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A B S T R A C T

Our previous research has indicated that the bonded strength can be expressed in terms of the intensity of the
singular stress field (ISSF). Since the ISSF is quite useful for evaluating the bonded strength, in this study, the
variation of the ISSF is investigated over the entire bondline thickness range of plate and cylinder butt joints.
Here, an effective mesh-independent technique combined with a standard FEM approach is used to obtain the
ISSFs under arbitrary material combinations. A reference solution of simply bonded plate is used to eliminate
FEM error since the exact ISSF is available. This paper clarifies the differences between the fracture behaviors of
the bonded plate and cylindrical butt joints.

1. Introduction

Adhesive joints are widely used in numerous industrial sectors, such
as automobile, shipbuilding and aeronautics [1–3]. Compared with the
other traditional joints, adhesive joints have advantages of light weight,
low cost and easy to process. However, different material properties
cause singular stress at the interface end, which may lead to debonding
failure in structures [4–12]. The bonded strength can be expressed in
terms of the intensity of the singular stress field (ISSF). The ISSF Kσ and
the normalized ISSF Fσ can be determined from the interface stress as
shown in Eq. (1) [13,14] by using the local polar coordinate r θ( , ) in-
dicated in Fig. 1(a), (b).
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Since the singular index λ≠0.5 different from the singular index for
cracks =λ 0.5, the term ISSF (=Intensity of Singular Stress Field) is
used instead of SIF (=Stress Intensity Factor) usually used for cracks
generally.

Fig. 2(a) shows the adhesive joint strength for plate butt joint ex-
pressed as the critical remote tensile stress σc [15]. It is known that the
debonding stress increases with decreasing the adhesive thickness
[15–19]. In Ref. [19], the effect of joint component mechanical prop-
erties and adhesive layer thickness on stress concentration was dis-
cussed for a bonded cylindrical specimen. In Ref. [7–9] the ISSF is

considered under arbitrary material combinations for h/W = 0.1 and
0.001. Our previous studies have indicated that the normalized ISSF
decreases with decreasing the bondline thickness as shown in Fig. 2(b)
under tension [7] and under bending [8,9]. From the critical remote
tensile stress shown in Fig. 2(a), (b), the critical ISSF can be calculated
when the debonding occurs. As shown in Fig. 3, the debonding strength
can be expressed as a constant value of ISSF [12,20].

From the above discussion, it is seen that the solution for ISSF
shown in Fig. 2(b) is quite useful for evaluating the adhesive strength.
For large adhesive thickness h, the normalized ISSF Fσ becomes constant
as shown in Fig. 2(b), and therefore can be estimated easily for any
material combination (see Appendix A [14]). However, for small
bondline thickness h, which is necessary for evaluating normal adhesive
layers, the normalized ISSF Fσ decreases with decreasing h and does not
become constant. In this paper, therefore, the ISSF vs. h relation will be
clarified mainly focusing on the small adhesive thickness. As a three-
dimensional fundamental solution, the cylindrical butt joint in Fig. 1(c)
is also considered to be compared with plate butt joint. The aim of this
paper is to provide the solutions of ISSFs useful for evaluating the ad-
hesive joint strength. In this study, arbitrary material combinations will
be considered for the future use of adhesive joint in wide engineering
fields.
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1.1. Mesh-independent technique to evaluate the ISSF of plate butt joint

In this section, a mesh-independent technique will be explained for
the readers to understand how to obtain accurate ISSFs although similar
methods have been used in [9,12,20]. In the first place, a plate butt
joint as shown in Fig. 1(a) is considered. When the bondline thickness h
is significantly less than the adhesive width W ( →h W/ 0), the solution
may be regarded as the bonded semi-infinite plate as shown in Fig. 1(b).
It is known that the interface stress =σ ij rr rθ θθ( , , )ij at the edge can be
expressed in the form ∝ −σ r1/ij

λ1 when − >α α β( 2 ) 0. Notations α and β
denote Dundurs’ parameters [21] expressed by Poisson's ratio ν and
shear modulus G, and notation λ denotes the singular index at the in-
terface expressed as the root of the following equations [22,23].
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The ISSF Kσ at the adhesive dissimilar joint end is defined from the
real interface stress σy

realas shown in Eq. (5).
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However, the ISSF cannot be easily determined by FEM since real
interface singular stress σy

real is different from the FEM stressσy
FEM ,

which is largely depending on the mesh size. In the previous papers
[8,9,12], therefore, the FEM stress ratio σ σ/y

FEM
y f
FEM
(Re )was considered by

using a reference problem which has been solved very accurately in the
previous study. It should be noted that the FEM stress ratio of the un-
known reference problems is independent of the mesh size if the same
FEM mesh is applied. This is because the FEM errors of two problems
are nearly the same. As the reference solution, a simply bonded plate
can be used since the ISSF has been analysed very accurately by using
the body force method [14] (see Appendix A). Since the FEM stress
ratio and the reference solution are very accurate, the new results also
can be obtained very accurately.

In this study, the ISSF of a simply bonded plate will be used as the
reference problem, as is shown in Eq. (6).

Nomenclature

E Young's modulus
emin Minimum element size
Fσ

C ISSF of bonded cylinder normalized by W, = −K σW/σ
C λ1

F *σ
C ISSF of bonded cylinder normalized by h, = −K σh/σ

C λ1

Fσ
P ISSF of bonded plate normalized by W, = −K σW/σ

P λ1

F *σ
P ISSF of bonded plate normalized by h, = −K σh/σ

P λ1

G Shear modulus
Kσ

C ISSF for bonded cylinder
Kσ

P ISSF for bonded plate
Kσc Critical ISSF at debonding fracture
h Bondline thickness
r Distance from the interface end
ur

CYL
0 Real radial displacement of bonded cylinder

W Plate width and radius of bonded cylinder
α β, Dundurs’ parameters

ε γ,j FEM
C

rz FEM
C

0, 0, FEM strain of bonded cylinder at interface end
ε γ,i FEM

P
xy FEM
P

0, 0, FEM strain of bonded plate at interface end
θ Angle from the corner on the interface
λ Singular index
ν Poisson's ratio
σc Adhesive tensile strength
σ τ,j

C
rz
C Real stress of bonded cylinder

σ τ,i
P

xy
P Real stress of bonded plate

σ τ,i FEM xy FEM0, 0, FEM stress at interface end
σ τ,j FEM

C
rz FEM
C

0, 0, FEM stress of bonded cylinder at interface end
σ τ,i FEM

P
xy FEM
P

0, 0, FEM stress of bonded plate at interface end
̃∼σ τ,j FEM

C
rz FEM
C

0, 0, Non-singular FEM stress of bonded cylinder at in-
terface end

σreal Real stress at interface end
∞ ∞σ σ,y z Uniform applied stress

Fig. 1. Adhesive butt joints (Fig. 1(b) is equivalent to Fig. 1(a) when h/W≤0.01 in Fig. 1(a)).
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Here, the subscript (Ref.) denotes the ISSF or the stress for reference
problem.

The finite element analysis is carried out for the butt joints by using
the commercial software ANSYS 16.2. Fig. 4(a), (b) shows the FEM
mesh for the butt joint for h/W=0.001 and the bonded plate for h/
W=1. Because of symmetry, quarter models are considered for ana-
lysis. The finite-element mesh consists of two-dimensional four-node
element named PLANE42 and finer subdivisions are used around the
interface end. As shown in Fig. 4(b), the same mesh division pattern is
used to eliminate FEM error. The total number of elements have to be
larger if the adhesive layer is thin since the interaction between the two
interface ends becomes larger. Therefore, the total number of elements
196,794 is necessary for h/W=0.001, but the total number of elements
2560 is enough for h/W=1. Table 1 shows an example of stress ratio for
the butt joint over the bonded plate by using the mesh in Fig. 4 with
different minimum mesh sizes emin. In Table 1 it should be noted that

=σ σy y
mat1 mat2, but ≠σ σx x

mat1 mat2, ≠σ σz z
mat1 mat2 at the interface. Here σij

mat1

denotes the stress for matrial 1 and σij
mat2 denotes the stress for matrial

2.
As shown in Table 1, however, all the stress components ratios σijP/

σijREF are continuous across the interface and coincide with each other.
The results are independent of the element size when the mesh

independent technique is employed by using the same FEM mesh pat-
tern.

2. Effect of bond line thickness on the ISSF for plate butt joint

In the previous papers [7–9,20] for the plate butt joint as shown in
Fig. 1(a), the normalized ISSF for bonded plate Fσ

P was defined in Eq.
(7).

= −F K σWNormalized ISSF / .σ
P

σ
P λ1 (7)

In Eq. (7), the ISSF for bonded plate Kσ
P is normalized in terms of the

remote tensile stress σ and the plate widthW . This is because the ISSF is
controlled by the width W . Namely, if W becomes larger, the ISSF
becomes larger.

However, if the bondline thickness h is small, the width W does not
affect the ISSF Kσ

P anymore. Consider a small adhesive thickness joint as
shown in Fig. 1(b), which has two singular points at the two interface
ends. If h becomes smaller, the interaction between two interface ends
becomes larger. Therefore, the ISSF is controlled by h instead of W , and
therefore the ISSF Kσ

P should be normalized by h instead of W . In other
words, for small h, the butt joint in Fig. 1(a) can be regarded as the
bonded semi-infinite plate as shown in Fig. 1(b). In this case, the ISSF
Kσ

P in Fig. 1(b) should be normalized in terms of the remote tensile
stress σ and the adhesive thickness h as shown in Eq. (8).

= −F K σhNormalized ISSF * / .σ
P

σ
P λ1 (8)

Table 2 shows Fσ
P values and normalized value of F F/ |σ

P
σ
P

h/W→∞.
Fig. 5 shows Fσ

P vs. h/W relation for several material combinations. As
shown in Table 2 and Fig. 5, when h/W≥ 1, the normalized ISSFs Fσ

P are
always the same. This is due to Saint’-Venant's Principle stating that the
effects of two different but statically equivalent loads are the same at
sufficiently large distances from load, that is, h/W≥ 1. As shown in
Table 2, the normalized ISSF Fσ

P has the same value in the range h/W≥ 1
since the thickness effect can be negligible.

Table 3 shows F *σ
P values and Fig. 6 shows F *σ

P vs. h/W relation. It is
seen that when the bondline thickness is small, the F *σ

P value always
becomes constant. The plate butt joint in Fig. 1(a) can be regarded as a
bonded semi-infinite plate in Fig. 1(b) when the relative bondline
thickness h/W≤0.01. From Figs. 5 and 6, it is found that

= −F K σh* /σ
P

σ
P λ1 is more suitable for small h since F *σ

P is insensitive to
h W/ compared to = −F K σW/σ

P
σ
P λ1 . As shown in Table 3, the normalized

ISSF F *σ
P has almost the same value in the range h/W≤0.01 within 0.6%

deviation and in the range h/W≤0.1 within 10% deviation since the
width effect is smaller.

Table 4 and Fig. 7 show the normalized ISSFs F *σ
P under arbitraryFig. 3. Relationship between Kσc and h [12].

Fig. 2. Relationship between critical remote tensile stress σc, normalized ISSF Fσ and bondline thickness h.
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material combinations useful for h/W≤0.01 and within 10% error for h/
W≤0.1. Since the solution for bonded plate h/W≥1.0 is indicated in
Appendix A, the accurate results can be obtained by the interpolation in
the range for 0.01≤h/W≤1.0 under arbitrary material combination.

3. Mesh-independent technique to evaluate the ISSF of cylindrical
butt joint

In this section, the mesh-independent technique will be explained
for the readers to understand how to obtain accurate ISSFs for cylind-
rical butt joints although the similar method was used to analyze
bonded cylinder and bonded pipe in [24]. The ISSF of a semi-infinite
butt joint Kσ

P has been analyzed in the previous section. To obtain the
ISSF of cylindrical butt joint Kσ

C , the new results of Kσ
P can be used as

the reference solution. Table 5 shows an example of stress ratio for the
cylindrical butt joint in Fig. 1(c) over the semi-infinite butt joint in

Fig. 1(a). Different ftom Table 1, the ratios of stress components are not
always consistent with each other even though the same FE mesh is
applied. It should be noted that the value of σ σ/θ FEM

C
z FEM
P

0, 0, is quite
different from other stress ratios. Therefore, we have to consider the
mesh-independent technique for axi-symmetric problems in some spe-
cial aspects.

The difference between Tables 1 and 5 can be explained in the
following way. For the plane strain problem as shown in Fig. 1(a), the
strain in the z-direction is zero. While for the axi-symmetric problem as
shown in Fig. 1(c), the strain in the θ direction on the outer cylinder
surface can be expressed as [25]:

=ε u
W( /2)

,θ
r

which can lead to non-zero stresses [24,26]. Then the stress of the
unknown problem shown in Fig. 1(c) is expressed as:

Fig. 4. FEM mesh for the plate butt joint h/W=0.001 and simply bonded plate h/W=1.

Table 1
Mesh-independent FEM stress ratio σ σ/ij FEM

P
ij FEM
REF

0, 0, when E1=1000, ν1=0.23, E2=105.06, ν2=0.32,h/W=0.001.

σ σ/x FEM
P

x FEM
REF

0, 0, σ σ/y FEM
P

y FEM
REF

0, 0, σ σ/z FEM
P

z FEM
REF

0, 0, τ τ/xy FEM
P

xy FEM
REF

, ,

Material Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2

= −e 2.5min 15 0.3604 0.3603 0.3604 0.3604 0.3604 0.3603

= −e 2.5min 18 0.3604 0.3604 0.3604 0.3604 0.3604 0.3603
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where R is the local distance from the axisymmetric interface end.
In Eq. (9), the first terms ̂σj

C and ̂τrz
C denote singular stress and the

second terms σ͠ j
C
0 and τ͠rz
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0 denote non-singular stress [26–28] as
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( ) , ( ) , ( ) , ( ) in material 1;
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These eight stress components should satisfy the boundary condi-
tions for bonded interface and free edge of the outer surface as well as
the compatibility condition. As a result, they are reduced to the fol-
lowing equations.
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By substituting Eqs. (10), (11) into Eq. (12), we have
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Similarly, for Eq. (13), we have
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Substitute Eq. (14) into the above equation, we have
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From Eqs. (14) and (15) we can obtain
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−

−
+

σ
σ

ν ν( )
.

͠
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θ
C

z
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E
E

ν ν
ν

0
mat1

0
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And

Table 2
Fσ

P and F F/ |σ
P

σ
P h/W→∞ of butt joint with varying the bondline thickness.

Fσ
P

(α,β) (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0)
h/W

0.001 0.416 0.152 0.275 0.490 0.095 0.173
0.002 0.435 0.167 0.295 0.511 0.107 0.191
0.005 0.462 0.188 0.324 0.540 0.126 0.219
0.01 0.484 0.208 0.349 0.563 0.144 0.244
0.05 0.545 0.267 0.421 0.627 0.199 0.316
0.1 0.582 0.306 0.464 0.662 0.236 0.361
0.5 0.745 0.538 0.659 0.787 0.473 0.573
1 0.794 0.612 0.716 0.821 0.548 0.633
10 0.796 0.615 0.718 0.822 0.551 0.635
→∞ 0.796 0.615 0.718 0.822 0.551 0.635

F F/ |σ
P

σ
P

h/W→∞

(α,β) (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0)
h/W

0.001 0.523 0.247 0.383 0.596 0.172 0.272
0.002 0.546 0.272 0.411 0.622 0.194 0.301
0.005 0.580 0.306 0.451 0.657 0.229 0.345
0.01 0.608 0.338 0.486 0.685 0.261 0.384
0.05 0.685 0.434 0.586 0.763 0.361 0.498
0.1 0.731 0.498 0.646 0.805 0.428 0.569
0.5 0.936 0.875 0.918 0.957 0.858 0.902
1 0.997 0.995 0.997 0.999 0.995 0.997
10 1.000 1.000 1.000 1.000 1.000 1.000
→∞ 1.000 1.000 1.000 1.000 1.000 1.000

Fig. 5. Fσ
P is constant when h/W≥1.0.
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For axis symmetric problem under cylindrical coordinate system,
there is
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Recall Eq. (12) we can obtain:
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Substituting Eq. (19) into Eqs. (16), (17) gives

= + −
+ − +

σ ν ν E ν E E
ν ν E ν ν E

u
W

( ) (1 )( )
(1 ) (1 ) ( /2)

͠ θC
r
C

0
mat1 2 1 2 2 1 1

1 1 2 2 2 1

0

(20)

= + −
+ − +

σ ν ν E ν E E
ν ν E ν ν E

u
W

( ) (1 )( )
(1 ) (1 ) ( /2)

͠ θC
r
C

0
mat2 1 1 2 2 1 2

1 1 2 2 2 1

0

(21)

And recall Eq. (10)
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0
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0
mat1
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The validity of Eqs. (19)–(22) to express non-singular stress com-
ponents will be discussed in Tables 6–8. By using the material combi-
nation shown in Tables 5, 6 shows the radial displacement at the in-
terface end, ur

C
0, and the non-singular stresses which are obtained from

Eqs. (19)–(21) and (22). Here, displacement ur
C
0 is independent of the

element size. Table 7 shows the singular stresses by subtracting the non-
singular stresses in Table 6 from the stresses at the interface end.
Table 8 shows the ratios of the singular stresses at the interface end of
the cylindrical butt joint to those of the semi-infinite butt joint. It is
found that the ratio 0.9937 is independent of the element size emin.
Since the ratio is also independent of the stress components, the validity
of (19)–(22) has been confirmed. From the comparison between Tables

Table 3
F *σ

P and F F*/ * |σ
P

σ
P h/W→0 of butt joint with varying adhesive thickness.

*Fσ
P

(α,β) (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0)
h/W

→0 0.643 0.384 0.558 0.740 0.326 0.476
0.001 0.643 0.384 0.558 0.740 0.326 0.476
0.002 0.643 0.384 0.558 0.740 0.326 0.476
0.005 0.644 0.384 0.558 0.740 0.327 0.477
0.01 0.646 0.386 0.560 0.742 0.328 0.479
0.05 0.658 0.399 0.572 0.750 0.340 0.491
0.1 0.672 0.417 0.588 0.759 0.357 0.507
0.5 0.778 0.590 0.707 0.821 0.536 0.634
1 0.794 0.612 0.716 0.821 0.548 0.633
10 0.689 0.451 0.567 0.716 0.365 0.453

* *F F/ |σ
P

σ
P

h/W→0

(α,β) (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0)
h/W

→0 1.000 1.000 1.000 1.000 1.000 1.000
0.001 1.000 1.000 1.000 1.000 1.000 1.000
0.002 1.000 1.000 1.000 1.000 1.000 1.000
0.005 1.002 1.000 1.000 1.000 1.003 1.002
0.01 1.005 1.005 1.004 1.003 1.006 1.006
0.05 1.023 1.039 1.025 1.014 1.043 1.032
0.1 1.045 1.086 1.054 1.026 1.095 1.065
0.5 1.210 1.536 1.267 1.109 1.644 1.332
1 1.235 1.594 1.283 1.109 1.681 1.330
10 1.072 1.174 1.016 0.968 1.120 0.952

Fig. 6. F *σ
P is constant when h/W≤0.01.
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5 and 8, it is seen that σr FEM
C
0, and τrz FEM

C
, do not have the non-singular

stresses because ∼σr FEM
C
0, = ̃τrz FEM

C
0, = 0. The correct ratio of the ISSF can

be calculated from σr FEM
C
0, and τrz FEM

C
, easily since the subtraction pro-

cess is not necessary.

4. Effect of bondline thickness on the ISSF for cylindrical butt joint

For plane stress and plane strain problems, Dundurs’ parameters (α,
β) fully control the solution and results [21]. Under fixed (α, β), there-
fore, the ISSFs are always the same for plane problems. However, since
the cylindrical butt joint is axi-symmetric, (α, β) cannot totally control
the ISSFs. Fig. 8 shows an example when (α, β) = (0.8, 0.3). Fig. 8(a) and
(b) show the possible material combinations under (α, β) = (0.8, 0.3).
Here, v2 and E2/E1 are calculated by varying v1 from 0 to 0.5. It can be
seen that v2 changes from 0.183 to 0.250, and E2/E1 changes from 0.107
to 0.139. Fig. 8(c) shows = −K K σ σ σ/ [ ]/͠σ

C
σ
P

z FEM
C

z FEM
C

y FEM
P

0, 0, 0, and
σ σ/z FEM

C
y FEM
P

0, 0, calculated by varying v1 from 0 to 0.5. It is seen that
K K/σ

C
σ
P changes from 0.998 to 1.081, and σ σ/z FEM

C
y FEM
P

0, 0, changes from
0.998 to 1.032. Different from plane problems, K K/σ

C
σ
P and

σ σ/z FEM
C

y FEM
P

0, 0, are not constants under fixed (α, β). Therefore, in this
study the maximum and minimum values will be focused to evaluate the
strength of cylindrical butt joint.

For several material combinations, Table 9 shows normalized ISSF

Fσ
C defined in Eq. (23). And Fig. 9 shows Fσ

C vs. h/W relation.

= −F
K

σW
Normarized ISSF .σ

C σ
C

λ1 (23)

As shown in Fig. 9 when adhesive thickness h is large, the nor-
malized ISSF Fσ

C always becomes constant. In Table 9, the normalized
ISSF Fσ

C has the same value in the range h/W≥ 1 since the thickness
effect can be negligible.

Table 10 shows normalized ISSF F *σ
C values defined in Eq. (24). And

Fig. 10 shows F *σ
C vs. h/W relation.

= −F
K

σh
Normalized ISSF * .σ

C σ
P

λ1 (24)

It is seen that when the bondline thickness is small, the F *σ
C value

always becomes constant. From Figs. 9 and 10, it is found that
= −F K σh* /σ

C
σ
C λ1 is suitable for evaluating the adhesive strength when

the bondline thickness is small, because F *σ
C is more insensitive to small

h/W than = −F K σW/σ
C

σ
C λ1 . As shown in Table 10, the normalized ISSF

F *σ
C has almost the same value in the range h/W≤0.01 within 0.3%

deviation and in the range h/W≤0.1 within 4% deviation since the
width effect is smaller.

Figs. 11 and 12 show the maximum values of K K/σ
C

σ
P and the

σ σ/z FEM
C

y FEM
P

0, 0, by varying α from -0.2 to 1.0 when β = 0.2 and β = 0.3.
Those values were calculated in a similar way as shown in Fig. 8. For
the bad pair − >α α β( 2 ) 0, the solid line indicates the ISSF ratio K K/σ

C
σ
P

and the broken line indicates the stress ratio σ σ/z FEM
C

y FEM
P

0, 0, . For
− >α α β( 2 ) 0, the singular stress appears at the interface end, and

therefore K K/σ
C

σ
P may be useful for evaluating the debonding strength

[7–9,12,20]. For the good pair − <α α β( 2 ) 0, the solid line indicates the
stress ratio σ σ( / )z FEM

C
y FEM
P

0, 0, max. In this case, the singular stress does not
appear at the interface end.

It is found that the ISSF ratio → ∞K K( ) /σ
C

σ
P

max as →α β2 .
However, it should be noted that the singular stress field disappears
since the singular index →λ 1 as →α β2 . Therefore, the stress ratio
σ σ( / )z FEM

C
y FEM
P

0, 0, max may be useful than the ISSF ratio K K/σ
C

σ
P around

=α β2 .
Figs. 13 and 14 and Tables 11 and 12 show the maximum and

minimum values of K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, calculated by varying (α,
β). As mentioned above, K K/σ

C
σ
P is useful for predicting the debonding

strength for bad pairs α(α-2β)> 0, this is because the stress singularity
occurs at the interface end when α(α-2β)> 0. On the other hand,
σ σ/z FEM

C
y FEM
P

0, 0, may be useful for predicting the debonding strength for
good pairs α(α-2β)≤0. However, when ≅α β2 , it is not known whether

Table 4
Normalized ISSF F *σ

P of a semi-infinite butt joint in Fig. 1(b) = −F K σh* /σ
P

σ
P λ1 .

β=−0.4 β=−0.3 β=−0.2 β=−0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4

α=−1 1.134 1.209 1.315 1.404 1.498
α=−0.9 1.066 1.148 1.252 1.347 1.424
α=−0.8 1.000 1.082 1.191 1.289 1.352
α=−0.7 0.904 1.032 1.134 1.223 1.288
α=−0.6 0.990 1.075 1.156 1.227 1.420
α=−0.5 0.946 1.028 1.119 1.185 1.360
α=−0.4 0.901 1.000 1.092 1.166 1.320
α=−0.3 0.812 0.940 1.057 1.142 1.280
α=−0.2 0.680 0.837 1.000 1.113 1.250 1.500
α=−0.1 0.710 0.916 1.061 1.230 1.460
α=0 0.585 0.799 1.000 1.195 1.430
α=0.1 0.460 0.654 0.873 1.124 1.380
α=0.2 0.353 0.550 0.758 1.000 1.314 1.918
α=0.3 0.456 0.643 0.858 1.181 1.769
α=0.4 0.384 0.558 0.740 1.000 1.572
α=0.5 0.326 0.476 0.630 0.813 1.293
α=0.6 0.257 0.405 0.546 0.686 1.000
α=0.7 0.340 0.470 0.588 0.794 1.730
α=0.8 0.290 0.403 0.506 0.634 1.000
α=0.9 0.223 0.333 0.430 0.543 0.746
α=1 0.169 0.265 0.358 0.456 0.495

Fig. 7. Normalized ISSF F *σ
P of a semi-infinite butt joint in Fig. 1(b) which is

useful for h/W≤0.01 in Fig. 1(a).
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K K/σ
C

σ
P or σ σ/z FEM

C
y FEM
P

0, 0, is suitable for predicting the strength because
K K( ) /σ

C
σ
P

max goes to infinity when →α β2 . Figs. 13 and 14 and Tables 11
and 12 are useful for h/W≤0.01 in Fig. 1(c). Since the solution for h/

W≥1.0 in Fig. 1(c) was shown in the Appendix B, the accurate results
can be obtained by the interpolation also in the range for 0.01≤h/
W≤1.0.

Fig. 15 shows the variations of the parameters in the α-β space for

Table 5
Ratio of σ σ/ij FEM

C
ij FEM
P

0, 0, (E1=1000, ν1=0.23, E2=105.06, ν2=0.32,h/W=0.001).

σ σ/r FEM
C

x FEM
P

0, 0, σ σ/z FEM
C

y FEM
P

0, 0, σ σ/θ FEM
C

z FEM
P

0, 0, τ τ/rz FEM
C

xy FEM
P

, ,

Material Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2

= −e 2.5min 15 0.9937 0.9937 0.9955 0.5679 0.9745 0.9937

= −e 2.5min 18 0.9937 0.9937 0.9949 0.7187 0.9813 0.9937

Table 6
Non-singular stresses of cylindrical butt joint.

emin ∼σr FEM
C
0,

∼σz FEM
C
0,

∼σθ FEM
C
0, ̃τrz FEM

C
0, ur

C
0

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2

2.5–15 0.0000 0.0000 0.0065 −0.2616 −0.0255 0.0000 −0.00013153
2.5–18 0.0000 0.0000 0.0065 −0.2616 −0.0255 0.0000 −0.00013154

Table 7
Singular stresses of cylindrical butt joint.

emin σr FEM
C
0, –∼σr FEM

C
0, σz FEM

C
0, –∼σz FEM

C
0, σθ FEM

C
0, –∼σθ FEM

C
0, τrz FEM

C
0, – ̃τrz FEM

C
0,

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2

2.5–15 −1.5377 0.9911 4.1917 0.6104 1.3238 0.2144
2.5–18 −2.3816 1.5356 6.4919 0.9454 2.0503 0.3323

Table 8
The ratios of singular stresses at the interface e of the cylindrical butt joint and the semi-infinite butt joint.

emin − ∼σr FEM
C σr FEM

C

σx FEM
P

0, 0,

0,

− ∼σz FEM
C σz FEM

C

σy FEM
P

0, 0,

0,

− ∼σθ FEM
C σθ FEM

C

σy FEM
P

0, 0,

0,

̃−τrz FEM
C τrz FEM

C

τxy FEM
P

0, 0,

0,

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2

2.5–15 0.9937 0.9937 0.9937 0.9937 0.9937 0.9937
2.5–18 0.9937 0.9937 0.9937 0.9937 0.9937 0.9937

Fig. 8. (a) v2, (b) E2/E1, (c) K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, values depending on v1 under fixed (α, β)=(0.8, 0.3).
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the materials combinations among metal, ceramics, resin, and glass
[29]. Although K K( ) /σ

C
σ
P

max in Fig. 13 goes to infinity around the equal
pair condition, K K( ) /σ

C
σ
P

max is less than 1.5 for most of the bad pair
region − ≥α α kβ( 2 ) 0, = − −k β1.0 0.61( 0.25)2 as indicated in Fig. 15.

≤ − ≥ = − −
K

K
α α kβ k β

( )
1.5 when ( 2 ) 0, 1.0 0.61( 0.25)σ

C

σ
P
max 2

(23)

In the previous studies [24], the authors obtained = −k β1.35 0.7
for the bonded cylinder and = −k β1.3 0.6 for the bonded pipe with
the infinite inner radius. As shown in Fig. 15, the butt joint ISSF ratio
satisfies less than 1.5 in the wide range of the bonded cylinder and the
bonded pipe. This is because the butt joint has the small 3D effect on the
ISSF in comparison with the bonded cylinder and the bonded pipe.

Fig. 15 also shows that almost all α β( , ) of engineering materials
are distributed in ≤ ≤β0 0.3 [24], therefore, the stress ratio
σ σ/z FEM

C
y FEM
P

0, 0, can be discussed in this range. It should be noted that the
stress ratio σ σ( / )z FEM

C
y FEM
P

0, 0, max is always finite in this range. Comparing
Fig. 13 with Fig. 14, it is found that the value of σ σ/z FEM

C
y FEM
P

0, 0, varies
depending on α β( , ) but the value of σ σ( / )z FEM

C
y FEM
P

0, 0, max is in the
small range for most of good pairs satisfying − <α α β( 2 ) 0 and

≤ ≤β0 0.3. Also, the difference between σ σ( / )z FEM
C

y FEM
P

0, 0, max and
σ σ( / )z FEM

C
y FEM
P

0, 0, min is small in this region. The value range and the
maximum and minimum value difference can be expressed in Eq. (24).

⎜ ⎟≤ ⎛

⎝

⎞

⎠
≤

⎛
⎝

⎞
⎠

− ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

≤

≤ ≤ − <

σ
σ

β α α β

0.971 1.143, 0.1,

when 0 0.3 and ( 2 ) 0

z FEM
C

y FEM
P

σ

σ

σ

σ

σ

σ

σ

σ

0,

0, max

max min

max min

z FEM
C

y FEM
P

z FEM
C

y FEM
P

z FEM
C

y FEM
P

z FEM
C

y FEM
P

0,

0,

0,

0,

0,

0,

0,

0,

(24)

The difference between σ σ( / )z FEM
C

y FEM
P

0, 0, max and σ σ( / )z FEM
C

y FEM
P

0, 0, min
is less than 10% in Eq. (24), and therefore, Dundurs' parameters can

Table 9
Fσ

C and F F/σ
C

σ
C|h/W→∞ of cylindrical butt joint by varying the bondline thick-

ness.

Fσ
C

Mat

E1=1000 E1=1000 E1=1000 E1=1000
v1=0.23 v1=0.23 v1=0.23 v1=0.23
E2=535.963 E2=339.392 E2=413.754 E2=312.891
v2=0.239 v2=0.189 v2=0.293 v2=0.333

h/W
0.001 0.722 0.623 0.478 0.302
0.002 0.734 0.642 0.498 0.324
0.005 0.750 0.667 0.526 0.357
0.01 0.763 0.688 0.549 0.384
0.05 0.798 0.743 0.610 0.459
0.1 0.819 0.774 0.645 0.504
0.5 0.890 0.860 0.762 0.650
1 0.901 0.871 0.779 0.669
10 0.901 0.871 0.779 0.669
→∞ 0.901 0.871 0.779 0.669

F F/σ
C

σ
C|h/W→∞

Mat

E1=1000 E1=1000 E1=1000 E1=1000
v1=0.23 v1=0.23 v1=0.23 v1=0.23
E2=535.963 E2=339.392 E2=413.754 E2=312.891
v2=0.239 v2=0.189 v2=0.293 v2=0.333

h/W
0.001 0.801 0.715 0.614 0.451
0.002 0.815 0.737 0.639 0.484
0.005 0.832 0.766 0.675 0.534
0.01 0.847 0.790 0.705 0.574
0.05 0.886 0.853 0.783 0.686
0.1 0.909 0.889 0.828 0.753
0.5 0.988 0.987 0.978 0.972
1 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000
→∞ 1.000 1.000 1.000 1.000

Fig. 9. Fσ
C is constant when h/W≥1.0.

Table 10
F *σ

C and F F*/ *σ
C

σ
C |h/W→0 of cylindrical butt joint with varying the bondline

thickness.

*Fσ
C

Mat

E1=1000 E1=1000 E1=1000 E1=1000
v1=0.23 v1=0.23 v1=0.23 v1=0.23
E2=535.963 E2=339.392 E2=413.754 E2=312.891
v2=0.239 v2=0.189 v2=0.293 v2=0.333

h/W
→0 0.851 0.833 0.722 0.616
0.001 0.851 0.833 0.722 0.616
0.002 0.851 0.833 0.722 0.616
0.005 0.851 0.834 0.722 0.617
0.01 0.852 0.835 0.723 0.618
0.05 0.857 0.843 0.729 0.626
0.1 0.866 0.852 0.741 0.639
0.5 0.905 0.886 0.794 0.699
1 0.901 0.871 0.779 0.669
10 0.853 0.790 0.678 0.527

* *F F/σ
C

σ
C |h/W→0

Mat

E1=1000 E1=1000 E1=1000 E1=1000
v1=0.23 v1=0.23 v1=0.23 v1=0.23
E2=535.963 E2=339.392 E2=413.754 E2=312.891
v2=0.239 v2=0.189 v2=0.293 v2=0.333

h/W
→0 1.000 1.000 1.000 1.000
0.001 1.000 1.000 1.000 1.000
0.002 1.000 1.000 1.000 1.000
0.005 1.000 1.001 1.000 1.002
0.01 1.001 1.002 1.001 1.003
0.05 1.007 1.012 1.010 1.016
0.1 1.018 1.023 1.026 1.037
0.5 1.063 1.064 1.100 1.135
1 1.059 1.046 1.079 1.086
10 1.002 0.948 0.939 0.856
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almost control the results and be useful for axisymmetric bonded
structures. For two-dimensional problems, Dundurs' parameters are
most useful since they control the results completely (no difference).

Since K K( ) /σ
C

σ
P

max goes to infinity when →α β2 , it is not clear
whether K K/σ

C
σ
P or σ σ/z FEM

C
y FEM
P

0, 0, is suitable for predicting the strength
at present.

− < = − − −
≥

α α kβ k β α α β
Useful parameter is unknown near the equal pair

( 2 ) 0, 1.0 0.61( 0.25) and ( 2 )
0 in Fig. 15

2

(25)

5. Experimental evaluation of debonding strength of cylindrical
butt joint and plate butt joint

The debonding strength of the cylindrical butt joints was studied
experimentally by several researchers [30]. Fig. 16 shows the schematic
illustration of the specimens. In this experiment of Naito et al. [30], the
adherent is aluminum alloy 5052-H34 (Young's modulus E1 =
69.6 GPa, Poisson's ratio ν1 = 0.33) and the adhesive is polyimide (E2
= 3.77 GPa, ν2 = 0.342). Table 13(a), (b) show Dundurs' parameters
(α, β) and singular index λ. The length of the adherent l is 38.1mm and
the adhesive thickness t is varied from 0.2mm to 0.6mm. (Table 14).

Fig. 17(a) shows the tensile strength σc which increases with in-
creasing the adhesive thickness. In the experiment, the fracture was
initiated at the axisymmetric interface end between the adhesive and
the adherent. Fig. 17(b) shows the dimensionless of ISSFs for the cy-
lindrical butt joint = ∞ −F K σ W/( )C C

z
λ

σ σ
1 and = ∞ −F K σ h* /( )C C

z
λ

σ σ
1 ob-

tained by the method shown in Section 4. In Fig. 17(b) Fσ
C and F *C

σ
increase with increasing the adhesive thickness. However, F *C

σ is in-
sensitive of h/W and almost constant within 2%. It is seen that F *C

σ can
be used conveniently to evaluate the adhesive strength. Fig. 17(c)
shows the critical ISSF at =∞σ σz c, = =∞K K |σc σ

C
σ σz c. The Kσc values are

almost constant independent of the adhesive thickness. It can be con-
firmed that the ISSF is useful for evaluating the debonding strength.

Similarly, the debonding strength of the plate butt joints [15] was
considered again by using the present results. Fig. 18(a), (d) shows the
tensile strength σc. σc increases with increasing the adhesive thickness.
In Suzuki's experiment [15], it was observed that the fracture is in-
itiated from the interface end between the adhesive and the adherent.
Fig. 18 (b),(e) shows the ISSFs for the cylindrical butt joint

= ∞ −F K σ W/( )P P
z

λ
σ σ

1 and = ∞ −F K σ h* /( )P P
z

λ
σ σ

1 obtained by the method
shown in Section 4. In Fig. 18(c),(f) Fσ

P and F *P
σ increase with increasing

the bondline thickness. However, F *P
σ is also insensitive of h/W and

almost constant with 2%. It is seen that F *P
σ can be used conveniently to

evaluate the adhesive strength. Fig. 18(c),(f) shows the critical ISSF at

Fig. 10. F *σ
C is constant when h/W≤0.01.

Fig. 11. Maximum values of K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, when β = 0.2.

Fig. 12. Maximum values of K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, when β = 0.3.

Fig. 13. Maximum value of K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, which is useful for h/W
≤0.01 in Fig. 1(c).

Fig. 14. Minimum value of K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, which is useful for h/W
≤0.01 in Fig. 1(c).
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=∞σ σz c, = =∞K K |σc σ
P

σ σz c. The Kσc values are almost constant in-
dependent of the bondline thickness. It can be confirmed that the ISSF is
useful for evaluating the debonding strength.

6. Conclusions

In this study, the ISSF variations were clarified over the entire
thickness range of plate and cylinder butt joints. An effective mesh-
independent technique was applied to obtaining the ISSFs under arbi-
trary material combinations. A reference solution was used to eliminate
FEM error since the solutions are available for simple bonded plate
solved by the body force method. Then, the following conclusions can
be summarized.

(1) For the plate butt joints, the ISSF = −F K σh* /σ
P

σ
P λ1 normalized by the

bondline thickness h becomes constant with decreasing the bond-
line thickness when h/W≤0.01. In this case, the adhesive joint can
be regarded as a bonded semi-infinite plate. If the adhesive layer is
thin, F *σ

P is more suitable because the variation is smaller than the
variation of = −F K σW/σ

P
σ
P λ1 . To improve the interface strength,

thin adhesive layers are desirable. For a certain valueβ, it is found
that F *σ

P decreases with increasingα. Since the solution for h/W≥1.0
in Fig. 1(a) was shown in the Appendix A, the accurate results can

be obtained by the interpolation also in the range for 0.01≤h/
W≤1.0.

(2) For the cylindrical butt joint, the circumferential strain at the in-
terface end, εr

C
0, is not influenced by the stress singularity because

εr
C
0 is obtained from the radial displacement ur

C
0 and the cylinder

radius. It was found that the non-singular stresses caused by the εr
C
0

Table 11
Maximum and minimum values of K K/σ

C
σ
P which is useful for ≤h W/ 0.01 in

Fig. 1(c).

β −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
α

−1 1.220 1.102 0.951 0.696 0.615
0.977 0.945 0.838 0.697 0.636

−0.9 1.294 1.141 0.991 0.738 0.652
0.986 0.949 0.845 0.703 0.646

−0.8 1.187 1.044 0.819 0.720
0.956 0.855 0.722 0.670

−0.7 1.260 1.121 0.906 0.779
0.978 0.875 0.748 0.709

−0.6 1.258 0.988 0.829 0.650
0.889 0.771 0.737 0.684

−0.5 1.364 1.043 0.887 0.687
0.902 0.791 0.758 0.704

−0.4 1.108 0.919 0.708
0.811 0.776 0.721

−0.3 1.153 0.938 0.736
0.834 0.796 0.736

−0.2 0.952 0.779 0.688
0.825 0.749 0.658

−0.1 0.962 0.795 0.698
0.861 0.763 0.683

0 0.987 0.989 0.803 0.710
0.961 0.895 0.775 0.698

0.1 0.987 0.990 0.991
0.972 0.914 0.924

0.2 0.987 0.991 0.992
0.981 0.938 0.942

0.3 0.992 0.993 1.153
0.951 0.954 0.971

0.4 0.992 0.994 1.052
0.960 0.965 0.972

0.5 0.993 0.994 1.022 1.228
0.966 0.973 0.977 0.988

0.6 0.994 0.995 1.010 1.108
0.970 0.980 0.982 0.987

0.7 0.994 1.003 1.056 1.205
0.985 0.986 0.989 0.994

0.8 0.995 1.000 1.029 1.079
0.987 0.990 0.992 0.995

0.9 0.996 1.000 1.008 1.018 1.091
0.989 0.995 0.996 0.997 0.999

1 0.996 0.996 0.997 0.998 1.000
0.991 0.996 0.997 0.998 1.000

Upper: maximum value, lower: minimum value.

Table 12
Maximum and minimum values of σ σ/z FEM

C
y FEM
P

0, 0, which is useful for ≤h W/ 0.01
in Fig. 1(c).

β −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
α

−1 1.001 0.966 0.922 0.856 0.815
1.001 0.966 0.922 0.856 0.815

−0.9 1.032 0.988 0.937 0.879 0.832
1.016 0.974 0.931 0.874 0.830

−0.8 1.085 1.011 0.968 0.896 0.844
1.035 0.983 0.942 0.891 0.841

−0.7 1.136 1.052 0.996 0.934 0.861
1.047 0.993 0.956 0.911 0.853

−0.6 1.103 1.037 0.992 0.890 0.826
1.001 0.969 0.925 0.864 0.826

−0.5 1.131 1.075 1.025 0.921 0.831
1.013 0.987 0.947 0.876 0.831

−0.4 1.143 1.095 1.044 0.952 0.846
1.021 1.000 0.963 0.889 0.846

−0.3 1.134 1.101 1.044 0.973 0.866
1.024 1.004 0.982 0.909 0.866

−0.2 1.121 1.087 1.043 0.987 0.901 0.861
1.024 1.006 1.000 0.949 0.901 0.861

−0.1 1.065 1.039 0.995 0.939 0.879
1.005 1.001 0.983 0.929 0.879

0 1.045 1.032 1.000 0.966 0.924
1.003 1.001 1.000 0.965 0.924

0.1 1.029 1.020 1.004 0.992 0.971
1.003 1.000 1.000 0.986 0.971

0.2 1.003 1.003 1.002 1.000 1.003 1.082
1.003 0.998 0.999 0.998 0.989 1.010

0.3 1.000 0.999 1.004 1.021 1.082
0.996 0.997 0.999 0.996 1.009

0.4 0.996 0.997 1.006 1.027 1.082
0.995 0.994 0.996 0.997 1.008

0.5 0.996 0.996 1.005 1.026 1.073
0.994 0.992 0.994 0.998 1.006

0.6 0.995 0.996 1.004 1.020 1.063
0.993 0.991 0.992 0.996 1.000

0.7 0.995 1.001 1.013 1.042 1.085
0.991 0.992 0.994 0.998 1.001

0.8 0.995 1.000 1.006 1.024 1.054
0.991 0.993 0.995 0.997 1.000

0.9 0.995 1.000 1.003 1.010 1.025
0.991 0.996 0.997 0.998 1.000

1 0.996 0.996 0.997 0.998 1.000
0.991 0.996 0.997 0.998 1.000

Upper: maximum value, lower: minimum value.

Fig. 15. Dundurs’ parameters for the several engineering materials and the
range of α β( , ) satisfies ISSF ratio< 1.5 [24].
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are contained in the FEM stresses at the interface end. The accurate
method was therefore used for calculating the ISSF from the ratio of
the stress obtained by subtracting the non-singular stress to the
stress of the semi-infinite butt joint adopted as the reference solu-
tion. The stress-free boundary condition causes the nonsingular
stresses ∼σr FEM

C
0, = ̃τrz FEM

C
0, = 0. The ISSF can be calculated easily

without subtraction process of the non-singular stresses when the
radial stress σr FEM

C
0, or the shear stress τrz FEM

C
, is used.

(3) For a certain material combination, the ISSF F *σ
C normalized by

adhesive thickness h becomes constant with decreasing the bond-
line thickness when h/W≤0.01. Thin adhesive layer can be used to
improve the interface strength of the cylindrical butt joint. Since the
ISSFs of the cylindrical butt joint cannot be totally dominated by
the Dundurs’ parameter α and β, the maximum and minimum va-
lues of the K K/σ

C
σ
P and the σ σ/z FEM

C
y FEM
P

0, 0, were shown in the charts

Fig. 16. Schematic illustration of cylindrical butt joint.

Table 13
Results of cylindrical butt joint in Fig. 16 [30].

(a) Dundurs' parameters (α , β) and order of singular index λ in cylindrical butt joint(aluminum/polyimide)

Materials Adherend Adhesive Dundurs’ parameter Singular index

E1 [GPa] ν1 E2 [GPa] ν2 α β λ

Aluminum/Polyimide 69.9 0.33 3.77 0.342 0.8963 0.2145 0.7398

(b)Tensile strength σc , Fσ
C , *Fσ

C , Kσc for plate butt joint

h h/W S35C/Epoxy resin A S35C/Epoxy resin B

σc [MPa] Fσ
C *Fσ

C Kσc σc [MPa] Fσ
C *Fσ

C Kσc

0.05 0.00394 57.2 0.0671 0.384 0.970 76.8 0.0620 0.377 1.15
0.1 0.00787 53.3 0.0831 0.382 1.120 71.4 0.0778 0.377 1.34
0.3 0.0236 32.5 0.119 0.387 0.978 49.7 0.112 0.380 1.34
0.6 0.0472 25.9 0.150 0.392 0.981 41.2 0.142 0.384 1.41
1.0 0.0787 22.6 0.178 0.396 1.020 25.3 0.171 0.392 1.04

Table 14
Results of plate butt joint [15].

(a) Dundurs' parameters (α , β) and order of singular index λ

Materials Adherend Adhesive Dundurs’ parameter Singular index

E1 [GPa] ν1 E2 [GPa] ν2 α β λ

S35C/Epoxy resin A 210 0.30 3.14 0.37 0.969 0.199 0.685
S35C/Epoxy resin B 210 0.30 2.16 0.38 0.978 0.188 0.674

(b) Tensile strength σc , Fσ
C , *Fσ

C , Kσc for the specimen in Fig. 16 with l=38.1 mm, t=0.2~0.6 mm, W=12.7mm

h h/W σc [MPa] Fσ
C *Fσ

C Kσc

0.02 0.0157 22.5 0.154 0.453 1.109
0.03 0.0236 20.9 0.172 0.456 1.155
0.04 0.0315 18.6 0.186 0.458 1.111
0.05 0.0394 17.5 0.198 0.460 1.114
0.06 0.0472 15.7 0.209 0.462 1.052
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and tables for various (α, β). The value K K/σ
C

σ
P may be useful for

predicting the debonding strength under the bad pairs α (α -
2β)> 0. On the other side, the σ σ/z FEM

C
y FEM
P

0, 0, may be more im-
portant for predicting the debonding strength under the good pairs

α (α - 2β) ≤ 0. Since the solution for h/W≥1.0 in Fig. 1(c) was
shown in the Appendix B, the accurate results can be obtained by
the interpolation also in the range for 0.01≤h/W≤1.0.

Appendix A. ISSF for the bonded plate

Fig. A1 shows the ISSF Fσ
P for the bonded plate calculated by varying Dundurs’ parameter α β( , )[14]. Then, the non-dimensional function of θ

has been already clarified by Carpenter and Byers [31]. The bonded plate in Fig. A1 can be regarded as a plate butt joint with a very thick adhesive
layer for ≥h W/ 1.0. The Fσ

P values are obtained by the body force method under the bad pair condition of − >α α β( 2 ) 0 [14] and obtained by FEM
under the good pair condition of − <α α β( 2 ) 0 [7–9,20]. Since the solution for thin adhesive layer ≤h W/ 0.01 is indicated in Table 4 and Fig. 7 under
aribitrary material combination, the accurate results can be obtained by the interpolation also in the range for ≤ ≤h W0.01 / 1.0. (Table A1).

Fig. 17. Results of cylindrical butt joint in Fig. 15 [17].

Fig. 18. Results of plate butt joint.

N.-A. Noda et al. International Journal of Adhesion and Adhesives 85 (2018) 234–250

246



Appendix B. ISSF for the bonded cylinder in comparison with the bonded plate

In the previous study [24], the ISSF of bonded cylinder was compared with the ISSF of bonded plate under arbitrary material combination. The
bonded cylinder can be regarded as a cylindrical butt joint with a very thick adhesive layer for ≥h W/ 1.0 in Fig. 1(c). Table B1 and Fig. B1 show the
maximum values and the minimum values of K K/σ

C
σ
P and σ σ/z FEM

C
y FEM
P

0, 0, calculated by varying α β( , ). The solid lines indicate K K/σ
C

σ
P under

Fig. A1. ISSF for the bonded plate useful for h/W≥1.0 in Fig. 1(a).

Table A1
FP

σ of bonded plate useful for ≥h W/ 1.0 in Fig. 1(a).

β

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

α −1.00 0.540 0.446 0.395 0.357 0.332 – – – –
−0.95 0.643 0.491 0.422 0.381 0.349 – – – –
−0.90 0.726 0.534 0.456 0.412 0.381 – – – –
−0.80 1.000 0.636 0.538 0.487 0.450 – – – –
−0.70 1.855 0.800 0.626 0.558 0.486 – – – –
−0.60 3.291 1.000 0.724 0.638 0.559 0.505 – – –
−0.50 – 1.264 0.842 0.722 0.635 0.551 – – –
−0.40 – 1.467 1.000 0.822 0.718 0.615 – – –
−0.30 – 1.609 1.118 0.913 0.796 0.697 – – –
−0.20 – 1.690 1.153 1.000 0.889 0.797 0.404 – –
−0.10 – – 1.103 1.037 0.955 0.890 0.767 – –
0.00 – – 1.000 1.000 1.000 1.000 1.000 – –
0.10 – – 0.767 0.890 0.955 1.037 1.103 – –
0.20 – – 0.404 0.797 0.889 1.000 1.153 1.690 –
0.30 – – – 0.697 0.796 0.913 1.118 1.609 –
0.40 – – – 0.615 0.718 0.822 1.000 1.467 –
0.50 – – – 0.551 0.635 0.722 0.842 1.264 –
0.60 – – – 0.505 0.559 0.638 0.724 1.000 3.291
0.70 – – – – 0.486 0.558 0.626 0.800 1.855
0.80 – – – – 0.450 0.487 0.538 0.636 1.000
0.90 – – – – 0.381 0.412 0.456 0.534 0.726
0.95 – – – – 0.349 0.381 0.422 0.491 0.643
1.00 – – – – 0.332 0.357 0.395 0.446 0.540

Table B1
Maximum and minimum values of >K K h W/ useful for / 1σ

C
σ
P in Fig. 1(c).

β

−0.45 0.4 0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.45

α −1.0 0.995 0.981 0.937 0.898 0.866 0.839
−0.9 1.146 0.996 0.935 0.892 0.859

0.992 0.944 0.899 0.863 0.834
−0.8 1.089 0.977 0.919 0.879

0.957 0.906 0.865 0.832
−0.7 1.321 1.032 0.948 0.899

0.976 0.918 0.870 0.833
−0.6 1.121 0.981 0.918 0.802

0.936 0.88 0.837
−0.5 1.346 1.022 0.937 0.827

0.962 0.895 0.843 0.804
−0.4 1.084 0.955 0.845

0.916 0.854 0.808

(continued on next page)
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Table B1 (continued)

β

−0.45 0.4 0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.45

−0.3 1.234 0.972 0.856
0.944 0.87 0.814

−0.2 0.986 0.861 0.775
0.885 0.825

−0.1 0.996 0.855 0.789
0.896 0.835 0.781

0.0 0.791 0.866 1.000 0.866 0.791
0.789 0.820 0.820 0.789

0.1 0.789 0.855 0.996
0.781 0.835 0.896

0.2 0.775 0.861 0.986
0.825 0.885

0.3 0.856 0.972 1.234
0.814 0.870 0.944

0.4 0.845 0.955 1.084
0.808 0.854 0.916

0.5 0.827 0.937 1.022 1.346
0.804 0.843 0.895 0.962

0.6 0.802 0.918 0.981 1.121
0.837 0.88 0.936

0.7 0.899 0.948 1.032 1.321
0.833 0.870 0.918 0.976

0.8 0.879 0.919 0.977 1.089
0.832 0.865 0.906 0.957

0.9 0.859 0.892 0.935 0.996 1.146
0.834 0.863 0.899 0.944 0.992

1 0.839 0.866 0.898 0.937 0.981 0.995

Fig. B1. K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, in α β( , ) map useful for h/W≥1.0 in Fig. 1.
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− >α α β( 2 ) 0 and σ σ/z FEM
C

y FEM
P

0, 0, under − <α α β( 2 ) 0. The dashed lines indicate σ σ/z FEM
C

y FEM
P

0, 0, with − >α α β( 2 ) 0. The circle marks indicate
σ σ/z FEM

C
y FEM
P

0, 0, for − =α α β( 2 ) 0. All K K/σ
C

σ
P values are distributed between K K( ) /σ

C
σ
P

max and K K( ) /σ
C

σ
P

min . Because K K( ) /σ
C

σ
P

max goes to ∞ when
→α β2 , the solid lines are very important for predicting the debonding strength except for the bad pair condition near ≅α β2 . Because there are only

10% differences between K K( ) /σ
C

σ
P

max and K K( ) /σ
C

σ
P

min except for the bad pair condition near ≅α β2 , K K/σ
C

σ
P and σ σ/z FEM

C
y FEM
P

0, 0, can be almost con-
trolled by α β( , ). Since the solution for thin adhesive layer ≤h W/ 0.01 is indicated in Tables 11, 12, Figs. 13 and 14 under aribitrary material
combination, the accurate results can be obtained by the interpolation also in the range for ≤ ≤h W0.01 / 1.0. (Table B2).
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Maximum and minimum values of σ σ/z FEM

C
y FEM
P

0, 0, useful for ≥h W/ 1.0 in Fig. 1(c).

β

−0.45 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.45
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−0.3 1.444 1.184 1.050 0.972

1.358 1.036 0.984 0.914
−0.2 1.246 1.145 1.052 0.986

1.060 1.000 0.955
−0.1 1.065 1.032 0.996

1.022 1.000 0.989
0.0 0.978 0.997 1.000 0.997 0.978

0.948 0.981 0.981 0.948
0.1 0.903 0.956 0.996 1.032 1.065

0.878 0.936 0.989 1.000 1.022
0.2 0.844 0.920 0.986 1.052 1.145 1.246

0.896 0.955 1.000 1.060
0.3 0.889 0.972 1.050 1.184 1.444

0.850 0.914 0.984 1.036 1.358
0.4 0.863 0.955 1.031 1.172 1.525

0.826 0.880 0.948 1.000 1.343
0.5 0.838 0.937 1.000 1.127 1.447

0.812 0.857 0.914 0.983 1.134
0.6 0.808 0.918 0.975 1.071 1.299 3.117

0.843 0.890 0.951 1.000
0.7 0.899 0.946 1.020 1.165 1.862

0.835 0.875 0.925 0.986 1.564
0.8 0.879 0.919 0.974 1.066 1.327 2.276

0.833 0.866 0.909 0.962 1.000
0.9 0.859 0.892 0.934 0.993 1.098 1.237

0.834 0.864 0.900 0.945 0.994 1.000
1.0 0.839 0.866 0.898 0.937 0.981 0.995
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