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A B S T R A C T

An efficient analysis method is proposed for the intensity of singular stress field (ISSF) as well as
the singularity index (SI) at the interface corner of three dimensional (3D) bonded joints by using
the finite element method (FEM). By varying the minimum mesh size emin, the FEM stresses σFEM
obtained from the FEM are investigated around the corner singular point. Then, mesh-
independent expressions such as σFEM(r) ⋅ (emin)1− λ

= const. are derived for ISSF and SI based
on the proportional stress fields in prismatic joints having similar FEM mesh pattern. Previously
analyzed results coincide with the present mesh-independent results to the three digits for ISSF
and SI in 3D corners. The experimental results show that the critical singular stress distributions
causing debonding are almost identical at the interface corner and at the interface edge inde-
pendent of the adhesive thickness. This is confirmed for the ABA joint denoting the 3D prismatic
butt joints whose similar adherends A are bonded by resin B. Under a constant load, the ABC joint
whose dissimilar adherends A and C are bonded by resin B has larger ISSF than the ABA joints.
This ISSF difference increases with decreasing the adhesive thickness h, and this ISSF difference is
more remarkable at the interface corner than at the interface edge. The debonding failure cri-
terion is discussed by using the previous experiment conducted for ABA-, ABC-butt joints and
ABA-, ABC- three step lap joints. It is found that the adhesive strength of the ABC joint can be
expressed as a constant critical ISSF at the interface corner and the constant value coincides with
the value of the 3D ABA joints. Those new findings show that the proposed 3D mesh-independent
proportional method is especially useful for evaluating the debonding strength of the adhesive
ABC joints.

1. Introduction

Recently, multi-material design has been introduced to automobiles [1–4], aircrafts [5], railway structures [6,7], and marine
structures [8] to improve fuel efficiency and reduce greenhouse gas. Engineers and manufacturers are strongly interested in adhesive
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bonding by which dissimilar materials can be joined conveniently. In addition, compared with welding, bolts, screw and rivet, the
adhesive bonding offers several advantages: high fatigue resistance, weight reduction, high sealability, and high productivity and soon
[9,10]. However, there is a serious problem that the singular stress occurs at an interface edge by the mismatch of the deformation
between the adhesive and adherend and causes the debonding failure by the lower load than expected [10]. The evaluation method for
debonding strength is required to prevent joining member and component from debonding failure.

There are several approaches to the debonding strength evaluation: continuum mechanics, fracture mechanics, cohesive zone
model (CZM) and so on [11,12]. Continuummechanics is the traditional and simple approach. Since stress and strain can be evaluated
sufficiently by standard commercial finite element method (FEM), the approach can be applied widely. The joining member and

Nomenclature

D Depth
E Young’s modulus
emin Minimum element size
e2D0 , e2D*0 , eedge0 , ecor0 Element size
Fσ,h ISSF normalized by h
Fσ,W ISSF normalized by W
G Shear modulus
h Adhesive thickness
Kσ , K2Dσ , Kcorσ , Kedgeσ ISSF
K2Dσc , Kcorσc , K

edge
σc Critical ISSF at debonding

L Length
Mc Critical bending moment when debonding failure occurs
(r,θ) Polar coordinate system
(r, θ,φ) Spherical coordinate system
W Width
(x,y), (x,y,z) Cartesian coordinate system
α, β Dunduns’ parameters
λ, λ2D, λcor, λedge Singularity index
ν Poisson’s ratio
σc Critical remote tensile stress when debonding failure occurs
σ∞
y Uniform applied stress

σ2Dy (r, θ) Real stress at a point (r, θ) in a 2D joint

σcory (r, θ,φ), σedgey (r, θ,φ) Real stress at a point (r, θ,φ) in a 3D joint
σ2Dy (r) Real stress at a distance r on the interface θ = 90◦ which equals σ2Dy (r,θ = π/2)
σcory (r) Real stress at a distance r and an angle φ = 45◦ on the interface θ = 90◦ which equals σcory (r,θ = π/2,φ = π/4)

σedgey (r) Real stress at a distance r and an angle φ = 90◦ on the interface θ = 90◦ which equals σedgey (r, θ = π/2,φ = π/2)
σedgey (r)|φ=π/4 Real stress at a distance r and an angle φ = 45◦ on the interface θ = 90◦ which equals σedgey (r, θ = π/2,φ = π/4)
σcory,FEM(r) FEM stress at a distance r and an angle φ = 45◦ on the interface θ = 90◦

σedgey,FEM(r) FEM stress at a distance r and an angle φ = 90◦ on the interface θ = 90◦

σedgey,FEM(r)|φ=π/4 FEM stress at a distance r and an angle φ = 45◦ on the interface θ = 90◦

Abbreviations
2D Two dimensional
3D Three dimensional
BJ Butt joint
FEM Finite element method
ISSF Intensity of singular stress field
TSLJ Three-step lap joint

Subscripts and superscripts
2D Interface edge in the 2D model
cor Interface corner in the 3D model
edge Interface edge in the 3D model
* Reference model [For example, e2D*0 , σ2D*y,FEM(r)]
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Fig. 1. Schematic illustration for 3D AB joint consisting of cubic elements whose dimensions are ecor and eedge (Fig. 1 shows a butt joint named AB
joint in this paper, A = Material 1, B = Material B).
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component have the stress singularity at the interface edge. Although the debonding initiation site may be assumed to be the interface
edge, the stress there cannot be evaluated accurately by FEM because of the stress singularity. Therefore, the continuous mechanics
approach cannot be used in the debonding strength evaluation easily. The conventional fracture mechanics approach [11,12] was
effectively used to evaluate the strength of structures with cracks and reported that the adhesive joint strength can be evaluated.
However, usually after debonding occurs the stress intensity factor can be used and before the debonding the standard fracture me-
chanics approach cannot be applied to all adhesive structures unconditionally.

The CZM [11,12] is energetically studied by researchers and engineers, and most often used. In this approach, the cohesive ele-
ments have to be inserted along the crack path in advance. Since the debonding occurs at the interface edge and grows along the
interface, the cohesive elements can be inserted efficiently, and the computational resource is reduced. Moreover, the simulation
accuracy can be improved by implementing the XFEM and the damage mechanics. The traction-separation law plays an important role
in realizing the debonding phenomena controlling the simulation accuracy significantly. Since the CZM is incorporated in commercial
FEM code and some types of the laws are proposed, the users can perform various simulations and visualize failure processes. However,
the users must perform some experiments to determine the parameters used in the law. Therefore, although the CZM approach suits the
debonding failure simulation efficiently, it forces time-consuming work and cannot offer the debonding strength easily and
conveniently.

The singular stress fields appearing at the interface edge and the interface corner cause the debonding failure. When the local polar
coordinate system (r, θ) is set at the interface edge in the 2D dissimilar joint (see Fig. 1 and Fig. 2), the singular stress along the
interface, σij(r, θ) |θ=π/2, can be expressed in the following equation [13–17].

Fig. 2. Schematic illustration for 2D AB joint consisting of square elements whose dimensions are eedge0 (Fig. 2 shows a butt joint named AB joint in
this paper, A = Material 1, B = Material 2).
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σij(r, θ) |θ=π
2
→
Kσij

r1− λ =
K
r1− λfσij (θ)

⃒
⃒
⃒

θ=π
2
(r→0), Kσij = limr→0 r

1− λσij
(
r, θ =

π
2

)
(1a)

Here, λ is a singularity index, Kσij is an intensity of singular stress field (ISSF), fσij is a characteristic angular function of θ, and K is a
constant. In this paper and in authors’ previous papers [18,19], to express the intensity of singular stress field, the term “ISSF” has been
used in a straightforward manner (see Appendix A). The ISSF at θ = 90◦ is essential because in the adhesive joints debonding always
starts from the interface edge or interface corner and grows along the interface. In this paper, therefore, as shown in Eqs. (1a) and (1b),
the ISSF at θ = 90◦ is considered. Since debonding in the adhesive joints starts from the interface edge or the interface corner and grows
along the interface, the singular stress along the interface θ = 90◦ is significantly important. In this paper, as shown in Eqs. (1a) and
(1b), the ISSF when θ = 90◦ is considered.

Also, when the local spherical coordinate system (r, θ,φ) is set at the interface corner in the 3D dissimilar joint (see Fig. 1 and
Fig. 2), as well as the 2D dissimilar joint, the singular stress along the interface, σij(r, θ,φ) |θ=π/2, can be expressed in the following
equation [20].

σij(r, θ,φ) |θ=π
2
→
Kσij

r1− λ =
K
r1− λfσij (θ,φ)

⃒
⃒
⃒

θ=π
2
(r→0), Kσij = limr→0 r

1− λσij
(
r, θ =

π
2
,φ

)
(1b)

The value of λ is governed by the elastic properties of the two materials and the edge geometry independent of the far-field load
geometry. When λ is smaller than 1, the material combination is called the bad pair, and the singular stress field appears. To express the
singularity at the 3D corner point, the singularity exponent p = 1 − λ has been also used in the previous papers [21–25].

In the authors’ previous paper [26], a 3D bad pair condition and 3D singularity index were systematically calculated at the interface

Fig. 3. Schematic illustration for the meshed AB joints (A = Material 1, B = Material 2) necessary to analyze the 3D corner singularity index. All

three joints (a), (b), (c) are necessary to derive Eq. (9): λcor = 1 − ln
{

σcor(a)y,FEM(0)|emin=ecor0 /σcor(b)y,FEM(0)|emin=necor0
}
/lnn. Two joints (a), (b) are necessary to

calculate λcor. Regarding corner Point A, the singular stress σcory (r, θ = π/2,φ = π/4) = σcory (r) is always considered. Then, the corner ISSF can be

defined as Kcorσ |φ=π/4 ≡ limr→0r1− λcorσcory (r). Regarding edge Point B, the singular stress σedgey (r, θ = π/2,φ = π/2) = σedgey (r) is mainly considered but

sometimes σedgey (r, θ = π/2,φ = π/4) = σedgey (r)|φ=π/4 is compared with σcory (r, θ = π/2,φ = π/4).
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corner in a 3D BJ (butt joint). By comparing with a 2D bad pair condition and 2D singularity index at the interface edge in a 2D BJ, the
following conclusions (A) ~ (C) were obtained. (A) The 3D bad pair condition at the 3D interface corner is slightly different from the
2D bad pair condition. Practically, the 2D bad pair condition can be practically used for 3D real material combination. (B) When the
material combination satisfies both 3D and 2D bad pair conditions, the interface corner and the interface edge always have a real
singularity index. Therefore, the singular stress fields at the interface corner and at the interface edge in the BJ are expressed as shown
in Eqs. (1a) and (1b). (C) Values of the 3D corner singularity index at the interface corner and the 2D edge singularity index at the
interface edge are different, but the difference is within 15 %.

The ISSF corresponds to the stress intensity factor (SIF) in the fracture mechanics for crack problems. The ISSFs obtained by 2D
modelling were used by many researchers to predict the failure of bonded structures [17–20,27–41]. Previously, the authors reported
that the adhesive strength can be expressed as a constant ISSF for the butt joint [42,43] (see Fig. A2 in Appendix A). The constant
critical ISSF can be obtained by using 2D modelling for the wide range of adhesive thickness. In this way, the usefulness of the ISSF is
recognized by many researchers [17–20,27–41]. However, the useful tool to evaluate the ISSF is not implemented in the commercial
FEM software. Although the authors’ proportional method proposed [44–47] can be used efficiently for analyzing 2D problems but it
cannot be applied to 3D corner singularity problems directly. To analyze 3D corner ISSF, therefore, the eigen analysis code based on the
FEM and H-integral method must be written with time-consuming and hard work. Considering these circumstances, this paper deals
with efficient and convenient analysis methods for 3D corner ISSF and 3D corner singularity index.

First, in this paper, an FEM analysis method will be proposed for the interface corner in 3D bonded structures. Then, it will be
shown that the 3D corner singularity index and 3D corner ISSF can be analyzed efficiently. Second, the validity and the accuracy of the
proposed methods will be confirmed for the dissimilar bonded AB joint (see Fig. 1 and Fig. 2). Assume AB joint consists of A= Si and B
= epoxy because this case was previously analyzed by the conventional method [48]. After confirming the validity of the present
method, a prismatic ABA joint (see Fig. 8) and a prismatic ABC joint (see Fig. 14) will be analyzed. Assume they consist of the following
materials and named BJ-ABA, BJ-ABC joints in this paper (BJ = Butt Joint, A= Steel, B= epoxy, C = Cu alloy). Then, the ISSFs will be
analyzed by varying the adhesive thickness. Also, the effect of material combination on the ISSF will be investigated. Moreover, the
suitable debonding criterion will be discussed based on the ISSF analysis and the previous experiments for the three-step lap joints (see
Fig. 17) named TSLJ-ABA and TSLJ-ABC joints (TSLJ= Three-Step Lap Joint, A= Steel, B= Epoxy resin, C= Al alloy). Regarding those
joints, three conditions in terms of the 2D ISSF, the 3D corner ISSF and the 3D edge ISSF will be investigated as the debonding failure
criterion. Then, it will be shown that the 3D corner ISSF is more suitable than other ISSFs for 3D ABC joints.

2. Mesh-independent proportional method for 3D corner singularity index and 3D corner ISSF from FEM stress σFEM(r)

2.1. Previous studies

In this paper, an efficient analysis method will be proposed to evaluate the singularity index as well as the ISSF based on the
proportional stress fields obtained by the similar FEM mesh pattern (see Fig. 3). In general, the singular stress in the adhesive joints
expressed in Eqs. (1a) and (1b) can be obtained by sequentially analyzing the following (1), (2), (3):

(1) the singularity index λ,
(2) the eigenfunction fσij , and.
(3) the ISSF Kσ = K ⋅ fσij .
In 2D dissimilar joint analyses, the singularity index λ can be obtained accurately from characteristic equation theoretically

derived. The eigenfunction fσij can be usually derived explicitly. Then, the K is often determined by a suitable method such as the
proportional method [49–51] and the H-integral method numerically [48,52].

In 3D dissimilar joint analyses, (1) the singularity index λ and (2) the eigenfunction fσij are analyzed simultaneously from the eigen
analysis based on the FEM [48,53–55] because the characteristic equation and the eigenfunction have not been derived unlike the 2D
dissimilar joint. Then, (3) the ISSF Kσ is determined by using a suitable numerical method such as the H-integral method. The eigen
analysis is a discrete numerical analysis method and provides the eigenfunction fσij with values. Since there are computational errors in
the values of λ, fσij , and Kσ for the 3D dissimilar joint cannot be analyzed as accurately as that for the 2D dissimilar joint. It should be
noted that 3D dissimilar analyses are much more time-consuming and difficult than the 2D dissimilar analyses because both the
eigenvalue analysis code and the H-integral method code must be provided [48]. Furthermore, λ and fσij in the 3D analysis can be
determined using a discrete numerical analysis method, which requires a large amount of computational time and effort to ensure
accuracy. In the authors’ previous study, for example, a lot of time and effort was spent on calculating the 3D singularity index under
arbitrary material combination to clarify the 3D corner stress singularity.

The remainder of this section is organized as follows. In Section 2.2, the analysis models of the 3D and 2D AB joints will be pre-
sented. In Section 2.3, the variation of the FEM stress is discussed by varying the minimum FEM element size. In Section 2.4, the
analysis method for the 3D singularity index λcor will be proposed. In Section 2.5, the analysis method for the 3D corner ISSF Kcorσ will be
proposed. The present methodmay provide the singularity index as well as the ISSF only from the FEM stresses of the linear elements at
the interface corner. Since the present method does not require time-consuming efforts and the high-performance computer, it is much
more efficient and convenient than the existing methods.
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2.2. Analysis modelling

Fig. 1(a) shows the 3D prismatic dissimilar bonded joint named AB joint in this study. Note that Fig. 1 (AB joint) is equivalent to
Fig. 8 (ABA joint) when h ≥W. In ABA butt joints in Fig. 8 named BJ-ABA, if the adhesive layer thickness h is larger than or equal to the
joint width W as h ≥W, the singular stress fields at the upper and the lower interface corners do not interfere anymore due to Saint
Venant’s principle. The global Cartesian coordinate system (x, y, z) is set at the center of the interface between the materials 1 and 2. It
should be noted that the interface of the AB joint is expressed as |x| ≤W/2 and |z| ≤W/2 and the interface perimeter can be expressed
as |x| =W/2 and |z| = W/2. The interface perimeter can be characterized by the four corners [(x, y, z) = ( − W/2,0, − W/2),
( − W/2,0,W/2), (W/2,0, − W/2), (W/2,0,W/2)] and other edge points. To represent one of the corner points, the point at (x, y, z) =
( − W/2,0, − W/2) can be chosen and named the interface corner A [see Fig. 1(b)]. Instead, to represent a point on the interface edge,
the point at (x, y, z) = ( − W/2,0,0) can be chosen and named the interface edge B [see Fig. 1(c)]. Then, the singularity index and the
ISSF at the interface corner A and interface edge B will be evaluated by applying the proposed method.

Fig. 2(a) shows the 2D dissimilar bonded joint under the plane strain condition, which is named AB joint in this study. The global
Cartesian coordinate system (x, y) is set at the end of the interface between materials 1 and 2. The point (x, y) = ( − W/2,0) is denoted
by the interface edge C [see Fig. 2(b)]. The ISSF at the interface edge C in the 2D AB joint can be used as the reference solution to
evaluate the ISSF at the interface edge B in the 3D AB joint.

The ISSF is useful for evaluating adhesive strength. If the debonding initiates from the interface edge B, it may grow in the normal
direction φ = 90◦ symmetrically along the interface θ = 90◦ . In this study, therefore, the 3D edge ISSF is defined from the singular
stress analyzed on the line φ = 90◦ and θ = 90◦ (see Fig. 1 (c)). Similarly, if the debonding initiates from the interface corner, it may
grow in the bisector direction φ = 45◦ symmetrically along the interface θ = 90◦ . In this study, therefore, the 3D corner ISSF is defined
from the singular stress analyzed on the line φ = 45◦ and θ = 90◦[see Fig. 1 (b)].

2.3. Variation of FEM stress σFEM(r) |emin by varying minimum FEM mesh emin

In the authors’ previous paper [26], a 3D bad pair condition and 3D singularity index were discussed at the interface corner A in
Fig. 1(b) and compared with a 2D bad pair condition and 2D singularity index at the interface edge C in Fig. 2 (b), which is equivalent
to at the edge B in Fig. 1(c). As shown in the main conclusion indicated in Appendix A, the 3D bad pair condition at the 3D interface
corner A is nearly the same but slightly different from the 2D bad pair condition at the 3D interface edge B and the 2D interface edge C.
When a material combination satisfies the 3D bad pair condition indicated in Eq. (B1) in Appendix B, a singular stress field appears at
the interface corner A in Fig. 1(b) as shown in Eq. (1b) [20]. When the material combination satisfies the 2D bad pair conditions
indicated in Eq. (B2) in Appendix B, the singular stress field appears along the interface edge in Fig. 2(b) as shown in Eq. (1a) [20].
Under some specific material combinations, the 3D stress singularity appears at the interface corner without 2D stress singularity along
the interface edge. However, since such special material combination exists in very limited regions, the 2D bad pair condition
α(α − 2β) > 0 can be used conveniently for evaluating the 3D adhesive strength in real material combination in most cases. Here, (α, β)
are Dundurs’ parameter and defined as follows [56].

α =
G1(κ2 + 1 ) − G2(κ1 + 1)
G1(κ2 + 1 ) + G2(κ1 + 1)

, β =
G1(κ2 − 1) − G2(κ1 − 1)
G1(κ2 + 1) + G2(κ1 + 1)

, κm = 4 − 3νm (m = 1, 2) (2)

In Eq. (2), the subscripts denote Materials 1 and 2, Gm (m = 1, 2) is the shear elastic modulus and νm is Poisson’s ratio for materialm =

1, 2. When the material combination satisfies the 3D bad pair condition and the 2D bad pair condition, the interface corner and the
interface edge always have a real singularity index. Therefore, the singular stress fields are expressed as shown in Eq. (1b) at the
interface corner and at the interface edge. The 3D corner singularity index λcor at the interface corner A is different from the 2D edge
singularity index λedge at the interface edge B. Under fixed (α, β), the λcor varies about 12 % for the largest case by varying the material
combination. Values of λcor and λ2D are not very different under fixed (α, β). Under the well-known 2D bad pair condition α(α − 2β) > 0,
the ratio λcor/λ2D is in the range of 0.85 ≤ λcor/λ2D < 1 or λcor/λ2D ≃ 1. The λedge coincides with the λ2D at the interface edge C in Fig. 2(b)
as λedge = λ2D; and therefore, the λedge can be determined by solving the following Bogy’s characteristic equation [57,58].

[
sin2

(π
2

λ
)
− λ2

]2
β2 +2λ2

[
sin2

( π
2

λ
)
− λ2

]
αβ+ λ2

(
λ2 − 1

)
α2 + sin

2(πλ)
4

= 0 (3)

Different from 2D analyses, the 3D singularity index λcor is determined by discrete numerical analysis methods [53–55]. These
methods are time-consuming and labor-intensive, but this is unavoidable. In this section, therefore, an efficient and conventional
method is proposed to evaluate the 3D singularity index λcor from the FEM stresses. Here, FEM stress [like σy,FEM(r)] is the stress ob-
tained by FEM analysis and is distinguished from the real stress [like σy(r)] obtained according to the theory of elasticity. Note that the
singularity index λcor at the interface corner A in Fig. 1(b) is denoted with the 3D corner singularity index, and the singularity index λedge
at the interface edge B in Fig. 1(c) is denoted with the 2D edge singularity index since λedge coincides with the singularity index λ2D at the
interface edge C in Fig. 2(b).

Fig. 3 illustrates three models to investigate real singular stress fields σcory (r), σedgey (r), and σedgey (r)|φ=π/4 in the 3D AB joint in Fig. 1(a).
All three models consist of hexahedral elements and similar mesh patterns. The model (a) has a minimum element standard size emin =
ecor0 as shown in Fig. 3(a). Regarding the model (a), the FEM stress distribution at the interface corner A is denoted by σcor(a)y,FEM(r)|emin=ecor0 ,
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and the ISSF at the interface corner A is denoted by Kcor(a)σ . Themodel (b) is as large as the model (a) but the model (b) has n times larger
size emin = necor0 as shown in Fig. 3(b). Regarding the model (b), the FEM stress at the interface corner A is denoted by σcor(b)y,FEM(r)|emin=necor0 ,

and ISSF at the interface corner A is denoted by Kcor(b)σ . The model (c) is n times as large as the model (a) and divided into the regular
hexahedral elements with an edge length of emin = necor0 . Regarding the model (c), the FEM stress at the interface corner A is denoted by
σcor(c),ny,FEM (r)|emin=necor0 , and the ISSF at the interface corner A is denoted by K

cor(c),n
σ . Since the model (c) is equivalent to the model obtained

by enlarging the model (a) including the mesh by n times, the same computational error occurs in the FEM stresses at the interface
corner A and the interface edge B in the models (a) and (c). Therefore, we have σcor(a)y,FEM(0)|emin=ecor0 = σcor(c),ny,FEM (0)|emin=necor0 . The model (c) is
an auxiliary model for deriving the evaluation formula for the λcor. When the λcor is evaluated by the present method, the FEM analyses
are performed on the models (a) and (b) actually, and the present method focuses on only two FEM stresses σcor(a)y,FEM(0)|emin=ecor0 and

σcor(b)y,FEM|emin=necor0
.

Enlarged meshed AB joint in Fig. 3(c) is equivalent to the finely meshed AB joint in Fig. 3(a) since Fig. 3(c) is the enlargement of
Fig. 3(a) by n times. The FEM singular stress in the y direction at the distance r0 away from the interface corner A in the model (a)
equals that at the distance nr0 away from the interface corner A in model (c) as shown in Eq. (4a). Also, the real singular stress in the y
direction at the distance r0 away from the interface corner A in the model (a) equals that at the distance nr0 away from the interface
corner A in model (c) as shown in Eq. (4b) and Eq. (4c).

σcor(a)y,FEM(r0)|emin=necor0 = σcor(c),ny,FEM (nr0)|emin=necor0 (a-c relation 1) (4a)

σcor(a)y (r0) = σcor(c),ny (nr0) (a-c relation 2) (4b)

Kcor(a)σ

(r0)1− λcor
=

Kcor(c),nσ

(nr0)1− λcor
(a-c relation 3) (4c)

Equation (4c) can be rewritten as follows.

Kcor(c),nσ = n1− λcor ⋅ Kcor(a)σ (a-c relation 4) (4d)

Equations (4a) − (4d) are the relation of the FEM stress and the real stress between the AB joint in Fig. 3 (a) and the AB joint in Fig. 3(c).
Next, consider the relation between the AB joint in Fig. 3(b) and the AB joint in Fig. 3(c). Since both interface corners in the AB joint

(b) and in the AB joint (c) are composed of the regular hexahedral elements with the same edge length emin = necor0 , the ISSF ratio can
be expressed by the FEM stress ratio according to the mesh independent technique previously investigated as follows[43–45].

Kcor(c),nσ

Kcor(b)σ
=

σcor(c),ny,FEM (0)|emin=necor0
σcor(b)y,FEM(0)|emin=necor0

(b-c relation 1) (5)

By substituting Eq. (4a) and Eq. (4d) into Eq. (5), the following equation (6a) can be obtained.

n1− λcor ⋅ Kcor(a)σ

Kcor(b)σ
=

σcor(a)y0,FEM(0)|emin=ecor0
σcor(b)y,FEM(0)|emin=necor0

(a-b relation 1) (6a)

Equation (6a) can be regarded as the relation between the AB joint (a) and the AB joint (b). The ISSF ratio (= real stress ratio) can be
expressed by the FEM stress ratio. Two joints have different FEM mesh but the same dimension and the same real ISSF.

Kcor(a)σ = Kcor(b)σ (a-b relation 2) (6b)

Finally, Equation (7) is derived.

σcor(b)y,FEM(0)|emin=necor0 =
σcor(a)y,FEM(0)|emin=ecor0

n1− λcor
(a-b relation 3) (7)

When
(
necor0

)1− λcor is multiplied by both sides of Eq. (7), the following equation is obtained.

σcor(a)y,FEM(0)|emin=ecor0 ⋅
(
ecor0

)1− λcor
= σcor(b)y,FEM(0)|emin=necor0 ⋅

(
necor0

)1− λcor
= constant (a-b relation 4) (8)

Equation (8) is important because it provides how the FEM stress σcor(a)y,FEM(0)|emin varies depending on the minimum element size emin.
Since the real stress at the interface corner goes to infinity, the FEM provides only approximate stress different from the real stress.
Although the FEM stress depends on the mesh strongly, the relation between the FEM stress and the mesh had been unknown.
However, when the FEM analyses are performed by changing the emin using a similar mesh pattern like Fig. 3(a), (b), the FEM stress is
inversely proportional to the (emin)1− λcor as shown in Eq. (8). The validity of Eq. (8) is numerically confirmed in Appendix C.
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2.4. Mesh-independent expression for 3D corner singularity index from FEM stress σFEM(r) |emin

Equation (8) is also useful for obtaining the singularity index λcor. Solving Eq. (8) on the λcor, the following mesh-independent
formula (9) can be derived.

λcor = 1 −
ln
{

σcor(a)y,FEM(0)|emin=ecor0 /σcor(b)y,FEM(0)|emin=necor0
}

lnn
(9)

To obtain the corner singularity index λcor, Eq. (9) is much easier and more convenient than conventional methods. The eigen analysis
based on the FEM has been commonly used. The interface corner is divided into elements. The eigen equation is assembled according
to the virtual work principle and solved numerically. Therefore, the method requires complex and very difficult calculations. Instead,
the proposedmethod requires only two FEM stresses which can be obtained by changing theminimum element size emin at the interface
corner.

The formula (8) is quite general and can be applied for obtaining others. By replacing the corner FEM stresses σcor(a)y,FEM(0)|emin=ecor0 and

σcor(b)y,FEM(0)|emin=necor0 in Eq. (9) with the edge FEM stresses σedge(a)y,FEM (0)|emin=eedge0
and σedge(b)y,FEM (0)|emin=needge0

, respectively, the mesh-independent

formula for evaluating the λedge can be obtained as follows.

λedge = 1 −
ln
{

σedge(a)y,FEM (0)/σedge(b)y,FEM (0)|emin=needge0

}

lnn
(10)

Here, σedge(a)y,FEM (0)|emin=eedge0
and σedge(b)y,FEM (0)|emin=needge0

are the FEM stresses at the interface edge B (x, y, z) = (− W/2,0,0) in the finely meshed

3D AB joint model (a) and the coarsely meshed 3D AB joint model (b), respectively. The singularity index at the interface edge B, λedge,
can evaluated by Eq. (10). The present method can be applied to the 2D bonded structures as well as the 3D bonded structures, and the
singularity index can be obtained much more easily and conveniently than the conventional methods [48,53–55,57–60].

2.5. Mesh-independent expression for 3D corner ISSF from FEM stress σFEM(r) |emin

The authors proposed the mesh-independent technique named proportional method [49–51] useful for evaluating the 2D ISSF for
the adhesive joint. The authors also reported that the method can be applied to various adhesive joints: BJ-ABA [46,48], cylindrical BJ-
ABA [44], single lap joint-ABA [45,47] and so on. In this paper, an efficient mesh-independent analysis method will be proposed useful
for analyzing the 3D corner ISSFs. The method for analyzing the ISSF Kcorσ at the interface corner A will be described by taking an
example of AB joint in Fig. 1(a). Here, as a reference solution the ISSF K2Dσ at the interface edge C in Fig. 2(b) will be used.

As shown in Fig. 1(b), the local spherical coordinate (r, θ,φ) are set at the interface corner A in the 3D AB joint model, where r is the
radial distance from the interface corner A, θ is the angle between the free edge which passes through the interface corner A, φ is the
angle between the r axis and the interface edge which passes through the interface corner A. When θ = π/2 and φ = π/4, the singular
stress along r axis from the interface corner A is expressed with the singular function of r as follows [48].

σcory (r)→
Kcorσ |φ=π

4
r1− λcor

(r→0), Kcorσ |φ=π
4
≡ lim

r→0
r1− λcorσcory (r) (11)

Here, Kcorσ |φ=π/4 is the ISSF defined from the singular stress along the radial line φ = π/4 on the interface θ = π/2. When θ = π/2 and
φ = π/4, the average of the y directional stress from the interface corner A to r =

̅̅̅
2

√
ecor0 , σcory , is expressed as follows.

σcory =
1
̅̅̅
2

√
ecor0

∫ ̅̅
2

√
ecor0

0
σcory (r)dr =

1
̅̅̅
2

√
ecor0

∫ ̅̅
2

√
ecor0

0

Kcorσ |φ=π
4

r1− λcor
dr =

Kcorσ |φ=π
4

λcor

( ̅̅̅
2

√
ecor0

)λcor − 1
(12)

The local spherical coordinates (r, θ,φ) are set at the interface edge B in the 3D AB joint, where r is the radial distance from the
interface edge B, θ is the angle between r axis and the line which is parallel to x axis and passes through the interface edge B, φ is the
angle between the interface edge which passes through the interface edge B and r axis. When θ = π/2 and φ = π/4, the y directional
singular stress along r axis from the interface edge B is expressed with the singular function of r as follows.

σedgey (r)
⃒
⃒
⃒

φ=π
4
→
Kedgeσ

⃒
⃒

φ=π
4

r1− λedge
(r→0),Kedgeσ

⃒
⃒

φ=π
4
≡ lim

r→0
r1− λcorσedgey (r) (13)

Here, Kedgeσ |φ=π/4 is the ISSF defined from the singular stress along the radial line φ = π/4 on the interface = π/2.When θ = π/2 and φ =

π/4, the average of the y directional stress from the interface edge B to r =
̅̅̅
2

√
ecor0 , σedgey , is expressed as follow.

σedgey =
1
̅̅̅
2

√
eedge0

∫ ̅̅
2

√
eedge0

0
σedgey (r)dr =

Kedgeσ |φ=π
4

λedge

( ̅̅̅
2

√
eedge0

)λedge − 1
(14)
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When the element at the interface corner A is the same shape as that at the interface edge B, the y directional FEM stress in the element
at the interface corner A has almost the same computational error as that at the interface edge B. The computational errors in the y
directional FEM stresses are canceled by taking the ratio of the σcory to the σedgey as follows.

σcory
σedgey

=

Kcorσ |
φ=

π
4

λedge

( ̅̅̅
2

√
ecor0

)λcor − 1

Kedgeσ |
φ=

π
4

λedge

( ̅̅̅
2

√
eedge0

)λedge − 1
=

σcory,FEM(0)+σcory,FEM(
̅̅
2

√
ecor0 )

2
σedgey,FEM(0)+σedgey,FEM(

̅̅
2

√
eedge0 )|

φ=
π
4

2

(15)

In Eq. (15), σcory,FEM(0) is the FEM stress at the interface corner A, and σcory,FEM(
̅̅̅
2

√
ecor0 ) is the FEM stress at the point (r, θ,φ) = (

̅̅̅
2

√
ecor0 , π/

2, π/4) on the interface which is located diagonally opposite to the interface corner A. Also, σedgey,FEM(0) is the FEM stress at the interface

edge B, σedgey,FEM(
̅̅̅
2

√
eedge0 )|φ=π/4 is the FEM stress at the point (r, θ,φ) = (

̅̅̅
2

√
eedge0 , π/2, π/4) on the interface which is located diagonally

opposite to the interface corner B. Equation (15) can be rewritten as follows.

Kcorσ |φ=π
4

Kedgeσ |φ=π
4

=
λcor
λedge

⋅
σcory,FEM(0) ⋅

( ̅̅̅
2

√
ecor0

)1− λcor
+ σcory,FEM

( ̅̅̅
2

√
ecor0

)
⋅
( ̅̅̅
2

√
ecor0

)1− λcor

σedgey,FEM(0) ⋅
( ̅̅̅
2

√
eedge0

)1− λedge
+ σedgey,FEM

( ̅̅̅
2

√
ecor0

)
|φ=π

4
⋅
( ̅̅̅
2

√
eedge0

)1− λedge
(16)

In Eq. (16), σcory,FEM
( ̅̅̅
2

√
ecor0

)
⋅
( ̅̅̅
2

√
ecor0

)1− λcor is also mesh-independent as well as σcory,FEM(0) ⋅
( ̅̅̅
2

√
ecor0

)1− λcor as described in Sect. 2.3.

Also,σedgey,FEM
( ̅̅̅
2

√
ecor0

)
|φ=π/4 ⋅

( ̅̅̅
2

√
eedge0

)1− λedge
is also mesh-independent as well as σedgey,FEM(0) ⋅

( ̅̅̅
2

√
eedge0

)1− λedge
. Therefore, the right side of

Eq. (16) is mesh-independent as described in Sect. 2.3.
As shown in Fig. 2(b), the local polar coordinate (r, θ) is set at the interface edge C in the 2D AB joint, where θ is the angle between

the free edge which passes through the interface edge C and r axis. When θ = π/2, the singular stress along r axis from the interface
edge C is expressed with the following equation.

σ2Dy (r)→
K2Dσ
r1− λ2D

(r→0), K2Dσ ≡ lim
r→0
r1− λ2Dσ2Dy (r) (17)

Here, r is the radial distance from the interface edge C, λ2D is the singularity index, K2Dσ is the ISSF at the interface edge C. The interface
edge C in the 2D AB joint is divided into regular square elements with an edge length of e2D0 . The average of the y directional stress from
r = 0(interface edge C) to r = e2D0 is expressed by the following equation.

σ2Dy =
1
e2D0

∫ e2D0

0
σ2Dy (r)dr =

K2Dσ
λ2D

(
e2D0

)λ2D − 1 (18)

When θ = π/2 and φ = π/2, the y directional singular stress along r axis from the interface edge B is expressed with the singular
function of r as follows.

σedgey (r)
⃒
⃒
⃒

φ=π
2
→
Kedgeσ

⃒
⃒

φ=π
2

r1− λedge
(r→0),Kedgeσ

⃒
⃒

φ=π
2
≡ lim

r→0
r1− λcorσedgey (r) (19)

Here, Kedgeσ |φ=π/2 is the ISSF defined from the singular stress along the radial line φ = π/2 on the interface θ = π/2. The average of the y

directional stress from the interface edge B to r = eedge0 in the 3D AB joint, σedgey , is expressed as follows.

σedgey =
1
eedge0

∫ eedge0

0
σedgey (r)dr =

Kedgeσ
⃒
⃒

φ=π
2

λedge

(
eedge0

)λedge − 1
(20)

The following equation is obtained by taking the ratio of the σ2Dy to the σedgez .

Kedgeσ
⃒
⃒

φ=π
2

K2Dσ
=

λedge
λ2D

⋅
σedgey,FEM(0) ⋅

(
eedge0

)1− λedge
+ σedgey,FEM(e

edge
0 ) ⋅

(
eedge0

)1− λedge

σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D
+ σ2Dy,FEM(e

edge
0 ) ⋅

(
e2D0

)1− λ2D
(21)

In Eq. (21), σedgey,FEM(e
edge
0 ) is the FEM stress at the point (r, θ,φ) = (eedge0 , π/2, π/2) on the interface which is located next to the interface

edge B in the x direction. Also, σ2Dy,FEM(0) is the FEM stress at the interface edge C, and σ2Dy,FEM(e
edge
0 ) is the FEM stress at the point (r, θ) =

(e2D0 , π/2) on the interface which is located next to the interface edge C in the x direction. Note that σedgey,FEM ⋅
(
eedge0

)1− λedge
,

σedgey,FEM ⋅
(
eedge0

)1− λedge
, σ2Dy,FEM ⋅

(
e2D0

)1− λ2D and σ2Dy,FEM ⋅
(
e2D0

)1− λ2D are mesh independent. Therefore, the right side of Eq. (21) is independent
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of the mesh.
Consider the real stress σedgey (r, θ,φ) expressed by the local spherical coordinate (r, θ,φ) whose origin is at point B on the edge as

shown in Fig. 2(c). Since the real stress σedgey (r = r0, θ = π/2,φ = π/4) nearly equal the real stress σedgey
(
r = r0/

̅̅̅
2

√
, θ = π/2,φ = π/2

)
,

the following relation can be derived.

Kedgeσ |φ=π
2

(
r0/

̅̅̅
2

√ )1− λedge
≃
Kedgeσ |φ=π

4

(r0)1− λedge
(22)

[
∵ σedgey (r = r0, θ = π/2,φ = π/4) = σedgey

(
r = r0

/ ̅̅̅
2

√
, θ = π

/
2,φ = π

/
2
) ]

Therefore, the FEM stresses σedgey,FEM(r0/
̅̅̅
2

√
)|φ=π/2 and σedgey,FEM(r0)|φ=π/4 are almost the same as shown in Eq. (23).

σedgey,FEM(r0/
̅̅̅
2

√
)|φ=π

2
≃ σedgey,FEM(r0)|φ=π

4
(23)

From Eqs. (16), (21), (22) and (23), the following equation is obtained.

Kcorσ |φ=π
4

K2Dσ
=

λcor
λ2D

⋅
σcory,FEM(0) ⋅

( ̅̅̅
2

√
ecor0

)1− λcor
+ σcory,FEM

( ̅̅̅
2

√
ecor0

)
⋅
( ̅̅̅
2

√
ecor0

)1− λcor

σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D
+ σ2Dy,FEM(e2D0 ) ⋅

(
e2D0

)1− λ2D
(24)

It may be expected that applying a finer mesh would result in more accurate stresses and ISSFs. However, the present method is
independent of the mesh size providing the same accurate ISSF values. It should be noted that although the FEM stress σy,FEM at the 3D
interface corner varies depending on the mesh size emin, σy,FEM is inversely proportional to (emin)1− λ as shown in Eq. (8). In other words,
the term “σy,FEM ⋅ (emin)1− λ” is mesh-independent and can be used efficiently to analyze ISSFs.

In Eq. (24), the term “σcory,FEM
( ̅̅̅
2

√
ecor0

)
⋅
( ̅̅̅
2

√
ecor0

)1− λcor” is also mesh-independent as well as the term “σcory,FEM(0) ⋅
( ̅̅̅
2

√
ecor0

)1− λcor” as

described in Sect. 2.3. Also, the term “σ2Dy,FEM(e2D0 ) ⋅
(
e2D0

)1− λ2D” is mesh-independent as well as the term “σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D” as
described in Sect. 2.3. Therefore, the right side of Eq. (24) is mesh independent and provides the same accurate ISSF values inde-
pendent of mesh pattern.

When the 3D corner ISSF is analyzed by the H-integral method, the eigen analysis based on the FEM must be performed by setting
many integration points around the interface corner. The singularity index λ and the function fσij are obtained from the stress values,
displacements and angle functions at these points. The ISSF is obtained by performing double integral numerically. Instead, the present
methods require only two stress values in the unknown and reference problems by applying a similar mesh pattern without complex
and difficult calculations [see Fig. 1(b) and Fig. 2(b)]. The 3D corner ISSF can be obtained by substituting the FEM stresses into Eq.
(24). The present methods are much more efficient and convenient than the existing method, such as the H-integral method.

3. Validity and accuracy of the proposed mesh-independent method for the 3D corner singularity index and 3D corner
ISSF of the AB joint

3.1. Several AB joints towards analyzing the 3D corner ISSF

In Section 3, the validity and accuracy of the proposed method in Sect. 2 will be confirmed by analyzing AB joint that was pre-
viously analyzed using conventional method. Table 1 shows the elastic modulus and the Poisson’s ratio for the combination of Si (=
Material 1) and resin (= Material 2), Dundurs’ parameter (α,β), the singularity index λ2D and the ISSF for the 2D AB joint in Fig. 4(a)
normalized by the plate widthW, F2D*σ,W = K2D*σ /

(
σ0W1− λ2D

)
. Here, (α, β) are defined as Eq. (2) [56]. The 3D prismatic AB joint composed

of Si (= Material 1) and resin (= Material 2) in Table 1 will be investigated since Koguchi et al. analyzed the combination previously
[48]. The singularity index λ2D = 0.6805 can be determined by solving Bogy’s characteristic equation (3) [57,58]. Then, the
dimensionless ISSF F2D*σ,W = 0.407 can be obtained from the previous references [61,62].

Fig. 4 illustrates 2D and 3D AB joints to confirm the validity and usefulness of the mesh-independent method for the 3D corner
singularity index and the ISSF. As shown in Fig. 4(a), (b), (c) and (d), 4 models are discussed when L/W = 1,W = 2 mm and σ∞

y = σ0 =
1 MPa. Fig. 4(a) shows a 2D AB joint which can be used as a reference problem because the analytical exact solution obtained by the

Table 1
Material properties of 2D and 3D AB joints in Fig. 4(a)-(d). Fig. 4(a) is a reference problem used as K2Dσ in Eq. (24) and Fig. 4(d) is an unknown problem
whose ISSF is compared with Koguchi et al[48]. Since Fig. 4(a) is used as a reference problem, Fig. 4(b), (c) are also considered as other unknown
problems since they are in plane strain condition. All AB joints in Fig. 4(a)-(d) are composed of A = Si and B = epoxy resin.

Material 1 Material 2 α β λ2D Reference value F2D*σ,W

in Fig. 4(a)E1[GPa] ν1 E2[GPa] ν2

166.0 0.26 2.74 0.38 0.9647 0.1844 0.6805 0.407
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body force method [61,62] is available under arbitrary material combinations. Note that L/W = 1 in Fig. 4(a) can be regarded as when
L/W ≥ 1. Fig. 4(d) shows a target problem whose corner ISSF will be compared with the results of Koguchi et al [48] to confirm the
validity of the proposed analysis method.

In this analysis, Fig. 4(b), (c) are also considered as other unknown problems. This is because Fig. 4(a) is used as the reference
problem but 2D problem including plane strain condition. In Fig. 4(b), the displacement in the z-direction are fixed at z =±W/2 so that
Fig. 4(b) can be regarded as 2D plane strain condition εz = 0. In this way, the accuracy and validity of the proposed method is
confirmed. The length of AB joints in Fig. 4(b), (c) is set as L equal to the length of the target problem in Fig. 4(d) and half of 2L in the
reference problem in Fig. 4(a). In Fig. 4(b), the ISSF at the interface edge B will be analyzed. In Fig. 4(d), the ISSFs at the interface
corner A and the interface edge B in the 3D AB joint will be analyzed. The elastic stress analyses are performed by using the commercial
FEM code MARC.

Fig. 5(a) illustrates the FEM mesh used for the reference 2D AB joint in Fig. 4(a). The same mesh pattern is also used in the 2D AB
joint in Fig. 4(c). Fig. 5(b) illustrates the mesh used for the 3D AB joints in Fig. 4(b) and (d). The 8-node hexahedral element is used in
the 3D AB joints in Fig. 4(b) and (d). Also, the 4-node quadrilateral element is used in the 2D AB joint in Fig. 4(a) and (c). The linear
element is used in all 3D and 2D AB joints. The FEM analyses are performed on all 3D AB joints when ecor0 /(W/2) = eedge0 /(W/2) =
4.360× 10− 6 and 1.744× 10− 5 to confirm the mesh independency. Similarly, the FEM analyses are performed on all 2D AB joints
under e2D0 /(W/2) = 3− 12 and 3− 9.

Fig. 4. Several AB joints considered in this study toward analyzing the 3D corner ISSF in Fig. 4(d) to be compared with Koguchi et al [48]. Since the
2D problem in Fig. 4(a) is used as a reference problem, Fig. 4(b), (c) are also considered as other unknown problems since they can be regarded as
2D plane strain problems. All 3D AB joints in Fig. 4(a) ~ (d) are composed of A = Si and B = epoxy resin.
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3.2. Validity and accuracy of 3D corner singularity index λcor as well as 3D edge singularity index λedge obtained by the mesh-independent
method

Table 2 shows the singularity indexes λedge and λcor to confirm the accuracy of the mesh-independent method. In Table 2, the
minimum cubic element size at the interface corner A, ecor0 /(W/2), and the minimum cubic element size at the interface edge B,
eedge0 /(W/2), are set to be equal. In the fine mesh, they are changed in the range ecor0 /(W/2) = eedge0 /(W/2) = 4.360× 10− 6 ∼ 2.790×
10− 4. In the coarse mesh, the minimum cubic element size is set to be in the range ecor0 /(W/2) =eedge0 /(W/2) =1.744× 10− 5 ∼ 1.116×
10− 3, which are 4 times larger than that in the fine mesh. Table 2(a) shows the results for singularity index λedge at the interface edge B
in Fig. 4(b) under plane strain condition as εz = 0 to confirm the validity of the proposed method. As shown in Table 2(a), the values of
λedge obtained from Eq. (9) for Fig. 4(b) are independent of the mesh size agreeing well with the results of λ2D, which are obtained from
the 2D characteristic equation (3) to the three digits. Since the singularity index is determined from the local geometry around the
singularity point, the plane strain deformation and the external force do not affect the singularity index.

Tables 2(b), (c) examine the results for Fig. 4(d) obtained by the proposed method. As shown in Table 2(b), the values of λcor at the
interface corner A obtained from Eq. (9) are independent of the mesh size agreeing well to the three digits with the results of Koguchi
et al.[48], which are obtained through the eigen analysis. Since Eqs. (9) and (10) provide accurate values of λcor and λedge, the validity
and usefulness of Eqs. (9) and (10) are confirmed.

As shown in Table 2(c), the values of λedge at the interface edge B in Fig. 4(d) are mesh-independent and they agree with the results
in Table 2(a) as well as the results of characteristic equation (3). Comparing Table 2(a) and Table 2(c) confirms that the same sin-
gularity index λedge can be obtained from Eq. (10) as λedge = 0.681 although the FEM stresses σedgey,FEM(0) are very different in Table 2(a)
and Table 2(c).

3.3. Validity and accuracy of 3D edge ISSF Kedgeσ obtained by the mesh-independent method

Table 3(a) shows mesh-independency of the obtained ISSF Kedgeσ in Fig. 4(b) where εz = 0. Table 3(b) also shows the ISSF K2Dσ is
mesh independent in 2D AB joint in Fig. 4(c) where εz = 0. Those results are obtained for 3D and 2D AB joints in Fig. 4(b), (c) with A=

Si, B = Epoxy resin whenW = 2 mm and σ∞
y = 1 MPa. In Table 3, the ISSF Kedgeσ values are obtained by substituting the FEM stresses

σedgey, FEM(0) in Table B1 into Eq. (21). Although the fine mesh pattern and the coarse mesh pattern are combined variously, Kedgeσ = 0.0567
MPa ⋅m1− λedge is obtained. Then, the Kedgeσ almost equals the K2Dσ . There is about 0.43 % error between them. Fig. 6 shows the y
directional FEM stress distribution by FEM analyses and the asymptotic solution with λedge = 0.6809 and Kedgeσ = 0.0567 MPa ⋅m1− λedge

Fig. 5. FEM mesh to be used to analyze both ISSF and singularity index in Fig. 3. Fig. 5(a) shows FEM mesh in composed of square element of edge
length eedge0 to analyze the 2D AB joints in Fig. 4(a), (c). Fig. 5(b) shows FEM mesh composed of cubic element of edge length ecor0 to analyze the 3D
AB joints in Fig. 4(b), (d).
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obtained by the present methods. The FEM stress distribution of 3D model is in good agreement with the FEM stress distribution of 2D
model well. The 3D model in Fig. 4(b) is equivalent to the 2D model in Fig. 4(c). Then, since the asymptotic solution is in good
agreement with the FEM stress distributions, it can be said that the Kedgeσ is evaluated by the present method accurately.

Table 2
Mesh-independency of singularity index λ by varying the minimum element size emin obtained by the proposed method in Eqs. (9), (10) although FEM
stress σFEM varies depending on emin [consider AB joints in Fig. 4(b), (d) (A= Si, B = Epoxy resin whenW = 2 mm and σ∞

y = σ0 = 1 MPa)]. In Table 2
(a), plane strain condition εz = 0 in Fig. 4(b) having no effect on λ is considered to confirm the validity of the proposed method. Table 3(a) referring to
Fig. 4(b) where λ = λedge is independent of emin = eedge0 but σy,FEM = σedgey,FEM(0) varies. Table 3(b) referring to Fig. 4(d) where λ = λcor is independent of

emin = ecor0 but σFEM = σcory,FEM(0) varies. Table 3(c) referring to Fig. 4(d) where λ = λedge is independent of emin = eedge0 but σFEM = σedgey,FEM(0) varies.

(a) Edge singularity index λedge obtained from FEM stress in Fig. 4(b) under plane strain condition εz = 0 using Eq. (10):

λedge = 1 − ln
{

σedge(a)y,FEM (0)/σedge(b)y,FEM (0)|emin=needge0

}
/lnn in Eq. (10).

Fine mesh Coarse mesh λedge from Eq. (10) λ2D from Eq. (3) (conventional method)

eedge0 /(W/2) σedgey,FEM(0) eedge0 /(W/2) σedgey,FEM(0)

4.360× 10− 6 40.63 1.744× 10− 5 26.10 0.6809 0.6805
1.744× 10− 5 26.10 6.975× 10− 5 16.77 0.6807
6.975× 10− 5 16.77 2.790× 10− 4 10.77 0.6809
2.790× 10− 4 10.77 1.116× 10− 3 6.919 0.6807

(b) Corner singularity index λcor obtained from FEM stress in Fig. 4(d) using Eq. (9): λcor = 1 − ln
{

σcor(a)y,FEM(0)|emin=ecor0 /σcor(b)y,FEM(0)|emin=necor0
}
/lnn in Eq. (9).

Fine mesh Coarse mesh λcor

ecor0 /(W/2) σcory,FEM(0) ecor0 /(W/2) σcory,FEM(0) From Eq. (9) (Proposed method) Koguchi et al.[48] (Conventional method)

4.360× 10− 6 104.9 1.744× 10− 5 60.64 0.6050 0.605
1.744× 10− 5 60.64 6.975× 10− 5 35.06 0.6048
6.975× 10− 5 35.06 2.790× 10− 4 20.28 0.6050
2.790× 10− 4 20.28 1.116× 10− 3 11.73 0.6049

(c) Edge singularity index λedge obtained from FEM stress in Fig. 4(d) using Eq. (10): λedge = 1 − ln
{

σedge(a)y,FEM (0)/σedge(b)y,FEM (0)|emin=needge0

}
/lnn in Eq. (10).

Fine mesh Coarse mesh λedge from Eq. (10) (Proposed method) λ2D from Eq. (3) (Conventional method)

eedge0 /(W/2) σedgey,FEM(0) eedge0 /(W/2) σedgey,FEM(0)

4.360× 10− 6 34.73 1.744× 10− 5 22.32 0.6809 0.6805
1.744× 10− 5 22.32 6.975× 10− 5 14.34 0.6808
6.975× 10− 5 14.34 2.790× 10− 4 9.212 0.6810
2.790× 10− 4 9.212 1.116× 10− 3 5.918 0.6808

Table 3
Mesh-independency of edge ISSF in Fig. 4 (b), (c) by varying minimum element size emin. Table 3 (a) referring to Fig. 4 (b) where FEM
stress σedgey, FEM(0) and cubic element size emin = eedge0 . Table 3(b) referring to Fig. 4(c) where FEM stress σedgey, FEM(0) and square element size

emin = eedge0 . In AB joints in Fig. 4(b), (c), W = 2 mm, W = L and σ∞
y = 1 MPa.

(a) 3D AB joint under εz = 0 in Fig. 4(b).

2D reference problem in Fig. 4(a)
e2D*0 /(W/2) [see Fig. 4(a)]

3D unknown problem in Fig. 4(b)
eedge0 /(W/2)[see Fig. 4(b)]

Kedgeσ [MPa ⋅m1− λedge ]

3− 12 4.360× 10− 6 0.0567
3− 12 1.744× 10− 5 0.0567
3− 9 4.360× 10− 6 0.0567
3− 9 1.744× 10− 5 0.0567

(b) 2D AB joint under εz = 0 in Fig. 4(c).

2D reference problem in Fig. 4(a)
e2D*0 /(W/2)[see Fig. 4(a)]

3D unknown problem in Fig. 4(c)
e2D0 /(W/2)[see Fig. 4(c)]

K2Dσ [MPa ⋅m1− λ2D ]

3− 12 3− 12 0. 0564
3− 12 3− 9 0. 0564
3− 9 3− 12 0. 0564
3− 9 3− 9 0. 0564
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3.4. Validity and accuracy of 3D corner ISSF Kcorσ obtained by the proposed method

Table 4 shows the 3D corner ISSF Kcorσ and the 3D edge ISSF Kedgeσ . The 3D corner ISSF Kcorσ can be obtained from Eq. (24) by
substituting the value of λcor in Table 2 and the FEM stresses in Table B2 in Appendix B. The 3D edge ISSF Kedgeσ can be obtained from Eq.
(21) by substituting the value of λedge in Table 2 and the FEM stresses in Table B2. Table 4 shows that the present results Kcorσ = 0.0336
MPa ⋅m1− λcor and Kedgeσ = 0.0485 MPa ⋅m1− λedge are mesh-independent for various mesh sizes, e2D*0 in Fig. 4(a) and ecor0 in Fig. 4(d).
Table 4(a) also indicates the results of Koguchi et al.[48] obtained by using curve fitting the BEM stresses and the H-integral method,
which agree with the present results. In this analysis, as the reference solution, the results of 2D AB joint F2D*σ,W in Fig. 4(a) obtained by

Fig. 6. Singular stress distribution at the interface edge B in Fig. 4(b) whose surfaces are fixed in the z-direction and the interface edge C in 2D AB
joint under plane strain condition in Fig. 4(c) (A = Si, B = Epoxy resin, W = 2 mm and σ∞

y = σ0 = 1 MPa). In Fig. 6, several plots may have some
FEM errors but they can be eliminated by taking the ratio with the reference solution by applying the same FEM mesh pattern.

Table 4
Mesh-independency of the corner ISSF Kcorσ and the edge ISSF Kedgeσ in Fig. 5(b). Consider AB joint in Fig. 4(d), A= Si, B= Epoxy resin whenW = 2mm
and σ∞

y = σ0 = 1 MPa.

(a) ISSF at the interface corner A, Kcorσ in Fig. 4(d) obtained from the following equation [see Eq. (24)]:

Kcorσ |φ=π
4
=

λcor
λ2D

⋅
σcory,FEM(0) ⋅

( ̅̅̅
2

√
ecor0

)1− λcor
+ σcory,FEM

( ̅̅̅
2

√
ecor0

)
⋅
( ̅̅̅
2

√
ecor0

)1− λcor

σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D
+ σ2Dy,FEM(e2D0 ) ⋅

(
e2D0

)1− λ2D
⋅ K2Dσ .

Present method Koguchi et al. in Ref. [48]

e2D*0 /(W/2) ecor0 /(W/2) Kcorσ [MPa ⋅m1− λcor ] in Fig. 4(d) Curve fitting H-integral method

3− 12 4.360× 10− 6 0.0336 0.0333 0.0336
3− 12 1.744× 10− 5 0.0336
3− 9 4.360× 10− 6 0.0336
3− 9 1.744× 10− 5 0.0336

(b) ISSF at the interface edge B, Kedgeσ in Fig. 4(d) obtained from the following equation [see Eq. (21)]:

Kedgeσ |φ=π
2
=

λedge
λ2D

⋅
σedgey,FEM(0) ⋅

(
eedge0

)1− λedge
+ σedgey,FEM(e

edge
0 ) ⋅

(
eedge0

)1− λedge

σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D
+ σ2Dy,FEM(e

edge
0 ) ⋅

(
e2D0

)1− λ2D
⋅ K2Dσ .

Present method

e2D*0 /(W/2) eedge0 /(W/2) Kedgeσ [MPa ⋅m1− λedge ] in Fig. 4(d)
(Kedgeσ [MPa ⋅m1− λedge ] in Fig. 4(b))

3− 12 4.360× 10− 6 0.0485 (0.0567)
3− 12 1.744× 10− 5 0.0485 (0.0567)
3− 9 4.360× 10− 6 0.0485 (0.0567)
3− 9 1.744× 10− 5 0.0485 (0.0567)
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the body force method is used. It can be said that the value of Kcorσ from Eq. (24) is as accurately as the F2D*σ . Table 4(b) shows the results
Kedgeσ = 0.0567 MPa ⋅m1− λedge in Fig. 4(b), which is different from Kedgeσ = 0.0485 MPa ⋅m1− λedge in Fig. 4(d). Unlike the singularity index
indicated in Table 3 where λedge = 0.681 in Fig. 4(b) equals λedge = 0.681 in Fig. 4(d), they are different as 0.0567 MPa ⋅m1− λedge ∕=

0.0485 MPa ⋅m1− λedge due to the plane strain condition εz = 0 in Fig. 4(b).
Fig. 7(a) shows the singular stress distribution around the interface corner A. And Fig. 7(b) shows the singular stress distribution

around the interface edge B. The solid lines indicate the asymptotic solutions obtained by substituting the singularity indexes in Table 2
and the ISSFs in Table 4 into Eq. (11). In Fig. 7(a) and (b), since the asymptotic solutions overlap the FEM stress distributions, it can be
confirmed that the λcor and the λedge in Table 2 and the Kcorσ and the Kedgeσ in Table 4 are calculated accurately.

In Section 2, the mesh-independent analysis methods were proposed for the singularity index and the ISSF for the 3D bonded
structure. In this Section 3, the validity and accuracy of the proposed methods were confirmed. Although this paper assumes that the
3D corner has a real singularity index, there are other cases that the 3D corner has more than one real and complex singularities
depending on the corner geometry and the material combination. The proposedmesh-independent analysis method can be extended to
such cases. For example, the authors’ previous study discussed the ISSF analysis method useful for two real singularity indexes in 2D
bonded structures[45].

4. Adhesive strength of ABA butt joint (BJ-ABA) expressed as a constant ISSF at the interface corner and at interface edge

4.1. Singular stress distributions at the interface corner and the interface edge

The difference of the critical singular stress distributions will be discussed at the interface corner and at the interface edge in the 3D
ABA joint by using the experimental results[46]. Fig. 8 shows the schematic illustration of the 3D ABA joint. Note the 3D butt joint with
the similar adherends is named 3D BJ-ABA model, and 3D butt joint with the dissimilar adherends is named 3D BJ-ABC model. The
model consists of two prismatic adherends (Materials 1 and 3) with length L, widthW and depth D and thin adhesive layer (Material 2)
of thickness h sandwiched between them. L = W = D = 12.7 mm is set. The h is changed from 0.05 mm to 5 mm. The remote uniform
tensile stress σ∞

y = σ0 = 1 MPa is set. Table 5 shows Young’s moduli, Poisson’s ratios of the adherend and adhesives, Dundurs’ pa-
rameters, the singularity index λ2D and the dimensionless ISSF F2D*σ,W [= K2D*σ /

(
σoW1− λ2D

)
] for the 2D AB joint model. 0.35% carbon steel

(JIS S35C) was used as the adherend. Two kinds of epoxy resins were used as the adhesive. The epoxy resins A and B are a brittle
adhesive and a ductile adhesive, respectively.

Fig. 9 shows the singular stress distributions at the interface corner A and the interface edge B under σ0 = 1MPa. The solid lines are
the singular stress distributions at the interface corner A expressed with σcory = Kcorσ /r1− λcor . The dashed lines are the singular stress

distributions at the interface edge B expressed with σedgey = Kedgeσ /r1− λedge . Then, the colored circle marks are the intersections of the σcory
and the σedgey with same adhesive thickness h. When 0.05mm ≤ h ≤ 2.0mm, there are the circle marks within the range of
7μm ≤ r ≤ 270 μm. Since there is about only 10 % difference between the λcor and the λedge, the similar singular stress distributions are

Fig. 7. Singular stress distribution at the interface corner A and singular stress distribution at the interface edge B in Fig. 4(d) (see AB joint in Fig. 4
(d), A = Si, B = Epoxy resin,W = 2 mm and σ∞

y = σ0 = 1 MPa). In Fig. 7(a), (b), several plots may have some FEM errors, but they can be eliminated
by taking the ratio with the reference solution by applying the same FEM mesh pattern.
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formed at the interface corner and the interface edge.
Fig. 10 shows the critical singular stress distributions at the interface corner A and the interface edge B under σ0 = σc, where the σc

is the critical failure stress and is shown in Table 8. The solid lines denote the singular stress distributions at the interface corner A

Fig. 8. Schematic illustration of 3D butt joint named BJ-ABA in this study (BJ = Butt Joint, A = Material 1, B = Material 2).

Table 5
Material properties used in the BJ-ABA in the present analyses[42,43].

Adherend Adhesive α β λ2D F2D*σ,W
Material E1[GPa] ν1 Material E2[GPa] ν2

Steel
(JIS 35C)

210.0 0.3 Epoxy Resin A 3.14 0.37 0.969 0.199 0.684 0.405
210.0 0.3 Epoxy Resin B 2.16 0.38 0.978 0.188 0.673 0.404

Fig. 9. Singular stress distribution σcory = Kcorσ /r1− λcor at the interface corner and singular stress distribution σedgey = Kedgeσ /r1− λedge at the interface edge
in the 3D BJ-ABA model under σ0 = 1 MPa (see BJ-ABA in Fig. 1(a), A = S35C, B = Epoxy resin A or Epoxy resin B).
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expressed with σcoryc = Kcorσc /r1− λcor . The dashed lines denote the singular stress distributions at the interface edge B expressed with

σedgeyc = Kedgeσc /r1− λedge . Then, the circle marks denote the intersections of the σcoryc and σedgeyc with the same h and correspond to those in

Fig. 9. The σcoryc and the σedgeyc are similar within the range of 7μm ≤ r ≤ 270 μm independent of the h.
Fig. 11 shows the average critical singular stress distributions at the interface corner A and the interface edge B which are given by

the average of the critical ISSFs. When B = epoxy resin A, Kcorσc,ave = 0.526MPa ⋅m1− λcor and Kedgeσc,ave = 1.058MPa ⋅m1− λedge . The σcoryc,ave and

σedgeyc,ave intersect at r = 101.3μm. Then, when B= epoxy resin B, Kcorσc,ave = 0.595MPa ⋅m1− λcor and Kedgeσc,ave = 1.227MPa ⋅m1− λedge . The σcoryc,ave
and σedgeyc,ave intersect at r = 93.1μm. It can be confirmed that the roughly equal singular stress distributions are formed at the interface
corner and along the interface edge independent of the h when σ0 = σc.

As shown in Fig. 11, the critical singular stress distributions causing debonding are similar at the interface corner and at the
interface edge. As shown in Fig. A2(d) in Appendix A, however, the largest ISSF region at the interface corner is much smaller than the
large ISSF region along the interface edge (detail can be seen in Ref [63]). This is the reason why the debonding failure does not always

Fig. 10. Critical singular stress distribution σcoryc = Kcorσc /r1− λcor at the interface corner and critical singular stress distribution σedgeyc = Kedgeσc /r1− λedge at
the interface edge under σ0 = σc (see BJ-ABA in Fig. 1(a), A = S35C, B = Epoxy resin A or Epoxy resin B).

Fig. 11. Average critical singular stress distribution σcoryc,ave = Kcorσc,ave/r1− λcor at the interface corner and critical average singular stress distribution

σedgeyc,ave = Kedgeσc,ave/r1− λedge at the interface edge under σ0 = σc (see BJ-ABA in Fig. 1(a), A = S35C, B = Epoxy resin A or Epoxy resin B).
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occur at interface corner and the debonding often occurs at the interface edge even though the value of λcor is about 10 % smaller (more
severe stress state) than the value λedge[ 63].

4.2. ISSF at the interface corner and ISSF at the interface edge

The ISSFs at the interface corner A and the interface edge B are computed by changing the h. Table 6 shows Young’s moduli and
Poisson’s ratios of the materials used in numerical simulations. The epoxy resin is used in the adhesive. Steel (JIS SS400) and Al alloy
(JIS A5052) are used in the adherends[64]. Table 7 shows Dundurs’ parameter (α, β), the 3D corner and edge singularity indexes λcor
and λedge, the dimensionless ISSF for the 2D AB joint in Fig. 2(b), F2D*σ,W [= K2D*σ /(σ0W1− λ2D )].

Fig. 12 and Table 8 show the dimensionless ISSFs Fcorσ,h and F
edge
σ,h at the interface corner A and the interface edge B in the 3D BJ-ABA

model, where Fcorσ,h and F
edge
σ,h are defined as follows.

Fσ,h =
Kσ

σ0h1− λ (25)

As shown in Table 8, when h ≤ 1.0 mm, the Fcorσ,h and F
edge
σ,h are constant independent of the h. Therefore, when h ≪ W, Fcorσ,h ≃ 0.33 and

Fedgeσ,h ≃ 0.38 for the steel adherend, and Fcorσ,h ≃ 0.37 and F
edge
σ,h ≃ 0.41 for the Al alloy adherend.

4.3. Critical ISSFs of BJ-ABA expressed as a constant ISSF

Table 9 and Fig. 13 show the critical ISSFs for the BJ-ABA with the steel adherend and the epoxy adhesive at the failure in Section
4.1, Kcorσc , K

edge
σc and K2Dσc . In the case of both epoxy adhesives (Resin A and Resin B), the failure stress σc decreases with increasing the h as

shown in Table 9. As shown in Fig. 13(a) and (b), however, the Kcorσc and K
edge
σc values are each plotted in the narrow bands with ±10%

width around the average and approximately constant independent of the adhesive layer thickness h. Then, the Kedgeσc values almost
correspond to the K2Dσc values. That is because the roughly equal singular stress distributions are formed at the interface corner and
along the interface edge independent of the h when σ0 = σc as mentioned in Sect. 4.1. In fact, it has been reported that the fracture
origins were observed along the interface edgemore frequently than at the interface corner[63]. Therefore, the debonding strength can
be evaluated by using both conditions Kcorσ = Kcorσc and Kedgeσ = Kedgeσc . Since the interface edge in the 2D BJ model is equivalent to the
interface edge in the 3D BJ model, the 2D BJ model can be used to evaluate the debonding strength as well as the 3D BJ model. In
Fig. 13, ISSF values at the 3D corner and the edge cannot be compared directly since they have different units depending on the
singularity exponents. Fig. 13 shows that the adhesive strength can be expressed as a constant value of those ISSFs.

Fig. 13 is based on linear elastic analysis. One may think the effect of adhesive plasticity should be discussed since most adhesives
are not linear elastic. Fig. 14 shows the stress–strain relation of the bulk adhesive and the stress–strain relations of the adhesive layers
in a metal/resin butt joint. In Fig. 14, σ∞

y is the remote tensile stress, εBulky is the strain of the bulk adhesive, εResiny is the strain of the
adhesive layers, and the adhesive layer thickness is changed as h= 0.05, 0.1, 0.3, 0.6, 1.0, 2.0 mm [65]. As shown in Fig. 14, although
the bulk adhesive σ∞

y − εBulky relation shows the non-linear elastic behavior, the adhesive layer σ∞
y − εResiny relation shows the linear

elastic behavior independent of the adhesive layer thickness. That is because the adhesive layer is constrained by the adherends.
Fig. 14 shows Young’s modulus of the adhesive layer coincides with the constrained Young’s modulus of the resin E*Resiny = (1 − ν)/
[(1 − 2ν)(1+ ν)]EResiny = 4.05 GPa. The FEM elastic–plastic analysis showed that the plastic zone size rFEMp ≃ 12 μm satisfies the small-
scale yielding condition rFEMp ≪ W[65] independent of the adhesive layer thickness. Those findings provide the validity of the adhesive
strength being expressed as a constant ISSF in Fig. 13 based on the linear elastic analysis.

5. Comparison of critical ISSFs focusing on AB interface between ABC joints and ABC joints

5.1. ISSF difference focusing on AB interface between BJ-ABA and BJ-ABC

In this Section 5, bonded dissimilar materials will be newly considered. Fig. 15 illustrates the 3D butt joint named BJ-ABC in this
study (BJ = Butt Joint, A = Material 1, B = Material 2, C = Material 3). The ISSF of BJ-ABC will be analyzed and compared with the
ISSF of 3D BJ-ABA. The adherends A, C and the adhesive B in Table 6 are used. Fig. 16 and Table 10 show the dimensionless ISSFs, Fcorσ,h

Table 6
Young’s moduli and Poisson’s ratios of the materials used in numerical simulations
[64].

Material E[GPa] ν

Steel (JIS SS400) 206 0.30
Al alloy (JIS A5052) 70 0.34
Epoxy resin 3.34 0.38
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[= Kcorσ /(σ0h1− λcor )] at the interface corner A and Fedgeσ,h [= Kedgeσ /(σ0h1− λedge )] at the interface edge B in BJ-ABC. When the adhesive

thickness h is small enough, Fcorσ,h and F
edge
σ,h are not constant and they vary depending on h. This is because the upper and lower interfaces

interfere with each other.
Fig. 17 shows the ratio of the ISSF for the 3D BJ-ABC model to the ISSF for the 3D BJ-ABA model. The ISSF ratios at the Al/epoxy

interface corner and edge decrease with decreasing h. On the other hand, the ISSF ratios at the steel/epoxy interface corner and edge
increase as the h decreases. Moreover, the ISSF ratio at the steel/epoxy interface corner is larger than that at the steel/epoxy interface
edge. Note that the ISSF ratios can be compared because of dimensionless. When h = 0.05 mm, the ISSF ratio at the steel/epoxy
interface corner is about 1.73, and the ISSF ratio at the steel/epoxy interface edge is about 1.43. When the opposite adherend is
changed from the steel to the Al alloy, the ISSF at the steel/epoxy interface corner changes about 20 % larger than that at the steel/
epoxy interface edge. Therefore, when the one side of the adherends is changed, the ISSF at the interface corner with the smallest
singularity index is strongly influenced.

Table 7
Dundurs’ parameter (α, β) and singularity indexes λcor and λedge.

Material combination α β λcor λedge F2D*σ,W

Steel / epoxy resin 0.9661 0.1854 0.6043 0.6800 0.411
Al alloy / epoxy resin 0.9060 0.1731 0.6462 0.7122 0.445

Fig. 12. Dimensionless ISSFs Fcorσ,h = Kcorσ /(σ0h1− λcor ) and Fedgeσ,h = Kedgeσ /(σ0h1− λedge ) for the 3D BJ-ABA (A = Steel, B = Epoxy resin).

Table 8
Dimensionless ISSFs Fcorσ,h = Kcorσ /(σ0h1− λcor ) and Fedgeσ,h = Kedgeσ /(σ0h1− λedge ) by varying the adhesive thickness h for the 3D BJ-ABA (A = Steel, B = Epoxy
resin).

h[mm] Steel adherend Al alloy adherend
Interface corner A Interface edge B Interface corner A Interface edge B

0.05 0.332 0.383 0.365 0.410
0.1 0.334 0.386 0.367 0.413
0.3 0.338 0.391 0.371 0.419
0.6 0.344 0.400 0.377 0.427
1.0 0.353 0.412 0.386 0.440
2.0 0.379 0.442 0.410 0.472
5.0 0.439 0.460 0.474 0.496
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5.2. Comparison of critical ISSF between BJ-ABA and BJ-ABC (BJ = butt Joint)

In this Section, the debonding strength for the butt joints with similar/dissimilar adherends by the 3D model will be discussed by
using the experimental results[66,67]. The tensile tests were performed on the BJ specimens with similar/dissimilar adherends in
Fig. 8 and Fig. 14 when L =W = 32 mm, D = 9 mm and h = 0.1 mm. Steel (JIS SS400) and Cu alloy (JIS C2800) were used as the
adherend. The epoxy resin was used in the adhesive. Table 11 shows Young’s moduli and Poisson’s ratios of the steel and epoxy resin.
Table 12 shows Dundurs’ parameter (α, β), the 3D corner and edge singularity indexes λcor and λedge, the dimensionless ISSF for the 2D
AB joint in Fig. 2(b), F2D*σ,W [= K2D*σ /(σ0W1− λ2D )]. The combination of the steel and the epoxy has smaller singularity indexes than the
combination of the Cu ally and epoxy. The steel and the epoxy resin are chosen as the materials 1 and 2, respectively. Then, the steel
and the Cu alloy are chosen as the materials 3 for the similar adherends and the dissimilar adherends, respectively.

The dimensionless ISSFs at the steel/epoxy resin interfaces in the 3D BJ-ABA and the 3D BJ-ABC, Fcorσ,h = Kcorσ /(σ0h1− λcor ) and Fedgeσ,h =

Kedgeσ /(σ0h1− λedge ), are shown in Table 13, where the Fcorσ,h and the F
edge
σ,h are the dimensionless ISSFs at the interface corner A and the

interface edge B in Figs. 8 and 15, respectively. When one side of the adherends is changed from steel to Cu alloy, the Fcorσ,h increases by

0.119 (35.4 %) and the Fedgeσ,h increases by 0.093 (24.1 %). The Fcorσ,h increases more significantly than the F
edge
σ,h .

Table 14 shows the critical tensile stress experimentally obtained σc, the critical ISSF at the steel/epoxy interface corner A, Kcorσc , and
the critical ISSF at the steel/epoxy interface edge B, Kedgeσc . When the one side of the adherend is changed from the steel to the Cu alloy,
the critical tensile stress σc decreases by 7.5 MPa, that is, by 27.7 %. The critical 3D corner ISSFs Kcorσc coincide each other within 0.07
MPa ⋅m1− λcor , that is, within 2 %. The critical 3D edge ISSF Kedgeσc values agree within 0.51 MPa ⋅m1− λedge , that is within 10.2 %. It is seen
that the Kcorσc values are almost constant independent of the adherend combination.

5.3. Comparison of critical ISSF between TSLJ-ABA and TSLJ-ABC (TSLJ = Three-Step lap Joint)

The adhesive strength for the three-step lap joint with similar/dissimilar adherends (named TSLJ-ABC in this paper) will be dis-
cussed by analyzing the ISSF and using the previous experimental results[64]. The four-point bending tests were performed on the
TSLJ-ABC with similar/dissimilar adherends. Fig. 18 shows the schematic illustration of the 3D TSLJ-ABC with experimental di-
mensions L =W = 32 mm, D = 9 mm, l = 9.2 mm and h = t = 0.1 mm. Steel (JIS SS400) and Al alloy (JIS A5052) were used as the
adherend. The epoxy resin was used in the adhesive. Young’s moduli and Poisson’s ratios of the adherends and the adhesive used in the
experiment are shown in Table 6. Then, Dundurs’ parameter (α, β), the 3D corner and edge singularity indexes λcor and λedge, the
dimensionless ISSF for the 2D AB joint in Fig. 2(b), F2D*σ,W [= K2D*σ /(σ0W1− λ2D )] are shown in Table 7. The TSLJ-ABC is composed of A =

Table 9
Critical ISSFs obtained thrfough 2Dmodeling K2Dσc and through 3Dmodeling Kcorσc , K

edge
σc for BJ-ABA in Fig. 8 [A= S35C, B= Epoxy resin A in Table 5(a)

or Epoxy resin B in Table 5(b)]. Note that in BJ-ABA, plane strain condition appears more significantly compared to AB joint corresponding to
extremely large h when h/W ≥ 1.

(a) A = S35C, B = Epoxy resin A in Fig. 8

h[mm] σc[MPa] [37] 2D model 3D model

K2Dσc [MPa ⋅m1− λ2D ] Kcorσc [MPa ⋅m1− λcor ] Kedgeσc [MPa ⋅m1− λedge

0.05 57.2 0.970 0.392 0.966
0.1 53.3 1.120 0.482 1.130
0.3 32.5 0.978 0.458 0.989
0.6 25.9 0.981 0.487 0.983
1.0 22.6 1.017 0.532 1.055
2.0 18.4 1.071 0.606 1.138
5.0 13.4 1.135 0.724 1.144
Average 1.039 0.526 1.058

λ2D = λedge = 0.684, λcor = 0.608
(b) A = S35C, B = Epoxy resin B in Fig. 8

h[mm] σc[MPa] [37] 2D model 3D model

K2Dσc [MPa ⋅m1− λ2D ] Kcorσc [MPa ⋅m1− λcor ] Kedgeσc [MPa ⋅m1− λedge

0.05 76.8 1.147 0.457 1.144
0.1 71.4 1.339 0.565 1.346
0.3 49.7 1.342 0.621 1.361
0.6 41.2 1.411 0.694 1.428
1.0 25.3 1.042 0.539 1.082
2.0 19.7 1.060 0.596 1.132
5.0 13.6 1.085 0.691 1.094
Average 1.204 0.595 1.227

λ2D = λedge = 0.674, λcor = 0.596
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Fig. 13. Adhesive strength expressed as critical ISSF Kσc = const. in Fig. 8 independent of adhesive layer thickness h for BJ-ABA, A = S35C, B =

Epoxy resin A in Fig. 13(a) and Epoxy resin B in Fig. 13(b). Note that in BJ-ABA, plane strain condition appears more significantly compared to AB
joint corresponding to extremely large h when h/W ≥ 1.

Fig. 14. σ∞
y − εResiny relation of adhesive layer in butt joint for Resin B/S35C in comparison with σ∞

y − εBulky relation of bulk adhesive, where σ∞
y is a

remote tensile stress, εBulky a strain of an adhesive bulk, εResiny a strain of an adhesive layer[65].
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Steel, B = Epoxy resin, C = Al alloy. As shown in Table 7, the singularity index at the AB corner interface (= steel/epoxy corner
interface), λcor = 0.6043, is the smallest among four singularity indexes. Since all debonding occurred at the AB interface in the ex-
periments, the ISSF at the AB interface is considered.

The dimensionless ISSFs for the TSLJs with similar/dissimilar adherends, Fcorσ,h and F
edge
σ,h , are shown in Table 15, where the F

cor
σ,h and

the Fedgeσ,h are the dimensionless ISSFs at the interface corner A and the interface edge B in Fig. 18, respectively. When one side of the

adherends is changed from the steel to Al alloy, the Fcorσ,h increases by 0.0895 (27.8 %) and the F
edge
σ,h increases by 0.0474 (12.7 %). The

Fcorσ,h increases more significantly than the F
edge
σ,h , which suggests that the debonding is initiated from the interface corner easily than the

Fig. 15. Schematic illustration of the 3D butt joint named BJ-ABC in this study (BJ = Butt Joint, A = Material 1, B = Material 2, C = Material 3).

Fig. 16. Dimensionless ISSFs Fcorσ,h [= Kcorσ /(σ0h1− λcor )] and Fedgeσ,h [= Kedgeσ /(σ0h1− λedge )] for BJ-ABC (A = Steel, B = Epoxy resin, C = Al alloy). Both
interfaces AB and BC are considered.
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interface edge.
Table 16 shows the critical bending moment Mc experimentally obtained, the critical bending stress σc = 6Mc/(DW2), the critical

ISSF at the steel/epoxy interface corner A, Kcorσc , and the critical ISSF at the steel/epoxy interface edge B, K
edge
σc . When the one side of the

adherend is changed from the steel to the Al alloy, the critical bending momentMc decreases by 21.1N⋅m, that is, by 25.4 %. However,
the critical 3D corner ISSF Kcorσc coincides with each other within 0.021 MPa ⋅m1− λcor , that is, within 4.7 %. The critical 3D edge ISSF
Kedgeσc coincides each other within 0.165 MPa ⋅m1− λedge , that is, within 15.7 %. It is seen that the Kcorσc values are almost constant in-
dependent of the adherend combination. Fig. 19 shows (a) the critical ISSF at the steel/epoxy interface corner A, Kcorσc , and (b) the
critical ISSF at the steel/epoxy interface edge B, Kedgeσc when the adhesive thickness h = 0.1 mm and h ≥W = 32 mm. The critical 3D
corner ISSFs for TSLJ with h = 0.1 mm coincides that with h ≥W = 32 mm. It is seen that the adhesive strength of ABC joint can be
expressed in a more suitable way by using the critical 3D interface corner as Kcorσc = constant.

Table 10
Dimensionless ISSFs Fcorσ,h [= K

cor
σ /(σ0h1− λcor )] and Fedgeσ,h [= K

edge
σ /(σ0h1− λedge )] for BJ-ABC (A= Steel, B= Epoxy, C= Al alloy). Both interfaces AB and BC

are considered.

h[mm] Steel/epoxy interface Al/epoxy interface
Interface corner Point A Interface edge

Point B
Interface corner Point A Interface edge

Point B

0.05 0.573 0.548 0.287 0.343
0.1 0.514 0.505 0.286 0.347
0.3 0.435 0.453 0.307 0.372
0.6 0.403 0.436 0.330 0.394
1.0 0.393 0.436 0.351 0.417
2.0 0.401 0.455 0.389 0.459
5.0 0.446 0.463 0.467 0.493

Fig. 17. ISSF for the 3D BJ-ABC in comparison with that for the 3D BJ-ABA (BJ = Butt joint, A = Steel, B = Epoxy, C = Al alloy). Both ISSFs at AB
and CB interfaces are considered.

Table 11
Young’s moduli and Poisson’s ratios of the steel, Cu alloy and epoxy resin[66,67].

Material E[GPa] ν

Steel (JIS SS400) 209 0.29
Cu alloy (JIS C2800) 103 0.35
Epoxy resin 3.34 0.38

Table 12
Dundurs’ parameter (α, β) and singularity indexes λcor and λedge for the material combinations of steel / epoxy resin and Cu alloy / epoxy resin.

Material combination α β λcor λedge F2D*σ,W

Steel / epoxy resin 0.9664 0.1853 0.6040 0.6798 0.411
Cu alloy / epoxy resin 0.9356 0.1799 0.6266 0.6969 0.429
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Table 14
Critical tensile stress σc experimentally obtained, critical 3D corner ISSF Kcorσc and critical 3D edge ISSF K

edge
σc both focusing on AB interface (= steel/

epoxy interface). Comparison between BJ-ABA and BJ-ABC (BJ = Butt Joint, A = Steel, B = Epoxy resin, C = Cu alloy, h = 0.1mm).

Adherend
combination

σc[MPa] experimentally obtained
[56,57]

Kcorσc [MPa ⋅mm1− λcor ] focusing on AB
interface

Kedgeσc [MPa ⋅mm1− λedge ] focusing on AB
interface

ABA 27.1 3.65 4.97
ABC 19.6 3.57 4.46

Fig. 18. Schematic illustration of three step lap joint named TSLJ-ABC in this study (TSLJ = Three-Step Lap Joint, A =Material 1, B =Material 2, C
= Material 3). The experimental dimensions are L = W = 32 mm, D = 9 mm, l = 9.2 mm and h = t = 0.1 mm[64].

Table 15
Dimensionless ISSFs Fcorσ,h and F

edge
σ,h focusing on the steel/epoxy interface. Comparison between TSLJ-ABA and TSLJ-ABC (TSLJ= Three-Step Lap Joint,

A = Steel, B = Epoxy resin, C = Al alloy, h = t = 0.1 mm).

Adherend combination Fcorσ,h[= Kcorσ /(σ0h1− λcor )] focusing on AB interface Fedgeσ,h [= Kedgeσ /(σ0h1− λedge )] focusing on AB interface

ABA 0.322 0.372
ABC 0.411 0.419

Table 13
Dimensionless ISSFs Fcorσ,h and F

edge
σ,h both focusing on AB interface (= steel/epoxy interface). Comparison between BJ-ABA and BJ-ABC (BJ= Butt Joint,

A = Steel, B = Epoxy resin, C = Cu alloy, h = 0.1mm).

Adherend combination Fcorσ,h = Kcorσ /(σ0h1− λcor ) focusing on AB interface Fedgeσ,h = Kedgeσ /(σ0h1− λedge ) focusing on AB interface

ABA 0.335 0.383
ABC 0.453 0.476
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6. Conclusions

In this paper, an efficient method was proposed and named as the mesh-independent proportional method, which is useful for the
ISSF at the interface corner as well as the singularity index λ in 3D dissimilar bonded joint. The validity and accuracy of the proposed
methods were confirmed by analyzing the AB joints composed of A = Si and B = Epoxy. The adhesive strength was confirmed to be
expressed as constant ISSF based on the previous experimental data for the ABA and ABC butt joints and the ABA and ABC three-step
lap joints with similar/dissimilar adherends composed of A= Steel, B= Epoxy, C= Cu alloy. The conclusion can be summarized in the
following way.

(1) By investigating relation between the minimummesh size emin and the FEM stresses σFEM(r), mesh-independent formulas such as
σFEM(r) ⋅ (emin)1− λ

= const. [see Eq. (8)] were theoretically derived from the proportional stress fields in AB joints having similar
FEM mesh pattern (see Fig. 3). This mesh-independent expression is extremely useful because it uses only two stress values
instead of many stress values etc. in conventional analysis [see Eq. (24)]. The ISSF obtained by the proposed proportional
method coincides with the previous results to the three digits (see Table 4).

(2) A mesh-independent formula [Eq. (9)] useful for 3D corner singularity index was also derived theoretically by considering AB
joints having similar FEMmesh (see Fig. 3). The 3D corner singularity index was previously analyzed also by using complicated
methods such as eigen analysis method. The singularity index obtained by the proposed proportional method coincides with the
previous results to the three digits. It was confirmed that the singularity indexes and the ISSFs are determined accurately by
using the mesh-independent proportional method.

(3) The critical singular stress distributions at debonding were compared at the interface corner and at the interface edge by using
previous experimental data of BJ-ABA (see Figs. 10, 11). The roughly equal critical singular stress distributions were confirmed
at the interface corner and at the interface edge independent of the adhesive thickness h = 0.05mm ∼ 5mm. The results showed
that the adhesive strength can be expressed as a constant ISSF by focusing on 2D edge ISSF, 3D edge ISSF, or 3D corner ISSF (see
Fig. 13).

(4) Under unit remote tensile stress, the ISSF for the BJ-ABC is larger than the that for the BJ-ABA (see Fig. 17). The difference
between the ABC and the ABA increases with decreasing the adhesive thickness especially at the interface corner compared to
the interface edge. The adhesive strength was discussed based on the previous experimental data for the BJ-ABA/ABC and TSLJ-
ABA/ABC. The adhesive strength of ABC joint can be expressed more suitably by focusing on the 3D interface corner (see
Tables 14, 16, Fig. 19).

Table 16
Critical bending momentMc and critical bending stress σc both of which are obtained experimentally[64] and critical 3D corner ISSF Kcorσc and critical
3D edge ISSF Kedgeσc both of which focus on AB interface (= steel/epoxy interface). TSLJ-ABA and TSLJ-ABC are compared (TSLJ = Three-Step Lap
Joint, A = Steel, B = Epoxy resin, C = Cu alloy, h = t = 0.1 mm).

Adherend
combination

Mc[N ⋅ m]
experimentally obtained
[64]

σc = 6Mc/
(
DW2)[MPa] experimentally

obtained
Kcorσc [MPa ⋅m1− λcor ]
focusing on AB
interface

Kedgeσc [MPa ⋅m1− λedge ] focusing on AB
interface

ABA 83.0 54.0 0.452 1.054
ABC 61.9 40.3 0.431 0.889

Fig. 19. Critical 3D corner ISSF Kcorσc when h = 0.1 and h ≥ W = 32 mm and critical 3D edge ISSF Kedgeσc are compared when h = 0.1 and h ≥ W = 32
mm. Both ISSFs are on the AB interface (=steel/epoxy interface). The adhesive strength for TSLJ-ABC can be expressed as a constant ISSF in Fig. 19
(a) better than in Fig. 19(b). The results of TSLJ-ABC when h ≥ W = 32 mm is corresponding to the results of AB joint (TSLJ = Three-Step Lap Joint,
A = Steel, B = Epoxy resin, C = Cu alloy).
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Appendix A. Use of the term “ISSF” and its usefulness for evaluating adhesive strength

In fracture mechanics, the term “stress intensity factor (SIF)” has been successfully used to evaluate the intensity of singular stress
fields (ISSF) for various cracks as shown in Figs. A1(a), (b). Fig. A1(c) shows that the SIF concept can be extended to sharp notch by
changing the opening angle from zero to a certain value[68–71]. Also, Fig. A1(d) shows that it can be extended to inclusions having
sharp corner whose singular stress field can be characterized Mode I and Mode II in a similar way of cracks[72,73]. In Figs. A1 (c), (d),
the term “generalized stress intensity factor” are often used. Also, the SIF concept can be extended to interface cracks as shown in
Fig. A1 (e) by using the term “stress intensity factor” or “interface stress intensity factor”[74]. In those problems in Figs. A1(c)-(e) and
in Figs. A1(f), (g), the stress concentration due to geometry is corresponding to the stress concentration due to crack. For example, like
the crack length “c” controlling the SIF in Figs. A1(a), (b), the notch and inclusion dimensions “c” control the GSIF in Figs. A1 (c)-(g).

However, in Figs. A1(h), (i), the stress concentration arises only from the material difference, not the geometry. In Figs. A1(h), (i),
the ISSF is sometimes controlled by the plate width “W” and sometimes by the adhesive layer thickness “h”. In other words, there are
similarities between the cracks in Fig. A1(a), (b) and the notches in Fig. A1(c), (d) but not Figs. A1(h), (i). Therefore, this paper and
authors’ previous papers use the term “ISSF” consistently.

The usefulness of the ISSF will be shown for the butt joint (BJ) specimen consisting of 0.35 % carbon steel adherend and epoxy
adhesive[42,43]. Fig. A2 (a) shows the experimental results σc by varying the adhesive thickness h = 0.05 mm ~ 5 mm. The critical
remote tensile stress σ0 = σc increases with decreasing the adhesive thickness h. Fig. A2 (b) shows the ISSFs analyzed at the interface
edge in the 2D BJ model when the remote stress σ0 = 1 MPa. The ISSF decreases with decreasing the adhesive thickness h. Fig. A2 (c)
shows the critical ISSFs when the debonding failure occurs. The adhesive strength can be expressed as a constant critical ISSF inde-
pendent of h as shown in Fig. A2 (c). The results in Fig. A2 (c) can be explained from Fig. A2 (a) and Fig. A2 (b). The critical ISSF
obtained at the interface end in Fig. A2 (c) can be confirmed from the critical ISSF distributions at the interface edge in the 3D butt
joint. Fig. A2 (d) shows that the critical ISSF Kσc distribution along the interface edge obtained from the 3D BJ model[19] almost
coincides with the results in Fig. A2 (c). In this way, the 2D ISSF and the edge ISSF are useful for expressing the adhesive strength as a

Fig. A1. Genealogical chart of various cracks and V-shaped notches and V-shaped inclusions in comparison with genealogical chart of AB- and
ABA-joints.
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Fig. A2. Critical ISSF distribution along the interface edge of the 3D prismatic BJ-ABA (BJ = butt joint, A = S35C, B = Epoxy resin). (a) Critical failure stress obtained experimentally [42], (b) ISSF for the
2D BJ under the remote stress MPa [47], (c) Critical ISSF obtained from the 2D BJ modelling [43], (d) Critical ISSF distribution along the interface edge obtained from the prismatic 3D BJ modelling [19].
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constant value in most cases.

Appendix B. Bad pair conditions at the interface corner and interface edge in 3D butt joint

Thematerial combination yielding the stress singularity at the interface corner and the interface edge is called the bad pair. The bad
pair condition for the interface corner A in Fig. 2 (a) can be expressed by the discriminant Δcor

3D as follows[26].

Δcor
3D =

( ̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ν1

√

E1
−

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ν2

√

E2

)(
ν1
E1

−
ν2
E2

)

> 0 (B1)

When the combination of material 1 and material 2 satisfies Eq. (B1), the singularity index at the interface corner A is real and smaller
than 1 producing the singular stress field. On the other hand, the bad pair condition for the interface edge B can be expressed by the
discriminant Δedge

3D as follows.

Δedge
3D =

(
ν1 + ν21
E1

−
ν2 + ν22
E2

)(
1 − ν21
E1

−
1 − ν22
E2

)

> 0 (B2)

When the combination of material 1 and material 2 satisfies Eq. (B2), the singularity index at the interface edge B is real and smaller
than 1 producing the singular stress field. The condition (B2) can be rewritten in terms of Dundurs’ parameter (α, β) as follows.

Δedge*
3D = Δ*

2D = α(α − 2β) > 0 (B3)

Fig. B1 (a) illustrates the bad pair condition (B1) and Fig. B1(b) illustrates the bad pair condition (B2) [26]. When the material
combination satisfies Eq. (B1), the singular stress field in Eq. (10) σcory (r) = Kcorσ |φ=π/4/r1− λcor appears. Then, as shown in Fig. B1(a), the
material combination belongs to regions I, II, III or IV. If the material combination belongs to region I or region II, the singular stress
field does not appear at the interface edge as shown in Fig. B1.
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Appendix C. Mesh-dependency of FEM stress σFEM(r) and mesh-independency of the term “σFEM ⋅ (emin)1− λ”

In Sect. 2.3, to clarify the variation of FEM stress depending on the minimum element size, the formula (8) was derived theoretically
when FEM is applied to analyzing singular stress fields. When

(
necor0

)1− λcor is multiplied by both sides of Eq. (7), the following equation
(8) is obtained.

σcor(a)y,FEM(0)|emin = ecor0
⋅
(
ecor0

)1− λcor
= σcor(b)y, FEM(0)|emin = necor0

⋅
(
necor0

)1− λcor
= constant (a-b relation 4) (8)

Equation (8) is important because it provides how the FEM stress σcor(a)y,FEM(0)|emin varies depending on the minimum element size emin.
Since the real stress at the interface corner diverges to infinity, the FEM provides only the approximate stress different from the real
stress. Although the FEM stress depends on the mesh strongly, the relation between the FEM stress and the mesh is unknown. However,
when the FEM analyses are performed by changing the emin under the element shape kept constant at the interface corner, the FEM
stress is inversely proportional to the (emin)1− λcor as shown in Eq. (8).

Table C1 shows the FEM stresses in Fig. 4 (a), (b), (c) whenW = 2 mm and σ∞
y = 1 MPa. As shown in Table C1(a), by varying the

element size in the range eedge0 /(W/2) = 4.360× 10− 6 ~ 1.744× 10− 5, the FEM stress in Fig. 4(a) varies in the range σedgey, FEM(0) =

40.63 ∼ 26.10 depending on the element size eedge0 . However, by multiplying by
(
eedge0

)1− λedge
, the value of σedgey01, FEM ⋅

(
eedge0

)1− λedge
=

Fig. B1. Bad pair condition at 3D interface corner A and edge B in the BJ model on the α-β map [26].
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0.7907 becomes independent of the element size eedge0 . This is because the mesh dependency of the FEM stress σedgey, FEM(0) around the

singular point r = 0 can be eliminated by multiplying the FEM stress σedgey, FEM(0) by (emin)
1− λ. Table C1 confirms the mesh independency

of Eq. (8) numerically.
Table C2 shows the FEM stresses in Fig. 4(d) at the interface corner A in and the interface edge B. By varying the element size in the

range ecor0 /(W/2)=4.360× 10− 6 ∼ 1.744× 10− 5, the FEM stress varies in the range σcory,FEM(0) = 104.9 ∼ 60.64 and σcory, FEM
( ̅̅̅
2

√
ecor0

)
=

76.58 ∼ 44.29. However, σcory,FEM(0) ⋅
( ̅̅̅
2

√
ecor0

)1− λcor
=0.9172 and σcory, FEM

( ̅̅̅
2

√
ecor0

)
⋅
(
ecor0

)1− λcor
= 0.6699 are independent of ecor0 . This is

because the mesh-dependency of the FEM stress near the singular point can be canceled by multiplying the FEM stress by (emin)1− λ .
Table C2 confirms the mesh independency of Eq. (8) numerically.

Table C1
Mesh-dependency of FEM stress σFEM(r) and mesh-independency of σFEM(r) ⋅ (emin)1− λ in Fig. 4(a) − (c). Table C1(a) considers Fig. 4(b) where FEM
stress σFEM(r) = σedgey, FEM(0) and cubic element of edge length emin = eedge0 . Table C1(b) considers Fig. 4(c) where FEM stress σFEM(r) = σedgey, FEM(0) and

square element of edge length emin = eedge0 . Table C1(c) considers Fig. 4(a) where FEM stress σFEM(r) = σedgey, FEM(0) and square element of edge length

emin = eedge0 . Fig. 4(a), (c) when W = 2 mm and σ∞
y = 1 MPa.

(a) 3D AB joint in Fig. 4(b) where εz = 0 to obtain ISSF as an unknown problem.

eedge0 /(W/2) σedgey, FEM(0) σedgey, FEM(0) ⋅
(
eedge0

)1− λedge σedgey, FEM

(
eedge0

)

σedgey, FEM

(
eedge0

)
⋅
(
eedge0

)1− λedge

4.360× 10− 6 40.63 0.7907 31.63 0.6157
1.744× 10− 5 26.10 0.7907 20.32 0.6157

(b) 2D AB joint in Fig. 4(c) where εz = 0 to obtain ISSF as an unknown problem.

e2D0 /(W/2) σ2Dy,FEM(0) σ2Dy,FEM(0) ⋅
(
e2D0

)1− λ2D σ2Dy,FEM
(
e2D0

)
σ2Dy,FEM

(
e2D0

)
⋅
(
e2D0

)1− λ2D

3− 12 53.32 0.7898 41.51 0.6150
3− 9 18.60 0.7898 14.48 0.6149

(c) 2D AB joint in Fig. 4(a) to be used as a reference problem.

e2D*0 /(W/2) σ2D*y,FEM(0) σ2D*y,FEM(0) ⋅
(
e2D0

)1− λ2D σ2D*y,FEM
(
e2D0

)
σ2D*y,FEM

(
e2D0

)
⋅
(
e2D0

)1− λ2D

3− 12 52.79 0.7821 41.11 0.6090
3− 9 18.42 0.7820 14.34 0.6089

Table C2
Mesh-dependency of FEM stress σFEM(r) and mesh-independency of σFEM(r) ⋅ (emin)1− λ in Fig. 4(d). Table C2(a) referring to the corner in Fig. 4(d)
where σFEM(r) = σcory,FEM(0) and emin =

̅̅̅
2

√
ecor0 . Table C2(b) referring to the edge in Fig. 4(d) where σFEM(r) = σedgey, FEM(0) and emin = e

edge
0 . In Fig. 4(b),W =

2 mm and σ∞
y = 1 MPa.

(a) FEM stress at interface corner A.

ecor0 /(W/2) σcory,FEM(0) σcory,FEM(0) ⋅
( ̅̅̅
2

√
ecor0

)1− λcor σcory,FEM(
̅̅̅
2

√
ecor0 ) σcory,FEM(

̅̅̅
2

√
ecor0 ) ⋅

( ̅̅̅
2

√
ecor0

)1− λcor

4.360× 10− 6 104.9 0.9172 76.58 0.6699
1.744× 10− 5 60.64 0.9172 44.29 0.6699

(b) FEM stress at interface edge B.

eedge0 /(W/2) σcory,FEM(0) σedgey,FEM(0) ⋅
(
eedge0

)1− λedge σedgey,FEM(ecor0 ) σedgey,FEM(ecor0 ) ⋅
(
eedge0

)1− λedge

4.360× 10− 6 34.73 0.6764 27.04 0.5267
1.744× 10− 5 22.32 0.6764 17.38 0.5267
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