalent stress
(Eq.6)

σy0 450,000 − 45000000 26,364 − 8254337

Normalized SIF F1 1.6431 1.6431 1.6431 1.6431
F2 − 0.2854 − 0.2854 − 0.2854 − 0.2854

Fig. 7. (a) Singular interface stress of ABA joint due to uniform thermal loading ΔT = T0 < 0 which can be expressed by superposing (b) tensile loading and (c)
constant interface stress when α(α − 2β) > 0. The constant interface stress in Fig. 7(c) can be obtained from compressive σy0 and ΔT = T0 < 0, [K1 + iK2 = (F1 +
iF2)σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε)].
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4. Stress intensity factor of an interface edge crack in butt joint
under tensile loading in Fig. 7 (b)

As shown in Section 2 (see Fig. 2 and Fig. 3), the interfacial stress
distribution due to uniform temperature change in the ABA joints
without crack (Fig. 3(a)) can be composed of the tensile load problem
(Fig. 3(b)) and the uniform stress problem (Fig. 3(c)). In this study, the
problem of interfacial edge cracking in the ABA joints due to thermal
stress (Fig. 7 (a)) is investigated by superimposing Fig. 7(b) and 7(c). In
this Section, the effect of the crack length a/W and bondline thickness h/
W on the SIF of the interface edge crack under tensile load in Fig. 7(b).

4.1. Effect of crack length a/W and bondline thickness h/W on F1, F2
under tension

The SIF in Fig. 1(b) is affected by crack length a/W and adhesive
layer thickness h/W. In this section, the effect of those geometry on the
SIF in Fig. 1 will be investigated to understand the edge interface crack
in ABA joint.

Fig. 8 shows F1, F2 − a/W relation in a log–log diagram for ABA joint
in Fig. 7(b). The crack length “a” is changed widely in a range
a/W = 10− 7 ∼ 10− 1. The adhesive layer thickness h is set to be rela-
tively larger than “a” as a/h = 0.1 and indicated in the second x-axis of

a/h. The material combinations are α = 0.5～0.8 with fixed β = 0.3. As
shown in Fig. 8, when a/W ≤ 10− 3 or a/h ≤ 0.1, it can be seen F1, F2
change linearly in a log–log diagram with respect to a/W and the slope
agrees with − (1 − λ) by using the singularity index λ. This is because the
ISSF Kσ is proportional to h1− λ as shown in Eq. (6), Kσ = F*σσy0h1− λ [27].

Fig. 9 shows F1, F2 − h/W relation in a log–log diagram for ABA joint
in Fig. 7(b). The adhesive layer thickness h is changed widely in the
range h/W = 0.002 ∼ ∞. The relative crack length is set to be relatively
smaller than h as a/h = 0.1. The material combinations are α = 0.5～0.8
with fixed β = 0.3. As shown in Fig. 9, when h/W ≤ 0.1, F1, F2 change
linearly in a log–log diagramwith respect to the adhesive layer thickness
h/W, and the slope agrees with − (1 − λ) by using the singularity index λ.
This is because the ISSF Kσ is proportional to h1− λ as shown in Eq. (6),
Kσ = F*σσy0h1− λ [27]. On the other hand, when the adhesive layer
thickness is h/W ≥ 1, F1, F2 are constant and independent of h.

4.2. Definition of SIF for an edge interface crack in butt joint under
tension

From Figs. 8 and 9, it was clarified that F1, F2 change linearly in a
log–log diagram with respect to a/W, and h/W. Then, the slope agrees
with − (1 − λ) by using the singularity index λ. In previous studies
[25,28,29], the SIF of the edge interface crack in AB joint under tension

Fig. 8. F1, F2 − a/W relation for ABA joint in Fig. 7 (b) showing that ln[F1/(a/W)]≈ − (1 − λ), ln[F2/(a/W)] ≈ − (1 − λ) when a/W ≤ 10− 1, λ= singularity index,
h/W = 0.01 [K1 + iK2 = (F1 + iF2)σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε)].

Fig. 9. F1, F2 − h/W relation for ABA joint in Fig. 7 (b) showing that ln[F1/(h/W)]≈ − (1 − λ), ln[F2/(h/W)] ≈ − (1 − λ) when h/W ≤ 10− 1, λ= singularity index [K1 +

iK2 = (F1+ iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε)].

K. Oda et al. Thermal Science and Engineering Progress 55 (2024) 102967 

8 



is expressed in the form F1 = C1(W/a)1− λ, F2 = C2(W/a)1− λ indicating
that the coefficients C1, C2 are constant when a/W ≤ 0.01. Considering
this, F1, F2 of the edge interface crack in ABA joint under tension is
defined in the following form based on the adhesive layer thickness h.

K1 + iK2 = (F1 + iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε),

F1 = C*1(h/a)
1− λ

,

F2 = C*2(h/a)
1− λ

(12)

Fig. 10 shows C1*, C2* − a/h relation for ABA joint in Fig. 7(b) when
the bondline thickness h is fixed as h/W = 0.01 by taking example when
α = 0.5 ∼ 0.8, β = 0.3. Fig. 10 shows that C1*, C2* = constant when the
crack length is relatively smaller as a/h ≤ 0.1.

Next, Fig. 11 shows C1*, C2* − h/W relation for ABA joint in Fig, 7(b)
when a/h ≤ 0.1 by taking example when α = 0.5 ∼ 0.8, β = 0.3. From
Fig. 11, it is seen that C1*, C2* are insensitive of h/W, and especially
when h/W ≤ 0.1, C1*, C2* = constant. This is practically important
because usually the adhesive layer thickness is in the range h/W ≤ 0.1.
By using the constant value of C1*, C2*, it may be concluded that the SIF
of the interface edge cracks in ABA joints can be expressed accurately to
the three digits when a/h ≤ 0.1, h/W ≤ 0.1. This is because the SIF of a
fictitious crack is controlled by the constant ISSF defined in F*σ =

Kσ/(σh1− λ) [27]. Since a useful SIF expression defined in Eq. (12) is
available when a/h ≤ 0.1 and h/W ≤ 0.1, accurate values of C1*, C2* are
indicated in Table B1 in Appendix B.

When h/W ≥ 1, F1, F2 of the edge interface crack in in ABA joint are
independent of the adhesive layer thickness h, so the SIF should be
defined as follows based on the joint width W.

K1 + iK2 = (F1 + iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε),

F1 = C1(W/a)1− λ
,

F2 = C2(W/a)1− λ
(13)

The coefficients C1,C2 in Eq. (13) are constant when h/W ≥ 1
because the ISSF controlling the SIF defined as Fσ = Kσ/(σW1− λ) is
constant when h/W ≥ 1 [27]. Since a useful expression defined in Eq.
(13) is also available when h/W ≥ 1, accurate values of C1, C2 are also
indicated in Table B2 in Appendix B.

4.3. Values of coefficients C*1, C
*
2 under arbitrary material combinations

Fig. 12 shows the coefficients C*1, C*2 for arbitrary material combi-
nations α, β with α ≥ 0. Note that as shown in Fig. 13 practical material
combinations are in the range α ≥ 0 and metal/resin combinations are
in the range 0.7 ≤ α, 0 ≤ β ≤ 0.3. The adhesive layer thickness is

Fig. 10. C1*, C2* − a/h relation for ABA joint in Fig. 7 (b) showing that C1*, C2* = constant when a/h ≤ 0.1, h/W = 0.01, α = 0.5 ∼ 0.8, β = 0.3, K1 + iK2 =

(F1 +iF2)σy0
̅̅̅̅̅̅
πa

√
(1+2iε), F1 = C*1(h/a)

1− λ
, F2 = C*2(h/a)

1− λ

Fig. 11. C1*, C2* − h/W relation for ABA joint in Fig, 7 (b) when h/W ≤ 0.1 showing that C1*,C2* = const. when a/h ≤ 0.1, α = 0.5 ∼ 0.8, β = 0.3, K1 + iK2 =

(F1 +iF2)σy0
̅̅̅̅̅̅
πa

√
(1+2iε), F1 = C*1(h/a)

1− λ
, F2 = C*2(h/a)

1− λ
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usually h/W ≤ 0.1. Since a useful expression defined by Eq. (13) is also
available when h/W ≥ 1, the values of the coefficients C1, C2 are also
indicated by dashed lines (exact numbers are given in Appendix B).
Comparison between the values of C*1, C*2 shown by the solid line and the
values of C1, C2 shown by the dotted line shows that under many
practical material combinations (see Fig. 13) the effect of h/W is small.
For readers’ convenience, regarding Metal/resin combination in the
range 0.7 ≤ α, 0 ≤ β ≤ 0.3, the following formulas for calculating C*1, C*2
are provided by applying the least square method.

When 0.7 ≤ α, 0 ≤ β ≤ 0.3 (Metal/resin combination):

C*1 = 7.5609 − 59.501β+283.54β2 − 304.73β3

+ [ − 26.082+236.42β − 1105.3β2 +1303β3]α

+ [32.28 − 304.94β + 1420.1β2 − 1770.3β3]α2

+
[
− 13.6+130.74β − 605.55β2+781.47β3

]
α3 (14a)

(less than 2.4 % error and less than almost 1 % error in most cases).

When 0.7 ≤ α, 0 ≤ β ≤ 0.3 (Metal/resin combination):

C*2 = − 2.1157+ 22.214β − 108.65β2 +201.93β3

+ [7.6267 − 83.539β+409.82β2 − 726.91β3]α

+ [− 9.7143+ 104.89β − 512.77β2 + 881.29β3]α2

+ [4.1556 − 44.297β + 214.45β2 − 359.27β3]α3 (14b)

(less than 2.4 % error and less than almost 1 % error in most cases).

5. Stress intensity factor of an edge interface crack in ABA joint
caused by constant term associated with thermal stress

When thermal load ΔT and compressive load σy0 are applied at the
same time as shown in Fig. 7(c), the adhesive interface has a uniform
stress distribution. Under this condition, Fig. 14 shows D*1, D*2 − a/h
relation. Here, the SIF is defined in Eq. (15) when the material combi-
nations α = 0.5, 0.7, 0.8, β=0.3, h/W=0.01. Fig. 14 shows that D*1, D*2

Fig. 12. Values of C*1, C*2 in K1 +iK2 = (F1+iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε) with F1 = C*1(h/a)

1− λ
+ D*1, F2 = C*2(h/a)

1− λ
+D*2 having more than three digits accuracy for ABA

joint in Fig. 7(b) when in the range a/h ≤ 0.1 and h/W ≤ 0.1 in comparison with values of C1, C2 in K1 +iK2 = (F1 +iF2)σy0
̅̅̅̅̅̅
πa

√
(1+2iε) with F1 = C1(W/a)1− λ

+ D*1,
F2 = C2(W/a)1− λ

+D*2 having more than three digits accuracy for ABA joint in Fig. 7(b) when h/W ≥ 1 (=AB joint) under arbitrary material combinations practically
used 0 ≤ α ≤ 1.
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Fig. 13. Dundurs composite parameters for several engineering materials.

Fig. 14. D1*,D2* − a/h relation for ABA joint in Fig. 7 (c) showing that D1*,D2* = constant when a/h ≤ 0.1 when h/W = 0.01, α = 0.5 ∼ 0.8, β = 0.3,K1 + iK2 =

(D1* +iD2*)σy0
̅̅̅̅̅̅
πa

√
(1+2iε).

Fig. 15. D1*,D2* − h/W relation in Fig. 7(c) for ABA joint showing that D*1, D*2=const. when h/W ≤ 1.0, α = 0.5 ∼ 0.8, β = 0.3, K1 + iK2 =

(
D*1 +iD*2

)
σy0

̅̅̅̅̅̅
πa

√
(1+2iε), σy0 =

8GAGB(η*B − η*A)ΔT
GA(κB − 1)− GB(κA − 1)− 2(GA − GB)

, η*m =

{
ηm (plane stress)

(1+ νm) ηm (plane strain) , (m = A,B)
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are insensitive with less than 3 % error as D*1, D*2 ≈ constant when
a/h ≤ 0.1. The coefficients D*1, D*2=constant to three digit when
a/h ≤ 0.01.

K1 + iK2 =
(
D*1 + iD*2

)
σy0

̅̅̅̅̅̅
πa

√ (
1+ 2iε

)
in relation to Fig.7(c),

σy0 =
8GAGB

(
η*B − η*A

)
ΔT

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η*m =

{
ηm (plane stress)

(1+ νm)ηm (plane strain)
, (m = A,B)

(15)

Fig. 15 shows D*1, D*2 − h/W relation for ABA joints. When the ma-
terial combinations α = 0.5, 0.7, 0.8, β=0.3, h/W = 0.002 ∼ 1.0. As a
result, under the uniform adhesive interface stress distribution the co-
efficients D*1, D*2 are insensitive to h and determined only by α, β.

Fig. 16 shows the values of the dimensionless coefficients D*1, D*2 in
the range 0 ≤ α ≤ 1. From Fig. 16, it is seen that the value of D1* is in a
narrow range of D*1 = − 1.13 ∼ − 1.05, and D*2 is almost proportional to
α for the same β. Accurate values of D*1, D*2 necessary for thermal loading
are indicated in Table B3 in Appendix B.

From the discussion above, when a/h ≤ 0.1 and h/W ≤ 0.1 in Fig. 7

(a), the SIF can be provided in the following form under the uniform
temperature change ΔT for arbitrary material combination. Note that
this expression is valid up to h/W ≤ 1 for adhesive resin.

K1 + iK2 = (F1 + iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε),

F1 = C*1(h/a)
1− λ

+ D*1,

F2 = C*2(h/a)
1− λ

+ D*2

σy0 =
8GAGB

(
η*B − η*A

)
ΔT

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η*m =

{
ηm (plane stress)

(1+ νm)ηm(plane strain)
, (m = A, B)

(16)

The values of C*1, C*2 were indicated in Fig. 12 and Table B1 with the
formula for metal/resin in Eq. (14). To express the SIF caused by con-
stant term associated with thermal stress, other coefficients D*1, D*2 are
indicated in Fig. 16 and Table B3 for arbitrary material combinations
practically used 0 ≤ α ≤ 1. Regarding Metal/resin combination in the
range 0.7 ≤ α, 0 ≤ β ≤ 0.3, the following calculation formula is pro-
vided by applying the least square method for readers’ convenience.

When 0.7 ≤ α, 0 ≤ β ≤ 0.3 (Metal/resin combination):

Fig. 16. Values of D*1, D*2 having more than three digits accuracy in Fig. 7(c) when a/h ≤ 10− 2, and the error is less than 3 % when a/h ≤ 10− 1, K1 + iK2 = (D1* +

iD2*)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε), σy0 =

8GAGB(η*B − η*A)ΔT
GA(κB − 1)− GB(κA − 1)− 2(GA − GB)

, η*m =

{
ηm (plane stress)

(1+ νm) ηm (plane strain) , (m = A,B)
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D*1 = − 1.0958 − 0.1363β+0.385β2

+ [ − 0.072658+0.38654β − 1.3273β2]α

+ [0.10738 − 0.18807β + 0.83325β2]α2 (17a)

(less than 0.1 % error).
When 0.7 ≤ α, 0 ≤ β ≤ 0.3 (Metal/resin combination):

D*2 = − 0.005728+0.23543β+ 0.26679β2

+ [ − 0.15675+0.17882β − 0.513β2]α

+ [− 0.025048 − 0.11952β + 0.2619β2]α2 (17b)

(less than 0.2 % error)

6. Critical tensile stress for ABA joint subjected to thermal stress

There are two types of thermosetting adhesives. One is room tem-
perature curing type and the other is heat curing type, and the latter
usually has a denser three-dimensional network structure and is said to
be stronger than the room temperature curing type. The heat-curing
adhesives are widely used after being cured by heating to a tempera-
ture higher than room temperature. To evaluate the heat-curing adhe-
sive strength, therefore, it is necessary to consider both the thermal
stress generated during heat curing and external loads such as tensile
stress. As an example, Fig. 17 shows the critical tensile stress σc of at
debonding experimentally obtained by the Qian-Akisanya [23]. This
experiment uses ABA joints composed of A= aluminum, B= epoxy F922
and thermally stressed when the width W = 30 mm and the thickness
t = 10mm. In Fig. 17, the symbol ◇ denotes the critical tensile stress
when aluminum plates were bonded with epoxy resin at a temperature
of T0 = 120◦C, the temperature was maintained for 8 h to harden the
adhesive, and then the temperature was cooled to room temperature
T0 = 20◦C. In other words, the symbol ◇ denotes the critical stress σc =
σc(ΔT) for the residual stress due to the temperature difference of ΔT =

T − T0 = − 100◦C. Similarly, the symbol ■ denotes the critical stress
when aluminum plates were bonded with epoxy resin at a temperature
of T0 = 160◦C, the temperature was maintained for 6 h to harden the

adhesive, and then the temperature was cooled to room temperature
T0 = 20◦C. In other words, the symbol■ denotes the critical stress σc for
the residual stress due to the temperature difference ΔT = T − T0 =

− 140◦C. The dotted lines in Fig. 17 can be obtained by applying the SIF
solution in this paper and the detail will be discussed later.

Table 4 shows elastic and thermal properties of the epoxy resins and
the aluminum substrates in this ABA joint necessary to calculate the SIF
of the fictitious crack [23]. By substituting α = 0.894 and β = 0.171 in
Table 4 into Eq. (14) and Eq. (17), which is useful for metal/resin
combination, the values C*1 = 0.5429, C*2 = − 0.1098, D*1 = − 1.069,
D*2 = − 0.1142 can be obtained. By using these values with Eq. (16), the
SIF KΔT

1 due to temperature change ΔT can be determined. Similarly, by
using the values of C*1 = 0.5429, C*2 = − 0.1098 and the critical stress σc
experimentally obtained in Fig. 17(b), Kσc

1 due to σy0 = σc can be
determined from Eq. (12).

Fig. 18 shows the critical value of SIF, K1C (fracture toughness)
determined from a fictitious edge interface crack length a = 10− 4mm
and the critical tensile stress σc experimentally determined. As shown in
Fig. 18(b), the adhesive strength can be expressed as K1C = KΔT+σc

1C =

KΔT
1 + Kσc

1 = constant= 6.34MPa
̅̅̅̅̅̅̅̅̅
mm

√
when a fictitious crack length a =

10− 4mm independent of temperature change ΔT.

K1C = KΔT+σc
1C = KΔT

1 + Kσc
1 = constant

= 6.34MPa
̅̅̅̅̅̅̅̅̅
mm

√
(when a =10− 4mm

)
(18)

As shown in Eq. (18), the adhesive strength can be expressed as K1C
= constant, which is much more convenient than σc varying depending
on ΔT and h. Fig. 18(c) shows the SIF ratio K2C/K1C = constant like K1C

Fig. 17. Critical tensile stress at debonding of ABA joints thermally stressed (A = aluminum, B = epoxy F922, α=0.894, β = 0.171). The experiment was conducted
for the widthW = 30 mm and the thickness t = 10 mm. Here, ΔT (=T − T0) is a uniform temperature change from the curing temperature T0 to the room temperature
T (T < T0). The marks ◇ and ■ are the experimental data obtainded by Qian-Akisanya [23] for ΔT = − 100◦C and − 140◦C, respectively. The solid and dashed lines
show the critical tensile stress calculated from K1c = constant using the fictitious crack method when ΔT is changed.

Table 4
Elastic and thermal properties of the epoxy resins and the aluminum substrates
in ABA joint in Fig. 17~Fig. 20.

Material
combination

Young’s
modulus,
E [GPa]

Poisson’s
ratio ν

Thermal
expansion
[K− 1]

α β λ

Aluminum
alloy

70 0.35 2.1×
10− 5

0.894 0.171 0.718

F922 epoxy 3.8 0.38 5.8×
10− 5
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= constant. If the fictitious crack length “a” differs, the critical value will
be different, but it will still be a constant value. In other words, the
critical value varies depending on the fictitious crack length “a”, but the
constant K1C can be used to express the strength of this ABA joint Similar
to Fig. 18, Qian-Akisanya [23] showed that the adhesive strength of the
ABA joint can be expressed as the ISSF = constant (see Fig.A2 in Ap-
pendix A). Those analyses assume a constant linear expansion coeffi-
cient and a constant Young’s modulus of thermosetting epoxy adhesives
independent of temperature [22,23].

As discussed above, K1C=constant in Fig. 18 can be obtained by
applying the fictitious crack method by calculating the SIF. They can be
provided from coefficients C*1, C*2, D*1, D*2 in Eqs. (14), (17) without
performing extra FEM calculations. The ABA joint tensile strength
σc(ΔT) subjected to temperature change ΔT can be evaluated by
assuming a fictitious edge interface crack in ABA joints. This is because
the SIF of the crack is totally dominated by the ISSF at the crack-free
interface end. The usefulness of the SIF solution can be expressed as
shown in Eq. (19), which represents the critical tensile strength σc(ΔT).

σc(ΔT) = (KΔT+σc
1C − KΔT

1 )/Kσc
1 |σc(ΔT)=1,

KΔT+σc
1C = KΔT

1 +Kσc
1 = 6.34MPa

̅̅̅̅̅̅̅̅̅
mm

√
(when a = 10− 4mm),

KΔT
1 =

[{
C*1(h/a)

1− λ
+ D*1

}
− 2ε

{
C*2(h/a)

1− λ
+ D*2

}]
σy0

̅̅̅̅̅̅
πa

√
,

Kσc
1 |σc(ΔT)=1 =

(
C*1 − 2εC*2

)
(h/a)1− λ ̅̅̅̅̅̅

πa
√

σy0 =
8GAGA

(
η*B − η*A

)
ΔT

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
(19)

As well as the experimental results, Fig. 17 also shows the results of
Eq. (19) as the dotted line by varying the temperature change ΔT. The
results of σc(ΔT) for ΔT = − 100◦C, ΔT = − 140◦C agree with the
experimental results within about ±4 MPa. With decreasing the tem-
perature difference ΔT, the critical stress σc(ΔT) increases significantly.
Fig. 18 and the following Fig. 19, Fig. 20 are based on KΔT+σc

1C =KΔT
1 +

Kσc
1 =6.34MPa

̅̅̅̅̅̅̅̅̅
mm

√
(when a = 10− 4 mm) in Eq. (19).

To clarify the amount of the thermal SIF KΔT
1 in the critical SIF

KΔT+σc
1C = KΔT

1 +Kσc
1 at debonding, Fig. 19 illustrates the variation of KΔT

1
in Eq. (19) when ΔT = − 20, − 40, − 60, ⋯, − 140◦C. With increasing
ΔT, the amount of KΔT

1 increases, although a certain amount of ΔT
necessary for cure of thermosetting resin.

Under constant ΔT, the amount of KΔT
1 decreases with deceasing the

adhesive thickness h. For example, when ΔT = − 140◦C, it is seen that
KΔT
1 ≅ KΔT+σc

1C at h = 1.3 mm. Therefore, the ABA joint may be deboned
only due to thermal stress at ΔT = − 140◦C and h = 1.3 mm. With
decreasing ΔT, KΔT

1 becomes insensitive to the adhesive layer thickness

Fig. 18. ABA joint strength expressed as SIFK1C = const when a fictitious crack length a = 10− 4 mm is assumed for A = alminium, B = epoxy (F922), α = 0.894, β
= 0.171.

Fig. 19. Effect of thermal SIF KΔT
1 due to temperature change ΔT on the critical SIF KΔT+σc

1C = KΔT
1 +Kσc

1 when a fictitious crack length a = 10− 4 mm assumed for
alminium/epoxy (F922), W = 30 mm, α=0.894, β = 0.171.
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h.
Qian-Akisanya used the ABA joint specimen whose widthW = 30mm

[23], but KΔT+σc
1C = KΔT

1 + Kσc
1 = 6.34MPa

̅̅̅̅̅̅̅̅̅
mm

√
can be applied to other

specimen widthW. Fig. 20 illustrates KΔT
1 − h/W relation in the ABA joint

having a similar shape whenW = 30 mm andW = 60 mm. Fig. 20 (a)~
(d) can be provided from the critical SIF KΔT+σc

1C = KΔT
1 + Kσc

1 =

6.34MPa
̅̅̅̅̅̅̅̅̅
mm

√
. Fig. 20 (a), (b) show KΔT

1 − h/W relation (a) whenW =

30mm, and (b) whenW= 60mm. From the comparison between Fig. 20
(a) and (b), to obtain the same value of KΔT

1 , the relative adhesive
thickness h/W is smaller whenW = 60 mm. For example, whenW = 30
mm and ΔT = − 140◦C, KΔT

1 ≅ KΔT+σc
1C at h/W = 0.04 but whenW = 60

mm and ΔT = − 140◦C, KΔT
1 ≅ KΔT+σc

1C at h/W = 0.02.
Fig. 20(c) shows the normalized SIF KΔT

1 /(σy0
̅̅̅̅̅̅
πa

√
) − h/W relation by

using σy0. As shown in Fig. 20(c), although KΔT
1 varies depending on ΔT

as can be expressed KΔT
1 = KΔT

1 (ΔT) in Fig. 20(a), (b), KΔT
1 /(σy0

̅̅̅̅̅̅
πa

√
) can

be expressed as a single curve independent ofΔT. As shown in Fig. 20(c),
with increasing the plate widthW, the value of KΔT

1 /σy0
̅̅̅̅̅̅
πa

√
increases. In

this way, the SIF KΔT
1 due to thermal stress cannot be directly applied to

specimens with similar dimensions h/W, and care must be taken.
Fig. 20(d) shows KΔT

1 /(σy0
̅̅̅̅̅̅
πa

√
) − h relation by changing the hori-

zontal axis to h in Fig. 20(c). By setting h to the horizontal axis, KΔT
1 /

(σy0
̅̅̅̅̅̅
πa

√
) becomes independent ofW. Fig. 20(d) also shows the value of

Kσc
1
⃒
⃒
σc(ΔT)=1

/
̅̅̅̅̅̅
πa

√
, which is necessary for calculating σΔT

c . From Fig. 20

with KΔT+σc
1C = 6.34MPa

̅̅̅̅̅̅̅̅̅
mm

√
(when a = 10− 4mm), the critical stress

σc(ΔT) can be calculated for any h,ΔT by substituting KΔT
1 ,Kσc

1
⃒
⃒
σc(ΔT)=1

in
Fig. 20 (d) into Eq. (19).

In this paper, a useful thermal SIF solution was proposed by super-
posing the SIF under tensile stress and the SIF under uniform interface

stress associated with thermal load. This general SIF solution under
arbitrary material combination can be applied for predicting the tensile
strength σc and critical temperature change ΔT without performing
extra FEM calculations. The usefulness of the solution was confirmed
through Aluminum/Epoxy butt joint strength experimentally obtained.
In other words, the tensile strength σc can be predicted for various
temperature change ΔT and for various adhesive layer thickness h
fromK1C = constant of a fictitious interface crack.

7. Conclusions

The ABA joint specimens usually called butt joints are essential for
evaluating the thermal adhesive strength as well as the tensile adhesive
strength. The adhesive strength can be discussed from the stress in-
tensity factor (SIF) of a fictitious edge interface crack assumed at the
interface end. This is because the SIF of the crack is totally dominated by
the ISSF at the edge of the crack-free interface. In this paper, therefore,
the SIF of an edge interface crack in the ABA joints was investigated by
varying crack length and adhesive layer thicknesses under arbitrary
material combinations. The solution presented in this paper is especially
useful for heat-curing adhesives because they are widely used after
being cured by heating to a temperature higher than room temperature.
The conclusions can be summarized in the following way.

(1) A useful thermal SIF solution for ABA joint was proposed by su-
perposing the SIF under tensile stress σy and the SIF under uni-
form interface stress associated with thermal load ΔT. This
general SIF solution provided under arbitrary material combi-
nation can be applied for predicting the tensile strength σc and

Fig. 20. Thermal SIF KΔT
1 due to temperature change ΔT by varying the adhesive area W and the adhesive layer thickness h for alminium/epoxy (F922) ABA joint.
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critical temperature change ΔT without performing new FEM
calculations.

(2) When a/h ≤ 0.1 and h/W ≤ 0.1 in Fig. 1(a), the thermal SIF so-
lution can be provided in the following form under a uniform
temperature change ΔT for arbitrary material combination. Also,
without using D*1, D*2, this expression can be used as the SIF so-
lution under tension as shown in Fig. 1(b). The SIF for interface
edge crack in ABA joints has less than 3 % error when a/h ≤ 0.1
and three-digit accuracy when a/h ≤ 0.01.
K1 + iK2 = (F1 +iF2)σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε), F1 = C*1(h/a)

1− λ
+ D*1,

F2 = C*2(h/a)
1− λ

+ D*2,

σy0 =
8GAGB

(
η*B − η*A

)
ΔT

GA(κB − 1) − GB(κA − 1) − 2(GA − GB)
,

η*m =

{
ηm (plane stress)

(1+ νm)ηm(plane strain)
(m = A, B)

The values of C*1, C*2 are indicated in Fig. 12 and Table B1 and
the values D*1, D*2 are indicated in Fig. 16 and Table B3 for arbi-
trary material combinations practically used 0≦α≦１. Further-
more, the approximate formulas for calculating C*1, C*2 and D*1, D*2
were presented in Eqs. (14) and (17) for metal/resin combination
in the range α ≥ 0.7 and 0 ≤ β ≤ 0.3.

(3) The usefulness of the SIF solution was confirmed for Aluminum/
Epoxy ABA joints subjected to both thermal stress due to ΔT and
mechanical stress σy. From the critical tensile stress σy = σc(ΔT)
experimentally obtained, the SIF of a fictitious crack was calcu-
lated as KσC

1 . Also, from the temperature change ΔT, the SIF was
calculated as KΔT

1 . Then, the critical SIF was obtained as KΔT+σC
1 =

KΔT
1 +KσC

1 by using the present SIF solution. Without performing
extra FEM analysis, the adhesive strength was expressed asK1C =

constant for various temperature change ΔT and for various

adhesive bondline thickness h (see Fig. 18). This is useful for
predicting the adhesive strength σc(ΔT) for various adhesive ge-
ometries. The results showed that with increasingΔT, the amount
of KΔT

1 increases, although a certain amount of ΔT necessary for
cure of heat-curing adhesives.
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Appendix A. Normalized ISSF of a semi-infinite ABA joint in Fig. 4(b) under tension and thermal loading

Table A1 and Fig. A1 show the normalized ISSF F*σ = Kσ/σh1− λ of ABA joint in Fig. 4(b) under arbitrary material combinations. Those results are
useful in the range h/W ≤ 0.01 in Fig. 4(a) and can be used within 10 % error for h/W ≤ 0.1 in Fig. 4(a). The accurate results can be obtained by the
interpolation in the range for 0.01 ≤ h/W ≤ 1.0 under arbitrary material combination.

Table A1
Normalized ISSF F*σ = Kσ/σh1− λ of ABA joint in Fig. 4(b) which is useful for h/W ≤ 0.01 in Fig. 4(a).

α β = − 0.4 β = − 0.3 β = − 0.2 β = − 0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4

− 1.0 1.134 1.209 1.315 1.404 1.498 ​ ​ ​ ​
− 0.9 1.066 1.148 1.252 1.347 1.424 ​ ​ ​ ​
− 0.8 1.000 1.082 1.191 1.289 1.352 ​ ​ ​ ​
− 0.7 0.904 1.032 1.134 1.223 1.288 ​ ​ ​ ​
− 0.6 ​ 0.990 1.075 1.156 1.227 1.420 ​ ​ ​
− 0.5 ​ 0.946 1.028 1.119 1.185 1.360 ​ ​ ​
− 0.4 ​ 0.901 1.000 1.092 1.166 1.320 ​ ​ ​
− 0.3 ​ 0.812 0.940 1.057 1.142 1.280 ​ ​ ​
− 0.2 ​ 0.680 0.837 1.000 1.113 1.250 1.500 ​ ​
− 0.1 ​ ​ 0.710 0.916 1.061 1.230 1.460 ​ ​
0 ​ ​ 0.585 0.799 1.000 1.195 1.430 ​ ​
0.1 ​ ​ 0.460 0.654 0.873 1.124 1.380 ​ ​
0.2 ​ ​ 0.353 0.550 0.758 1.000 1.314 1.918 ​
0.3 ​ ​ ​ 0.456 0.643 0.858 1.181 1.769 ​
0.4 ​ ​ ​ 0.384 0.558 0.740 1.000 1.572 ​
0.5 ​ ​ ​ 0.326 0.476 0.630 0.813 0.293 ​
0.6 ​ ​ ​ 0.3257 0.405 0.546 0.686 1.000 ​
0.7 ​ ​ ​ ​ 0.340 0.470 0.588 0.794 1.730
0.8 ​ ​ ​ ​ 0.290 0.403 0.506 0.634 1.000
0.9 ​ ​ ​ ​ 0.223 0.333 0.430 0.543 0.746
1.0 ​ ​ ​ ​ 0.169 0.265 0.358 0.456 0.495
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Fig. A1. Normalized ISSF of ABA joint in Fig. 4(b) which is useful for in Fig. 4(a).

Like K1C = 6.34MPa
̅̅̅̅̅̅̅̅̅
mm

√
of the fictitious crack length (when a = 10− 4mm) in Fig. 18, Fig. A2 shows the ABA joint strength expressed as ISSF KσC

= const. As shown in Fig. A2, without using the fictitious crack, the adhesive strength can be expressed as a sum of the ISSF due to tensile loading and
the ISSF due to thermal loading. The result in Fig. A2 is in good agreement with the one of Qian-Akisanya [23]. It may be concluded that Eqs. (5), (6)
with Table A1 and Fig. A1 are useful for adhesive strength. Both the ISSF method and the fictitious crack method express the adhesive strength. The
ISSF method simply uses only Kσ . Instead, the fictitious crack method may have an advantage indicating the effect of shear stress τxy on the
delamination stress σy from the stress ratio K2/K1 by using two parameters K1, K2.

Fig. A2. ABA joint strength expressed as ISSF = const for alminium/epoxy (F922), ,

Appendix B. SIF of an edge crack in AB joint corresponding to h/W ≥ 1.0 in ABA joint

Table B1 shows the coefficients C*1 = F1/(h/a)1− λ and C*2 = F2/(h/a)1− λ (solid lines in Fig. 12) of the ABA joint in Fig. 7(b) for arbitrary material
combinations. These results are useful in the range h/W ≤ 0.01 in Fig. 7(b), and within 10 % error for h/W ≤ 0.1 in Fig. 7(b). Table B2 also shows the
coefficients C1 = F1/(W/a)1− λ and C2 = F2/(W/a)1− λ (dashed line in Fig. 12) of the AB joint in Fig. 7(b) for arbitrary material combinations. For any
combination of materials, accurate results can be obtained by interpolation in the range 0.01 ≤ h/W ≤ 1.0.

Table B3 shows the coefficients D*1 and D*2 (Fig. 16) of the ABA joint in Fig. 7(c) for arbitrary material combinations. These results are useful in the
range a/h ≤ 0.01 in Fig. 7(c) and are independent of h/W.
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Table B1
Values of C*1 and C*2 having more than three digits accuracy in the range a/h ≤ 0.1 and h/W ≤ 0.1 in Fig. 7 (b) subjected to tension σy0 [K1 + iK2 =

(F1 +iF2)σy0
̅̅̅̅̅̅
πa

√
(1+ 2iε), F1 = C*1(h/a)

1− λ
, F2 = C*2(h/a)

1− λ]

Values of C*1

α β = − 0.2 β = − 0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.00 0.6266 0.8831 1.1215 1.3249 1.4828 ​ ​ ​
0.05 0.5749 0.8201 1.0630 1.2869 1.4732 ​ ​ ​
0.10 0.5292 0.7521 1.0004 1.2396 1.4571 ​ ​ ​
0.15 0.4884 0.7054 0.9368 1.1832 1.4335 ​ ​ ​
0.20 ​ 0.6552 0.8746 1.1197 1.3955 1.6009 ​ ​
0.30 ​ 0.5817 0.7610 0.9842 1.2742 1.7047 ​ ​
0.40 ​ 0.4958 0.6655 0.8568 1.1141 1.5988 ​ ​
0.50 ​ 0.4320 0.5855 0.7486 0.9568 1.3551 ​ ​
0.60 ​ 0.3610 0.5168 0.6595 0.8256 1.1038 1.7168 ​
0.70 ​ ​ 0.4542 0.5849 0.7213 0.9123 1.3120 ​
0.75 ​ ​ 0.4235 0.5514 0.6774 0.8383 1.0871 ​
0.80 ​ ​ 0.3918 0.5195 0.6379 0.7759 0.9413 1.4672
0.85 ​ ​ 0.3578 0.4885 0.6021 0.7226 0.8385 1.0753
0.90 ​ ​ 0.3176 0.4571 0.5691 0.6770 0.7620 0.8948
0.95 ​ ​ 0.2616 0.4228 0.5384 0.6384 0.6667 0.7370
1.00 ​ ​ 0.1569 0.3678 0.4891 0.5785 1.7168 1.4672

Values of C*2

α β = − 0.2 β = − 0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.00 − 0.1219 − 0.0872 0.0000 0.1306 0.2883 ​ ​ ​
0.05 − 0.1212 − 0.0987 − 0.0253 0.0932 0.2594 ​ ​ ​
0.10 − 0.1192 − 0.1056 − 0.0472 0.0647 0.2271 ​ ​ ​
0.15 − 0.1165 − 0.1121 − 0.0655 0.0331 0.1919 ​ ​ ​
0.20 ​ − 0.1153 − 0.0800 0.0041 0.1539 0.3513 ​ ​
0.30 ​ − 0.1114 − 0.0996 − 0.0429 0.0758 0.3153 ​ ​
0.40 ​ − 0.1152 − 0.1089 − 0.0746 0.0086 0.2092 ​ ​
0.50 ​ − 0.1103 − 0.1142 − 0.0939 − 0.0394 0.0961 ​ ​
0.60 ​ − 0.0984 − 0.1144 − 0.1050 − 0.0700 0.0138 ​ ​
0.70 ​ ​ − 0.1110 − 0.1104 − 0.0888 − 0.0363 0.1575 ​
0.75 ​ ​ − 0.1080 − 0.1116 − 0.0952 − 0.0529 0.0700 ​
0.80 ​ ​ − 0.1039 − 0.1117 − 0.1000 − 0.0658 0.0204 ​
0.85 ​ ​ − 0.0982 − 0.1109 − 0.1035 − 0.0758 − 0.0114 0.0925
0.90 ​ ​ − 0.0901 − 0.1090 − 0.1061 − 0.0837 − 0.0333 0.0246
0.95 ​ ​ − 0.0764 − 0.1054 − 0.1076 − 0.0901 − 0.0493 − 0.0099
1.00 ​ ​ − 0.0469 − 0.0947 − 0.1028 − 0.0893 − 0.0554 − 0.0257

Table B2
Values of C1 and C2 having more than three digits accuracy in the range a/W < 10− 3, h/W ≥ 1.0 in Fig. 7 (b) subjected to tension σy0 [K1 + iK2 = (F1 +iF2)σy0

̅̅̅̅̅̅
πa

√
(1+

2iε), F1 = C1(W/a)1− λ
, F2 = C2(W/a)1− λ].

Values of C1

α β = − 0.2 β = − 0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.00 1.071 1.103 1.122 1.103 1,071 ​ ​ ​
0.05 1.009 1.074 1.114 1.132 1.120 ​ ​ ​
0.10 0.952 1.034 1.093 1.142 1.166 ​ ​ ​
0.15 0.881 0.991 1.063 1.138 1.201 ​ ​ ​
0.20 ​ 0.947 1.024 1.119 1.221 1.570 ​ ​
0.30 ​ 0.863 0.938 1.046 1.202 1.530 ​ ​
0.40 ​ 0.786 0.852 0.952 1.113 1.449 ​ ​
0.50 ​ 0.711 0.773 0.857 0.991 1.306 ​ ​
0.60 ​ 0.645 0.702 0.771 0.872 1.103 2.485 ​
0.70 ​ ​ 0.637 0.694 0.769 0.920 1.593 ​
0.75 ​ ​ 0.606 0.659 0.723 0.843 1.297 ​
0.80 ​ ​ 0.576 0.627 0.679 0.777 1.086 1.868
0.85 ​ ​ 0.546 0.595 0.640 0.719 0.928 1.408
0.90 ​ ​ 0.533 0.565 0.603 0.666 0.815 1.075
0.95 ​ ​ 0.519 0.537 0.568 0.619 0.727 0.869
1.00 ​ ​ 0.510 0.500 0.535 0.559 0.644 0.790

Values of C2

α β = 0.2 β= 0.1 β = 0 β= 0.1 β= 0.2 β= 0.3 β= 0.4 β= 0.45

0.00 − 0.210 − 0.113 0.000 0.111 0.209 ​ ​ ​

(continued on next page)
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Table B2 (continued )

Values of C2

α β = 0.2 β= 0.1 β = 0 β= 0.1 β= 0.2 β= 0.3 β= 0.4 β= 0.45

0.05 − 0.212 − 0.129 − 0.027 0.085 0.198 ​ ​ ​
0.10 − 0.214 − 0.145 − 0.052 0.059 0.181 ​ ​ ​
0.15 − 0.209 − 0.157 − 0.074 0.031 0.159 ​ ​ ​
0.20 ​ − 0.167 − 0.093 0.004 0.133 0.349 ​ ​
0.30 ​ − 0.178 − 0.123 − 0.046 0.070 0.273 ​ ​
0.40 ​ − 0.183 − 0.141 − 0.083 0.008 0.181 ​ ​
0.50 ​ − 0.181 − 0.151 − 0.108 − 0.041 0.089 ​ ​
0.60 ​ − 0.177 − 0.155 − 0.123 − 0.075 0.013 0.195 ​
0.70 ​ ​ − 0.155 − 0.132 − 0.095 − 0.037 0.130 ​
0.75 ​ ​ − 0.153 − 0.134 − 0.102 − 0.054 0.065 ​
0.80 ​ ​ − 0.151 − 0.135 − 0.107 − 0.067 0.020 0.134
0.85 ​ ​ − 0.147 − 0.136 − 0.111 − 0.076 − 0.012 0.079
0.90 ​ ​ − 0.145 − 0.135 − 0.113 − 0.083 − 0.033 0.024
0.95 ​ ​ − 0.142 − 0.134 − 0.114 − 0.088 − 0.048 − 0.011
1.00 ​ ​ − 0.139 − 0.129 − 0.101 − 0.087 − 0.061 − 0.026

Table B3
Values of D*1,D*2 havingmore than three digits accuracy in the range a/W ≤ 10− 3 subjected toΔT and σy0 as shown in Fig. 7(c) [K1 + iK2 = (D*1 + iD*2)σy0

̅̅̅̅̅̅
πa

√
(1+ 2iε)].

Values of D1*

α β = -0.2 β = -0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.00 − 1.127 − 1.123 − 1.122 − 1.123 − 1.127 ​ ​ ​
0.05 − 1.128 − 1.123 − 1.121 − 1.123 − 1.127 ​ ​ ​
0.10 − 1.128 − 1.123 − 1.121 − 1.122 − 1.126 ​ ​ ​
0.15 − 1.128 − 1.123 − 1.120 − 1.121 − 1.124 ​ ​ ​
0.20 ​ − 1.122 − 1.119 − 1.120 − 1.123 − 1.129 ​ ​

0.30 ​ − 1.120 − 1.117 − 1.117 − 1.119 − 1.125 ​ ​
0.40 ​ − 1.117 − 1.113 − 1.112 − 1.114 − 1.119 ​ ​
0.50 ​ − 1.112 − 1.108 − 1.107 − 1.108 − 1.112 ​ ​
0.60 ​ − 1.107 − 1.102 − 1.100 − 1.100 − 1.103 − 1.111 ​

0.70 ​ ​ − 1.094 − 1.091 − 1.091 − 1.094 − 1.100 ​
0.75 ​ ​ − 1.090 − 1.087 − 1.086 − 1.088 − 1.094 ​
0.80 ​ ​ − 1.085 − 1.081 − 1.080 − 1.082 − 1.087 − 1.091
0.85 ​ ​ − 1.080 − 1.076 − 1.074 − 1.076 − 1.080 − 1.084
0.90 ​ ​ − 1.074 − 1.070 − 1.068 − 1.069 − 1.072 − 1.076
0.95 ​ ​ − 1.068 − 1.063 − 1.060 − 1.061 − 1.064 − 1.067
1.00 ​ ​ − 1.061 − 1.056 − 1.053 − 1.052 − 1.054 − 1.057

Values of D2*

α β = -0.2 β = -0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.00 − 0.0647 − 0.0318 0.0000 0.0318 0.0647 ​ ​ ​
0.05 − 0.0737 − 0.0408 − 0.0089 0.0229 0.0556 ​ ​ ​
0.10 − 0.0828 − 0.0497 − 0.0179 0.0139 0.0466 ​ ​ ​
0.15 − 0.0918 − 0.0587 − 0.0268 0.0049 0.0375 ​ ​ ​
0.20 ​ − 0.0677 − 0.0358 − 0.0041 0.0283 0.0629 ​ ​

0.30 ​ − 0.0857 − 0.0538 − 0.0222 0.0100 0.0441 ​ ​
0.40 ​ − 0.1038 − 0.0736 − 0.0405 − 0.0087 0.0251 ​ ​
0.50 ​ − 0.1221 − 0.0902 − 0.0590 − 0.0274 0.0058 ​ ​
0.60 ​ − 0.1407 − 0.1089 − 0.0778 − 0.0465 − 0.0140 0.0217 ​

0.70 ​ ​ − 0.1278 − 0.0970 − 0.0660 − 0.0338 0.0009 ​
0.75 ​ ​ − 0.1374 − 0.1067 − 0.0759 − 0.0440 − 0.0097 ​
0.80 ​ ​ − 0.1472 − 0.1166 − 0.0860 − 0.0544 − 0.0206 − 0.0020
0.85 ​ ​ − 0.1571 − 0.1266 − 0.0962 − 0.0649 − 0.0314 − 0.0132
0.90 ​ ​ − 0.1671 − 0.1368 − 0.1066 − 0.0756 − 0.0425 − 0.0248
0.95 ​ ​ − 0.1774 − 0.1472 − 0.1172 − 0.0865 − 0.0539 − 0.0363
1.00 ​ ​ − 0.1875 − 0.1578 − 0.1281 − 0.0977 − 0.0655 − 0.0482

References

[1] T.A. Barnes, I.R. Pashby, Joining techniques for aluminium spaceframes used in
automobiles: Part II -adhesive bonding and mechanical fasteners, J Mater Process
Technol 99 (1–3) (2000) 72–79.

[2] D.E. Packham, Adhesive technology and sustainability, Int J Adhesion Adhes. 29
(2009) 248–252.

[3] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, E. Beeh, Super Light Car –
lightweight construction thanks to a multi-material design and function
integration, Eur Transp Res Rev 1 (2009) 5–10.

K. Oda et al. Thermal Science and Engineering Progress 55 (2024) 102967 

19 

http://refhub.elsevier.com/S2451-9049(24)00585-7/h0005
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0005
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0005
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0010
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0010
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0015
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0015
http://refhub.elsevier.com/S2451-9049(24)00585-7/h0015
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