

# 特異応力場の強さの2次元解析に基づく接着強度評価の妥当性

| 著者       | 野田 尚昭,任 飛,高木 怜,坪井 健二,佐野                      |
|----------|----------------------------------------------|
|          | 義一, 高瀬 康, 宮崎 達二郎                             |
| 雑誌名      | エレクトロニクス実装学会誌                                |
| 巻        | 21                                           |
| 号        | 4                                            |
| ページ      | 1-12                                         |
| 発行年      | 2018-07-01                                   |
| その他のタイトル | Validity of the Adhesive Strength Evaluation |
|          | Method Based on the Intensity of Singular    |
|          | Stress Field in Two- Dimensional Modelling   |
| URL      | http://hdl.handle.net/10228/00008401         |

doi: https://doi.org/10.5104/jiep.21.299

### 特異応力場の強さの2次元解析に基づく接着強度評価の妥当性

野田 尚昭\*,任 飛\*\*,高木 怜\*\*,坪井 健二\*\*,佐野 義一\*,高瀬 康\*,宮﨑 達二郎\*\*\*

## Validity of the Adhesive Strength Evaluation Method Based on the Intensity of Singular Stress Field in Two-Dimensional Modelling

Nao-Aki NODA\*, Fei REN\*\*, Rei TAKAKI\*\*, Kenji TSUBOI\*\*, Yoshikazu SANO\*, Yasushi TAKASE\*, and Tatsujiro MIYAZAKI\*\*\*

\*\* 九州工業大学大学院工学府機械知能工学専攻(〒 804-8550 福岡県北九州市戸畑区仙水町 1-1)

\*Department of Mechanical Engineering, Kyushu Institute of Technology (1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550)

\*\* Department of Mechanical and Control Engineering, Graduate School of Engineering, Kyushu Institute of Technology (1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550)

\*\*\* Department of Mechanical Engneering, University of the Ryukyus (1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213)

概要 著者らの先の研究では、2次元接着モデルを解析することで、接着強度がその特異応力場の強さ(以下 ISSF (Intensity of Singular Stress Field)と記す)の一定値で表されることが示された。本研究では、先に提案した FEM メッシュサイズに依存しない、2次元接着モデルの解析法を拡張することで、試験片の3次元形状を考慮して解析し、接着界面端部の ISSF の分布が正確に求められることを示した。得られた ISSF の分布と接着強度の関係を考察した結果、はく離が生じる際の ISSF の分布は接着層の厚さに依存せずほぼ一定になることを明らかにした。このことから2次元モデルによって接着強度を評価することの 妥当性を明らかにした。

#### Abstract

Our previous study showed that adhesive strength can be expressed as a constant value of the intensity of singular stress field (ISSF) by using two-dimensional modelling. In this paper, by considering the threedimensional (3D) geometry, the mesh-independent technique proposed in our previous study is applied to evaluate the ISSF distributions along the side of a butt-joint interface. The results show that the critical ISSF distributions are almost the same and are independent of the adhesive thickness. The validity of the 2D modelling is confirmed through the present analysis.

Key Words: Adhesion, Interface, Intensity of Singular Stress Field, 3D Butt Joint

| Nome                  | nclature                                      |                                       |                                              |
|-----------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------|
| $E_j$                 | 縦弾性係数 (j = 1 は被着材, j = 2 は接着剤)                | r                                     | 特異点からの距離                                     |
| $e_{\min}$            | 最小メッシュサイズ                                     | W                                     | 試験片の幅                                        |
| $F_{\sigma}^{REF}$    | 基準問題における無次元化された特異応力場の強さ (ISSF)                | α, β                                  | Dundurs の複合パラメータ                             |
| $F_{\sigma}^{Side}$   | 接着界面端における無次元化された ISSF                         | λ                                     | 特異性指数                                        |
| $G_j$                 | 横弾性係数( <i>j</i> = 1 は被着材, <i>j</i> = 2 は接着剤)  | $\sigma_{c}$                          | 破断応力                                         |
| h                     | 接着層厚さ                                         | $\sigma_{z}^{\scriptscriptstyle FEM}$ | 有限要素法により求めた応力(FEM 応力)                        |
| ISSF                  | 特異応力場の強さ (Intensity of singular stress field) | $\sigma_z^{\scriptscriptstyle Real}$  | 真の応力                                         |
| $K_{\sigma c}$        | 破断時のISSF                                      | $\sigma_z^{\scriptscriptstyle REF}$   | 基準問題における応力                                   |
| $K_{\sigma}^{2D}$     | 平面ひずみ問題における ISSF                              | $\sigma_z^{\it Side}$                 | 3 次元突合せ継手の接着界面端における応力                        |
| $K_{\sigma}^{REF}$    | 基準問題における ISSF                                 | $\sigma_z^{\infty}$                   | 遠方における z 方向垂直応力                              |
| $K_{\sigma}^{Side}$   | 3 次元モデルにおける ISSF                              | $v_{j}$                               | ポアソン比( <i>j</i> = 1 は被着材, <i>j</i> = 2 は接着剤) |
| $K_{\sigma c}^{Side}$ | 3 次元モデルにおける破断時の ISSF                          |                                       |                                              |

#### 1. 緒 言

近年,電子機器の小型・高機能・高性能化に伴い,半導体のパッケージング技術は,ロジックやメモリ用途で伝送 信号の高速化や小型・薄型化に対応するため構造が多様化 し,その重要性も増している<sup>1),2)</sup>。半導体パッケージングで は,半導体と基板の接続,樹脂による封止,半導体チップ および配線の多層構造化などさまざまな異なる材料の組み 合わせによって構成された界面を数多く含んでいる。その 信頼性を確保するためには、はく離強度の適切な評価が必 要不可欠である<sup>3)~5)</sup>。一般に、異材接着界面のはく離強度 は、材料組み合わせ、荷重形式、接着条件などによって大 きく変化する。実験的な評価では時間的、経済的負担が大 きいので、簡便で実用的なはく離破壊基準、評価方法が求 められる<sup>3)~7)</sup>。

一般に、接着接合部材において被着材と接着剤の間の界

<sup>\*</sup>九州工業大学大学院工学研究院機械知能工学研究系(〒804-8550 福岡県北九州市戸畑区仙水町1-1)

<sup>\*\*\*</sup> 琉球大学工学部工学科 (〒 903-0213 沖縄県中原郡西原町千原1番地)



Fig. 1 Adhesive strength for S35C/Epoxy resin expressed as a constant critical ISSF  $K_{oc}$  by using 2D model with W = 12.7 mm





(c) 1/8 model





Fig. 2 3D butt joint

面では、接着端部で応力が無限大に発散するような特異応 力場が形成され<sup>8)</sup>,はく離が生じ易い。先の研究で著者ら は2次元接着モデル<sup>9),10)</sup>を用い、接着層厚さが特異応力場 の強さ(Intensity of Singular Stress Field,以下 ISSF と表記 する)に与える影響を考察した。接着層が薄くなると、接 着端部の干渉により ISSF が小さくなり、接着強度が向上す ることを明らかにした<sup>9)~12)</sup>。さらに、接着接合板の接着強 度との関係を検討するため、炭素鋼 S35C(縦弾性係数 $E_1$  = 210 GPa、ポアソン比 $v_1$  = 0.3)をエポキシ系接着剤(縦弾 性係数 $E_2$  = 3.14 GPa、ポアソン比 $v_2$  = 0.37)で接着した試 験片の破断時の ISSF(記号  $K_{oc}$  で表す)を求めた<sup>13),14</sup>。 Fig. 1 は  $K_{\sigma c}$  を接着層厚さhで整理した結果である。図示 するように接着強度は ISSF=一定で整理することができ る。また、単純重ね合わせ継手においても接着強度が ISSF=一定で整理できることを示した<sup>15)</sup>。これらの研究で はいずれも 2 次元接着モデル<sup>9)~15)</sup>を用いている。

本研究では実際の実験に用いられる試験片は Fig. 2 に示 すように 3 次元形状を有していることに注目する。このよ うな試験片の接着接合界面端部(Fig. 2 における |x| = W/2, |y| = W/2, W:試験片の幅)に沿って特異応力が生じてい るだけでなく,試験片のコーナー部 (|x|, |y|) = (W/2, W/2) においてより厳しい特異応力場が発生することが知られて

論文

いる<sup>16)</sup>。Suzuki らは, Fig. 2(a) に示すような 3 次元突合わ せ継手試験片においてコーナー部 (x, y) = (W/2, -W/2) を起 点として破壊が起きていることを報告している<sup>17),18)</sup>。先の 研究で用いた接着接合板の解は 2 次元平面ひずみ問題の実 質上の厳密解であるが, 3 次元接着接合板においてどの範 囲までその結果が適用できるかは明確ではない。そこで引 張を受ける突合せ継手の 3 次元形状を考慮して特異応力場 の解析を行い,接合界面端 (|x| = W/2, |y| = W/2) で発生す る特異応力の分布を調べる。そして接着継手の破壊条件と 界面端部での特異応力場の強さ ISSF の分布との関係を考察 する。3 次元接着モデルを解析することで,これまでの研 究で用いてきた 2 次元接着モデル<sup>9)~15)</sup> の解析から,接着 強度を議論することの妥当性を明らかにする。

#### 2. 有限要素法によって求めた 3 次元形状を考慮した 試験片接着界面の応力分布について

本研究では, Fig. 3 の Suzuki ら<sup>17),18)</sup>の試験片を対象とし て, 有限要素法 (Finite Element Method, FEM) を用いた数値 解析によって特異応力場の強さ ISSF の分布(記号  $K_{\alpha c}^{Side}(y)$ で表す)と接着強度との関係を検討する。まず Table 1 にそ の被着材および接着剤の機械的性質と後述する Dundurs parameter<sup>19),20)</sup>α, β, 特異性指数 λ<sup>19),20)</sup> を示す。解析コードに は市販の ANSYS 12.1 を用いており, Fig. 4 に解析モデルを 示している。Fig. 4(a) は細かいメッシュで区切られたサブ モデルを示しており, Fig. 4(b) は粗いメッシュで構成され たメインモデルを示している。本研究では、まず Fig. 4(b) のモデルを用いて解析を行い Fig. 4(a) のサブモデルの変位 境界条件を求め、その変位境界条件を用いてサブモデルで 解析を行った。サブモデルの z 方向の寸法を変化させたモ デルを複数作成し、サブモデルの寸法を変化させても解析 結果が変化しないことを確認した。解析モデルはFig.4に 示すような8節点六面体要素によって構成されている。ま た,解析モデルは Fig. 2(c), (d) に示すような 1/8 モデルで

解析を行っている。

はじめに, FEM で求めた 3 次元突合せ継手の界面の応力 分布を示す。Fig. 5 は対称性を考慮して Fig. 2 の x < 0, y < 0 の部分に注目した 1/4 モデルにおける 3 次元接着接合柱 の接着界面 (|z| = h/2) での応力分布である。ここでは遠方 での引張応力  $\sigma_z^{\infty} = 1$  MPa, h/W = 0.1 であり, Fig. 5(a) は最 小メッシュサイズ  $e_{\min} = 0.050$  mm, Fig. 5(b) は  $e_{\min} = 0.025$ mm でその他の条件は同じである。Fig. 5(c) は Fig. 5(b) の コーナー部における応力分布の拡大図である。Fig. 5(a), (b) の比較からわかるように接着界面端部 |x| = W/2 および

 Table 1. Material properties of adhesive and adherend<sup>13)</sup>

| Ma       | aterial     | Young's modulus<br>E [GPa] | Poisson's<br>ratio v | α     | β     | λ     |
|----------|-------------|----------------------------|----------------------|-------|-------|-------|
| Adherend | \$35C       | 210                        | 0.30                 | 0.000 | 0.199 | 0.685 |
| Adhesive | Epoxy resin | 3.14                       | 0.37                 | 0.969 |       |       |



Fig. 4 Analysis model



Fig. 3 Critical remote tensile stress  $\sigma_c$  for 3D butt joint with W = 12.7 mm obtained by Suzuki<sup>17),18)</sup>



Fig. 5 FEM stress distributions  $\sigma_z^{FEM}(x, y)$  along the interface |z| = h/2 for h/W = 0.1 obtained by FEM with minimum mesh size  $e_{\min} = 0.050$  mm and  $e_{\min} = 0.025$  mm



Fig. 6 Stress distributions at x = W/2,  $0 \le y \le W/2$  (h/W = 0.01)

|y| = W/2において特異応力場が発生し,FEMにより求めた 応力(これを真の応力  $\sigma^{Real}$  と区別して FEM 応力  $\sigma^{FEM}$  と 記す)はメッシュに依存して異なるので正確には求められ ない。しかし,Fig. 5 からわかるように  $0 \le |x|, |y| < 0.9 \times W/2$ の範囲では,特異応力場の影響を受けないため応力  $\sigma_z$  は メッシュに依存せず  $\sigma_z^{FEM} \cong 1$ となり正確に求められる。す なわち,この範囲では FEM 応力は  $|\sigma_z^{FEM} - 1| < 0.002$ を満足 しており, $\sigma_z^{Real} \cong \sigma_z^{FEM}$ であるので $\sigma^{Real}$  と $\sigma^{FEM}$ を区別する 必要はない。

Fig. 6 に接着層厚さ h/W = 0.01 での接着界面端 (x = W/2, 0 < y < W/2) における FEM 応力  $\sigma_z^{Side, FEM}$  を示す。Fig. 6 に 示すようにメッシュ依存性が生じており,FEM 応力  $\sigma_z^{Side, FEM}$  の値は真の応力  $\sigma_z^{Real}$  と一致しないので  $\sigma_z^{Real}$  と  $\sigma_z^{FEM}$ を区別する必要がある。接着界面端の真の応力  $\sigma_z^{Real}$  は常に 無限大であるが,Fig. 6 の  $\sigma_z^{FEM}$  の値は,有限値となる。し かし,その有限値の大小から (x, y) = (W/2, W/2) で最も厳 しい特異応力  $\sigma_z^{Real}$  が発生することが予想される。また,接 着界面端での FEM 応力分布は 9 割の部分でほぼ一定とな り,  $|x/W| \ge 0.45$  あるいは $|y/W| \ge 0.45$  になると一度減少し た後で急激に上昇する。接着界面端部 (|x| = W/2, |y| = W/2) だけでなく,接着界面端の真の応力は常に無限大  $\sigma_z^{Real} \rightarrow \infty$ となるので,以下では,応力の代わりに ISSF に注目して, FEM で精度良く解析する方法について説明する。

#### 3. 3 次元突合せ継手試験片の特異応力場の強さ ISSF の分布の解析方法とそのメッシュ非依存性

Fig. 2 に示すような 3 次元接着モデルを考えると,特異応力場の強さ ISSF(記号  $K_{\sigma}^{Side}(y)$  で表す<sup>21)</sup>)は, 真の応力  $\sigma_{z}^{Side,Real}(r,y)$ から次式で定義される。これを記号  $K_{\sigma}^{Side}(y)$ で表す<sup>21)</sup>。

 $K_{\sigma}^{Side}(y) = \lim_{\sigma} \left[ r^{1-\lambda} \times \sigma_{z}^{Side,Real}(r,y) \right]$ (1)

次式で表される無次元値(記号  $F_{\sigma}^{Side}(y)$  で表す)もよく用いられる。

$$F_{\sigma}^{Side}(y) = \frac{K_{\sigma}^{Side}(y)}{\sigma_{z}^{\infty}W^{1-\lambda}} = \frac{\lim_{r \to 0} \left[ r^{1-\lambda} \times \sigma_{z}^{Side,Real}(r,y) \right]}{\sigma_{z}^{\infty}W^{1-\lambda}}$$
(2)

ここで、 $\sigma_z^{\infty}$ は遠方における z 方向垂直応力である。式 (1) で  $\lambda$  は特異性指数であり、式 (3) の特性方程式<sup>19),20)</sup> を解く ことによって得られる。記号  $\alpha$  と  $\beta$  は Dunders の複合パラ メータであり、被着材と接着剤のポアソン比  $v_j$  (j = 1 は被 着材、j = 2 は接着剤を示す) と横弾性係数  $G_j$  を用いて式 (4)、(5) によって定義される。 $\alpha(\alpha - 2\beta) > 0$  のとき、界面端 部で真の応力  $\sigma_z^{Real}$  は無限大となり、 $\sigma_z^{Real} \propto 1/r^{1-\lambda}(\lambda < 1)$  の 特異性をもつことが知られている<sup>19),20)</sup>。

| y/W   | Smallest mesh                        | n size $e_{\min} = 3$ .            | $13 \times 10^{-4} \text{ mm}$                                                         | Smallest mesh size $e_{\min} = 7.81 \times 10^{-5}$ mm |                                    |                                                                             |  |
|-------|--------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|--|
|       | a                                    | round the edg                      | e                                                                                      | around the edge                                        |                                    |                                                                             |  |
|       | $\sigma^{\it Side,FEM}_{z,h/W=0.01}$ | $\sigma^{\it Side, FEM}_{z,h/W=1}$ | $\frac{\sigma^{\textit{Side,FEM}}_{z,h/W=0.01}}{\sigma^{\textit{Side,FEM}}_{z,h/W=1}}$ | $\sigma^{\it Side,FEM}_{z,h/W=0.01}$                   | $\sigma^{\it Side, FEM}_{z,h/W=1}$ | $\frac{\sigma^{Side,FEM}_{z,h/W=0.01}}{\sigma^{Side,\text{FEM}}_{z,h/W=1}}$ |  |
| 0.000 | 3.282                                | 13.006                             | 0.252                                                                                  | 4.941                                                  | 19.540                             | 0.253                                                                       |  |
| 0.053 | 3.282                                | 12.991                             | 0.253                                                                                  | 4.939                                                  | 19.513                             | 0.253                                                                       |  |
| 0.105 | 3.283                                | 12.978                             | 0.253                                                                                  | 4.939                                                  | 19.498                             | 0.253                                                                       |  |
| 0.158 | 3.284                                | 12.956                             | 0.253                                                                                  | 4.941                                                  | 19.471                             | 0.254                                                                       |  |
| 0.211 | 3.285                                | 12.931                             | 0.254                                                                                  | 4.942                                                  | 19.418                             | 0.255                                                                       |  |
| 0.263 | 3.287                                | 12.908                             | 0.255                                                                                  | 4.945                                                  | 19.390                             | 0.255                                                                       |  |
| 0.316 | 3.290                                | 12.900                             | 0.255                                                                                  | 4.950                                                  | 19.382                             | 0.255                                                                       |  |
| 0.368 | 3.294                                | 12.944                             | 0.254                                                                                  | 4.957                                                  | 19.444                             | 0.255                                                                       |  |
| 0.421 | 3.303                                | 13.129                             | 0.252                                                                                  | 4.970                                                  | 19.718                             | 0.252                                                                       |  |
| 0.447 | 3.311                                | 13.374                             | 0.248                                                                                  | 4.982                                                  | 20.082                             | 0.248                                                                       |  |
| 0.474 | 3.302                                | 13.933                             | 0.237                                                                                  | 4.968                                                  | 20.931                             | 0.237                                                                       |  |
| 0.500 | 4.483                                | 31.002                             | 0.145                                                                                  | 7.538                                                  | 52.086                             | 0.145                                                                       |  |

 Table 2.
 Mesh independent analysis in Fig. 2

 Table 3.
 Mesh independent ISSF ratio distribution

| when $K_{\sigma,h/W=1}^{2D} = 0.413$ MPa·m <sup>0.315</sup> with $\sigma_z^{\infty} = \sigma = 1$ MPa, $W = 1$ mm |                                                              |                                                         |                                  |                                                              |                                                         |                              |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------|--|
|                                                                                                                   | e <sub>min</sub>                                             | $= 3.13 \times 10^{-4}$                                 | mm                               | $e_{\min} = 7.81 \times 10^{-5} \text{ mm}$                  |                                                         |                              |  |
| y/W                                                                                                               | $\frac{K^{Side}_{\sigma,h/W=0.01}}{K^{Side}_{\sigma,h/W=1}}$ | $\frac{K^{Side}_{\sigma,h/W=1}}{K^{2D}_{\sigma,h/W=1}}$ | $K^{\it Side}_{\sigma,h/W=0.01}$ | $\frac{K^{Side}_{\sigma,h/W=0.01}}{K^{Side}_{\sigma,h/W=1}}$ | $\frac{K^{Side}_{\sigma,h/W=1}}{K^{2D}_{\sigma,h/W=1}}$ | $K^{Side}_{\sigma,h/W=0.01}$ |  |
| 0.000                                                                                                             | 0.252                                                        | 0.866                                                   | 0.090                            | 0.253                                                        | 0.865                                                   | 0.090                        |  |
| 0.053                                                                                                             | 0.253                                                        | 0.865                                                   | 0.091                            | 0.253                                                        | 0.863                                                   | 0.090                        |  |
| 0.105                                                                                                             | 0.253                                                        | 0.864                                                   | 0.091                            | 0.253                                                        | 0.863                                                   | 0.091                        |  |
| 0.158                                                                                                             | 0.253                                                        | 0.862                                                   | 0.090                            | 0.254                                                        | 0.862                                                   | 0.090                        |  |
| 0.211                                                                                                             | 0.254                                                        | 0.861                                                   | 0.091                            | 0.255                                                        | 0.859                                                   | 0.090                        |  |
| 0.263                                                                                                             | 0.254                                                        | 0.859                                                   | 0.091                            | 0.255                                                        | 0.858                                                   | 0.090                        |  |
| 0.316                                                                                                             | 0.255                                                        | 0.859                                                   | 0.091                            | 0.255                                                        | 0.858                                                   | 0.090                        |  |
| 0.368                                                                                                             | 0.255                                                        | 0.862                                                   | 0.091                            | 0.255                                                        | 0.860                                                   | 0.091                        |  |
| 0.421                                                                                                             | 0.252                                                        | 0.874                                                   | 0.091                            | 0.252                                                        | 0.872                                                   | 0.091                        |  |
| 0.447                                                                                                             | 0.248                                                        | 0.890                                                   | 0.092                            | 0.248                                                        | 0.889                                                   | 0.091                        |  |
| 0.474                                                                                                             | 0.237                                                        | 0.927                                                   | 0.091                            | 0.237                                                        | 0.926                                                   | 0.091                        |  |

0.145

$$\left[\sin^{2}\left(\frac{\pi}{2}\lambda\right) - \lambda^{2}\right]^{2}\beta^{2} + 2\lambda^{2}\left[\sin^{2}\left(\frac{\pi}{2}\lambda\right) - \lambda^{2}\right]^{2}$$
$$\alpha\beta + \lambda^{2}\left[\lambda^{2} - 1\right]\alpha^{2} + \frac{\sin^{2}(\lambda\pi)}{4} = 0$$
(3)

0.500

0.145

$$\alpha = \frac{G_1(\kappa_2 + 1) - G_2(\kappa_1 + 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)}, \quad \beta = \frac{G_1(\kappa_2 - 1) - G_2(\kappa_1 - 1)}{G_1(\kappa_2 + 1) + G_2(\kappa_1 + 1)}$$
(4)

$$\kappa_{j} = \begin{cases} \frac{3 - v_{j}}{1 + v_{j}} (plane \ stress) \\ 3 - 4v_{j} (plane \ strain) \end{cases}$$
(5)

FEM 応力  $\sigma_z^{Side,FEM}$  は通常メッシュサイズに影響するため,特異応力場の強さ ISSF を FEM 解析で求めるには工夫が必要になる。著者らは先の研究で<sup>9)~12)</sup>,未知問題と基準問題を界面端部周辺でのメッシュパターンを揃えて FEM 解析し,未知問題と基準問題の FEM 応力の比に注目すれば, それが ISSF の比に一致することを明らかにした。ここで FEM 応力比の値に注目するのは,2つの問題のメッシュと 材料組み合わせが同じであるため,誤差が打ち消されメッ シュ依存性がなくなるためである<sup>9),10)</sup>。未知問題の ISSF は,FEM 応力の比と厳密解のある基準問題の ISSF を掛け 合わせることで求められる。FEM 応力の比については界面 端部(第ゼロ節点)<sup>9)~12),14)</sup> でなくともよい(後述の Table 2, Table 3 参照) ことから, 先の解析法は第ゼロ節点法<sup>22)</sup> を包含する比例法<sup>23),24)</sup> と呼ぶことができる。ここでは, Fig. 7(b) に示すような接着板 (h/W = 1)を基準問題として, このモデルの ISSF を体積力法を用いて精度良く求める。基 準 問題 ( $K_{\sigma}^{REF}, F_{\sigma}^{REF}, \sigma_{z}^{REF,FEM}(r)$ )と未知問題 ( $K_{\sigma}^{3D}, F_{\sigma}^{3D}$ ,  $\sigma_{z}^{3D,FEM}(r)$ )には以下の関係が成立する (式 (6) で基準問題 と未知問題の特異性指数 $\lambda \ge \sigma_{z}^{\infty}$ は同じである)。

$$\frac{K_{\sigma}^{Side}}{K_{\sigma}^{REF}} = \frac{F_{\sigma}^{Side}\sigma_{z}^{\infty}W^{1-\lambda}}{F_{\sigma}^{REF}\sigma_{z}^{\infty}W^{1-\lambda}} = \frac{\lim_{r\to0} \left[r^{1-\lambda} \times \sigma_{z}^{Side,Real}(r)\right]}{\lim_{r\to0} \left[r^{1-\lambda} \times \sigma_{z}^{REF,Real}(r)\right]}$$
$$= \lim_{r\to0} \frac{r^{1-\lambda}\sigma_{z}^{Side,Real}(r)}{r^{1-\lambda}\sigma_{z}^{REF,Real}(r)} = \frac{\sigma_{z}^{Side,FEM}(0)}{\sigma_{z}^{REF,FEM}(0)}$$
(6)

but  $\sigma_z^{Side, FEM} \neq \sigma_z^{Side, Real}$ 

先の研究ではこの方法を用いて Fig. 7(a) に示すような 2 次 元平面ひずみモデルの特異応力場の強さ  $K_{\sigma}^{2D}$  を求めた<sup>9)</sup>。 この平面ひずみモデルは Fig. 7(b) に示すような 3 次元モデ ルの一方向の変位を固定したモデルに相当しており, FEM 解析でも Fig. 7(a) の問題と Fig. 7(b) の問題の解の結果は一 致する。そこで、本研究では 3 次元モデルで y 方向変位を 拘束して平面ひずみ問題の解  $K_{\sigma}^{2D}$ (Fig. 7(b)) を求め基準問題 の解とする。



Fig. 7 Plane strain problem for 3D butt joint



Fig. 8 ISSF ratio of  $K_{\sigma}^{3D}(y)/K_{\sigma}^{3D}(y)|_{h/W=1}$ 



Fig. 9 ISSF ratio of  $\kappa_{\sigma}^{2D}(y)/\kappa_{\sigma}^{2D}(y)|_{h/W=1}$ 

Table 2 に接着層厚さ  $h/W = 1 \ge h/W = 0.01$  の場合の接合 界面端部での FEM 応力を示す。Table 2 に示すように、FEM 応力  $\sigma_{z,h/W=0.01}^{Side,FEM}$  はメッシュサイズに依存して大きく 変化するが、FEM 応力の比  $\sigma_{z,h/W=1}^{Side,FEM}$  はメッシュ サイズに依らず、どの y/Wに対しても 3 桁の精度を有す る。すなわち応力比はメッシュに依存しないので、式(6) に 示すように、ISSF の比とみなすことができる <sup>9)~12),14</sup>。こ のように接着部の 3 次元形状を考慮しても応力比に注目す ることによって界面端部での ISSF を議論できることが明ら かとなった。

Fig. 8 に Table 2 と同様にして求めた接着層厚さ h の試験

片に生じる ISSF と, h/W = 1 のときの ISSF の比を示す。 Fig. 8 より, この ISSF 比はコーナー部以外ではほぼ一定の 値をとり, コーナー部に近づくと減少する。また, 接着層 が薄くなるにつれて比の値が減少する。Fig. 9 に比較のた め, y 方向の変位を拘束し, 平面ひずみ  $\varepsilon_y = 0$  とした 3 次 元モデルにおける ISSF を示す。Fig. 9 に示すように  $\varepsilon_y = 0$ の場合では ISSF は y に依らず常に一定の値を示すことがわ かる。この 3 次元モデルで  $\varepsilon_y = 0$  とした平面ひずみの解は Fig. 7(a) に示すような 2 次元モデルの結果  $9^{(-12),14}$  と一致す る。2 次元接着接合板 h/W = 1の結果は体積力法によって得 られており, 実質上の厳密解として基準問題の解として用 いることができる。これを付録に示す。

#### 4. 3次元突合せ継手試験片の特異応力場の強さ ISSF の分布

前 節 の Table 2 に 示 し た よ う に FEM 応 力 比  $\sigma_{z,h|W=0.01}^{Side,FEM}$  /  $\sigma_{z,h|W=1}^{Side,FEM}$  は FEM メッシュに依存せず, 界面端の すべての範囲(|x/W|≤0.5 および|y/W|≤0.5) で3桁の精 度がある。よって、式(6)に示すように特異応力場の強さ ISSF の比  $K_{\sigma,h/W=0.01}^{Side}$  /  $K_{\sigma,h/W=1}^{Side}$  とみなし得る。よって、これ を Table 3 に ISSF の比として示す。

Table 3 にはy方向変位を拘束した 2 次元接着接合板 h/W= 1の解を基準問題とした ISSF の比  $K_{\sigma}^{Side}(y)/K_{\sigma}^{2D}$ も併せて示 す。コーナー部 (y = W/2) では大きな特異性指数の異なる 別の特異応力場が発生するため、ISSFの比 $K_{\sigma}^{Side}(y)/K_{\sigma}^{2D}$ は 無限大に発散するが、コーナー部以外y<W/2では3桁の 解析精度がある。2次元接着接合板の ISSF 値は、 $\sigma_{r}^{\infty} = \sigma =$ 1 MPa,  $W = 1 \text{ mm} \mathcal{O}$ とき、 $K_{\sigma,h/W=1}^{2D} = 0.413 \text{ MPa} \cdot \text{m}^{0.315}$ であ る。この結果を用いて ISSF の分布  $K_{\sigma}^{Side}(y)$  を求め Table 3 に  $K_{\sigma,h/W=0.01}^{Side}$ の値として示す。y = W/2では $K_{\sigma,h/W=0.01}^{Side} / K_{\sigma,h/W=0}^{Side}$ および K<sup>2D</sup><sub>σ,h/W=1</sub> は有限値であるので, K<sup>Side</sup><sub>σ,h/W=1</sub> / K<sup>2D</sup><sub>σ,h/W=1</sub> が無 限大に発散することで  $K_{\sigma,h/W=0.01}^{Side}$  は無限大に発散する。

Fig. 10 に Table 3 と同様にして求めた *h*/*W* = 0.01~1 に対 する ISSF の分布を示す。Fig. 10 よりコーナー部を除くほ とんどの部分で ISSF はほぼ一定となるが、コーナー部に近 づくと ISSF は一旦減少に転じ、その後急激に増加しコー ナー部で無限大に発散する。

Fig. 11 に破断時の ISSF の分布を示す。Fig. 11 は Fig. 3 の Suzuki<sup>17),18)</sup>の接着強度の実験値 σ<sub>c</sub>と Fig. 10 から式 (7) よ り求めたものである。

 $K_{\sigma c}^{Side}(y) = F_{\sigma}^{Side}(y) \cdot \sigma_{c} W^{1-\lambda}$ (7)

Fig. 11の ISSF は h/Wに依存せず大部分の範囲 v/W=0~ 0.4 ででほぼ一定であるが、この一定値は、Fig.1 に示し た2次元モデルによって得られた値(K<sub>m</sub> = 1.04 ± 0.0643 MPa・m<sup>0.315</sup>) と一致する。Fig. 11の ISSF はコーナー部 y/W=0.5 で発散するため, Fig. 12 に破断時の ISSF の比の 分布とh/W = 1の結果の比でまとめたものを示す。ISSFの 比は, y/W=0~0.5 で接着層厚さに関係なく一つに纏まっ ている。なお, y/W=0.4~0.5の範囲ではやや ISSF の分布 値に幅が見られるが, Fig. 11(b) に示すように y/W ≤ 0.4994 では Table 2, Table 3 に示すように結果は, FEM メッシュ に依存しない。よって,解析上の誤差は極めて小さく正し い値が求められていると考えられる。



Fig. 10 ISSF distribution of 3D butt joint when  $\sigma_z^{\infty} = 1$  MPa

ISSF  $K_{\sigma c}^{Side}(y)$  [MPa·m<sup>0.315</sup>]

1.5

1

0.5 Critical

0

0.49

h/W=0.1

h/W=0.01

0.495

y/W



(a) Critical ISSF distribution

(b) Detail of  $y/W = 0.49 \sim 0.50$  when h/W = 0.1 and 0.01

0.5

Fig. 11 Critical ISSF distributions  $K_{\sigma c}^{3D}(y)$  when  $\sigma_{z}^{\infty} = \sigma_{c}$ 

W W



Fig. 12 Critical ISSF ratio distribution  $\kappa_{\sigma c}^{Side}(y)/\kappa_{\sigma c}^{Side}(y)|_{h/W=1}$  when  $\sigma_z^{\infty} = \sigma_c$ 



Fig. 13 ISSF ratio  $K_{\sigma}^{Side}(y)/K_{\sigma,h/W=1}^{Side}(y)$  focusing on the points at (x, y) = (W/2, 0)and (x, y) = (W/2, W/2)

#### 2 次元接着モデル解析で得られた ISSF による接着 強度評価の妥当性

Fig. 11 では接着コーナー部 y/W = 0.5 では、ISSF は発散 し有限な値が得られない。一般に、コーナー部の特異応力 場は実定数と角度依存関数からなる ISSF と接着端部とは異 なる特異性指数で表現できる<sup>25)</sup>。コーナー部で ISSF が発 散するのは、この角度依存関数が y/W = 0.5 で無限大に発 散するためである<sup>25)</sup>。Fig. 11 では ISSF はコーナー部に近 付くと、急激に上昇している。実際、Fig. 2 (b) に示す破面 でも、実際、Fig. 2 (b) に示す破面でも、コーナー部に黒い 部分が見えているが、これは試験片の研磨された金属面に わずかに残る接着剤により光が乱反射して現れているもの (ミラー領域と呼ばれる<sup>17),18)</sup>)で、ここを起点にはく離が 生じ、反対側のコーナーに向かって放射状の線状模様を 伴って伝ばしている様子が確認される。よってコーナー部 y/W = 0.5 で接着強度を論じることは、ISSF が一定となる y/W = 0~0.4 と同様に重要である。

Fig. 13 は  $\sigma_z^{\infty} = \sigma = -$ 定の下での ISSF を h/W = 1 の ISSF を基準として示す。ここでは、特にコーナー部(x, y) = (W/2,

W/2)の ISSF に注目しており,接着界面端の中心部(x, y) = (W/2,0)の ISSF と比較して示している。中心部とコーナー 部のどちらの ISSF も,接着層厚さh/Wが薄くなるにつれ て ISSF は減少する。ここで,ISSF 比は接着層厚さh/Wに よらず常に中心部のほうが大きい。h/W = 1の ISSF を基準 とする ISSF 比は,2つの接着界面  $z = \pm h/2$ の ISSF の干渉 の程度を表す。すなわち,その干渉効果はコーナー部にお いてより顕著に生じ、基準となるh/W = 1の ISSF からのよ り大きな減少として生じる。

Fig. 14 に破断時の ISSF の比を h/W = 1 の ISSF を基準と して示す。Fig. 14 は Fig. 3 の Suzuki<sup>17),18)</sup>の接着強度の実験 値  $\sigma_c$  と Fig. 10 から求めたものである。ここでも接着界面 のコーナー部の ISSF 比  $K_{\sigma}^{Side}(W/2)/K_{\sigma,h/W=1}^{Side}(W/2)$  に注目して おり,接着界面端の中央部の ISSF 比  $K_{\sigma}^{Side}(0)/K_{\sigma,h/W=1}^{Side}(0)$ と 比較して示している。Fig. 14 よりコーナー部 y/W = 0.5 に 注目しても、中心部 y/W = 0 に注目しても、接着強度は ISSF = 一定で表されることが示された。コーナー部の特異 応力場に関しては、Akin の特異要素を用いた方法<sup>26)</sup>,保存 積分を用いた方法<sup>27)</sup> などの解析法が提案され、特定の形 状、特定の材料組み合わせに関していくつか報告がなされ







Fig. 15 Critical ISSF focusing on the points (x, y) = (W/2, 0)and (x, y) = (W/2, W/2)

ている。著者らも最近,3次元接合体のコーナー部の ISSF の簡便評価法を提案している<sup>28)</sup>。その評価法で求めた破断 時のコーナー部の ISSF  $K_{oc}^{Side}(W/2)$ を中央部の ISSF  $K_{oc}^{Side}(0)$ と同時に Fig. 15 に示す。 $K_{oc}^{Side}(0)$  および  $K_{oc}^{Side}(W/2)$ は,に 関係なく一定となっている。なお、Fig. 15 のコーナー部の ISSF に注目した結果では中央部の ISSF に注目した場合よ りやや右上がりの傾向が見られる。他の接着剤でも同様の 傾向があるか否か今後検討する予定である。

Fig. 16 に Fig. 15 に示した試験片の中央部とコーナー部で の破断時の ISSF の平均値から,逆に破断応力を求めたもの を示す。破線は Fig. 3 に示した実験値である。Fig. 16 より 試験片の中心部とコーナー部のいずれの ISSF の平均値から も実験値で得られた接着強度が得られる。Fig. 16 からは本 論文で取り扱った接着剤では中心部の ISSF に注目する場合 からの結果が精度が良いことがわかる。他の接着剤では逆 の傾向が生じる可能性もあるので,この点については今後 接着剤の種類を変えて検討する予定である。実際の接着面 のはく離がコーナー部から生じるにもかかわらず 2 次元モ デル解析で十分精度良く,接着強度を予測できる理由とし て,はく離が生じる際の ISSF の分布がほぼ一本の曲線(す



Fig. 16 Critical tensile stress  $\sigma_c$  obtained from  $K_{\sigma c}^{Side}(0)$  and  $K_{\sigma c}^{Side}(W/2)$ 

なわち Fig. 11 や Fig. 12) で表されるためと考えられる。3次 元の特異応力場の解析は2次元解析に比べて複雑であり, 計算時間も膨大となる。本論文の検討によって,コーナー 部での複雑な解析方法を用いなくても,2次元モデルの解 析で接着強度を十分に精度良く評価できることが示された。

#### 6. 結 言

本研究では突合せ継手試験片が3次元形状を有すること や,接着界面のコーナー部からはく離破壊が生じることを 考慮して,試験片の特異応力場の強さISSFの分布を正確に 求めた。また,これまでに提案した2次元モデルのISSFを 用いる接着強度評価法の妥当性を検討した。得られた結果 をまとめると以下のようになる。

- (1) 試験片の3次元形状を考慮した場合においても,接着層厚さの異なる試験片や平面ひずみ状態の試験片を基準問題として,接着界面端のFEM応力の比をとることにより,メッシュに依存しない値が得られる。すなわち ISSF の分布を精度良く求める解析方法を示した。
- (2) 解析モデルにおいて3次元突合せ継手の横方向変位 を拘束することにより、2次元平面ひずみの解が得

られる。その解として体積力法による厳密解が存在 するので、FEM 応力の比をとる方法を用いる際の基 準問題として用いることができる。

- (3) 3次元突合せ継手の横方向変位をした平面ひずみの ISSFと、3次元試験片の通常の引張りにおける ε<sub>y</sub> ≠ 0の ISSF を比べると、通常の引張りの ISSF は試験 片の接着界面端の中央から約 90%の範囲で一定とな り、その ISSF 値は 2次元平面ひずみの ISSF 値の約 80~90% 程度である (Table 3)。
- (4) 接着強度とISSFの分布の関係を調べた結果,破断時のISSFの分布は接着厚さに依らずほぼ一つの曲線で表され、その分布は試験片表面の接着端部のおよそ90%の範囲で一定となる。
- (5) 接着強度は接着面のコーナー部のISSF=一定で整理 される。また、接着界面端中央部のISSF=一定でも 表され、その一定値は2次元平面ひずみモデルに よって得られるものと一致する。
- (6) 破断時の ISSF の平均値から破断応力を求めた結果, 試験片の中心部とコーナー部のいずれにおいてもほ ぼ実験値と同じ値が得られた。このことから複雑な 解析方法を用いず,2次元モデルの解析で十分精度 良く接着強度を評価できることが示された。

(2018.1.6- 受理)

#### 文 献

- 1) 安田雅昭: "電子機器用実装材料システム," 日立化成テク ニカルレポート, No. 40, pp. 1–12, 2003
- 中村正志: "先端半導体用封止材料の技術動向,"パナソニック電工技報, Vol. 56, No. 4, pp. 9–16, 2008
- 3) 渋谷忠弘: "異種材料接合端部のはく離発生強度の破壊力学 的評価と電子デバイスへの適用,"エレクトロニクス実装学 会誌, Vol. 7, No. 7, pp. 639-644, 2004
- 4) 服部敏雄,坂田荘司,初田俊雄,村上 元: "特異応力場パ ラメータを用いた接着界面強度評価,"日本機械学会論文集 A 編, Vol. 54, No. 499, pp. 597–603, 1988
- 5) 白鳥正樹: "電子デバイス実装における接合の諸問題,"日本機械学会論文集A編, Vol. **60**, No. 577, pp. 1905–1912, 1994
- 北村隆行,渋谷忠弘,上野貴司:"薄膜界面強度評価法の開発と先進LSI用銅薄膜のはく離への適用,"日本機械学会論 文集A編, Vol. 66, No. 648, pp. 1568–1573, 2000
- 渋谷忠弘,鶴賀 哲, 于強,白鳥正樹: "LSI 用サブミクロン薄膜のモード別界面はく離発生条件,"日本機械学会論文集A編, Vol. 69, No. 685, pp. 1368-1373, 2003
- 8) 結城良治,石川春雄,岸本喜久雄,許金泉: "界面の力学," 培風館, 1993
- 9) 張玉,野田尚昭,高石謙太郎,蘭欣:"接着接合板における 接着層厚さが特異応力場の強さに与える影響,"日本機械学

会論文集 A 編, Vol. 77, No. 774, pp. 360-372, 2011

- 10) 張玉,野田尚昭,高石謙太郎,蘭欣: "接着接合板における 接着層厚さが特異応力場の強さに与える影響(面内曲げと 引張りの比較),"日本機械学会論文集A編, Vol. 77, No. 784, pp. 2076-2086, 2011
- Y. Zhang, N.-A. Noda, P. Wu, and M. Duan: "A mesh-independent technique to evaluate stress singularities in adhesive joints," International Journal of Adhesion & Adhesives, Vol. 57, pp. 105-117, 2015
- Y. Zhang, N.-A. Noda, P. Wu, and M. Duan: "A mesh-independent technique to evaluate stress singularities in adhesive joints," International Journal of Adhesion & Adhesives, Vol. 57, pp. 105–117, 2015, the corrigendum of authorship is published in International Journal of Adhesion & Adhesives, Vol. 60, p. 130, 2015
- N.-A. Noda, T. Miyazaki, R. Li, T. Uchikoba, Y. Sano, and Y. Takase: "Debonding strength evaluation in terms of the intensity of singular stress at the interface corner with and without fictitious crack," International Journal of Adhesion & Adhesives, Vol. 61, pp. 46–64, 2015
- 14) 野田尚昭,宮崎達二郎,内木場卓巳,李戎,佐野義一,高 瀬 康: "接着接合板における特異応力の強さを用いた接着 強度の簡便な評価法について,"エレクトロニクス実装学会 誌, Vol. 17, No. 2, pp. 132–142, 2014
- 15) 宮崎達二郎,野田尚昭,李戎,内木場卓巳,佐野義一: "特 異応力場の強さに基づく単純重ね合わせ継ぎ手のはく離破 壊基準の検討,"エレクトロニクス実装学会誌, Vol. 16, No. 2 (2013), pp. 143–151
- 16) 古口日出男: "三次元異材接合体角部の特異応力場の応力分布,"日本機械学会論文集 A 編, Vol. 66, No. 648, pp. 1597– 1605, 2000
- Y. Suzuki: "Adhesive Tensile Strengths of Scarf and Butt Joints of Steel Plates (Relation Between Adhesive Layer Thicknesses and Adhesive Strengths of Joints)," JSME International Journal, Vol. **30**, No. 265, pp. 1042–1051, 1987
- 18) 鈴木靖昭: "鋼のスカーフおよびバット継手の引張接着強度 (第1報, ぜい性接着剤の場合),"日本機械学会論文集 A 編, Vol. 50, No. 451, pp. 526-533, 1984
- D. B. Bogy: "Edge- Bonded Dissimilar Orthogonal Elastic Wedges under Normal and Shear Loading," Transaction of the ASME, Journal of Applied Mechanics, Vol. 35, pp. 460–466, 1968
- 20) D. B. Bogy: "Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles under Surface Tractions," Transaction of the ASME, Journal of Applied Mechanics, Vol. 38, pp. 377– 386, 1971
- 21) 陳玳珩,西谷弘信:"板状接合試験片における特異応力場の 強さ,"日本機械学会論文集A編,Vol. **59**, No. 567, pp. 2682-2686, 1993

- 22) 西谷弘信,川村壮司,藤崎 渉,福田孝之: "FEM による 板材の応力拡大係数と応力集中係数の高精度決定法,"日本 機械学会論文集 A 編, Vol. 65, No. 629, pp. 26-31, 1999
- 23) 村上敬宜: "有限要素法による応力拡大係数の簡便決定法," 日本機械学会論文集, Vol. 42, No. 360, pp. 2305-2315, 1976
- 24) 木須博行, 結城良治, 北川英夫: "境界要素法による表面き 裂の応力拡大係数の解析:第2報,応力拡大係数の精度よ い決定法,"日本機械学会論文集 A 編, Vol. 51, No. 463, pp. 660-669, 1985
- 25) 古口日出男, 中島正人: "三層三次元異材接合体角部の特異 応力場に対する接着層厚さの影響:外力が作用する場合," 日本機械学会論文集 A 編, Vol. 76, No. 768, pp. 1110-1118, 2010
- 26) 倉橋貴彦, 渡辺裕太郎, 近藤俊美, 古口日出男:"三次元特 異性オーダを用いた Akin 特異要素による異材接合体の界面 端角部近傍における特異応力場の評価(四面体要素と特異 要素使用時の結果の比較),"日本機械学会論文集, Vol. 80,

No. 809, DOI:10.1299/transjsme.2014 cm0017, 2014

- 27) 古口日出男, 横山洸幾, Luangarpa Chonlada: "保存積分によ る三次元異材接合体界面端の特異応力場の強さ(積分半 径,要素サイズおよび接合体幅の影響),"日本機械学会論 文集, Vol. 82, No. 83, DOI:10.1299/transjsme.15-00372, 2016
- 28) 宫崎達二郎, 井上卓真, 野田尚昭, 佐野義一: "3 次元異材 接合体の界面端角部に生じる特異応力場の近似評価法につ いて,"日本機械学会論文集,印刷中

#### 付録:2次元平面ひずみモデルにおける特異応力場の強さ

陳, 西谷<sup>21)</sup> や野田<sup>9)~12),14)</sup> らは Fig. 7(a) のような 2 次元 平面ひずみモデルの特異応力場の強さ ISSF について、体積 力法を用いて精度良く解析した。ここでは、特異応力場が 生じる λ < 1 (Bad pair) の範囲だけでなく特異応力場が生じ ない材料の組み合わせλ>1 (Good pair) についても解析を 行い, 結果を Table A1 と Fig. A1 に示す。Table A1 と Fig.

| β     | -0.4  | -0.3  | -0.2  | -0.1  | 0.0   | 0.1   | 0.2   | 0.3   | 0.4   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -1.00 | 0.540 | 0.446 | 0.395 | 0.357 | 0.332 | —     | —     | —     | —     |
| -0.95 | 0.643 | 0.491 | 0.422 | 0.381 | 0.349 | _     | —     | —     | —     |
| -0.90 | 0.726 | 0.534 | 0.456 | 0.412 | 0.381 | —     | —     | —     | —     |
| -0.80 | 1.000 | 0.636 | 0.538 | 0.487 | 0.450 | —     | —     | —     | —     |
| -0.70 | 1.855 | 0.800 | 0.626 | 0.558 | 0.486 | —     | —     | —     | —     |
| -0.60 | 3.291 | 1.000 | 0.724 | 0.638 | 0.559 | 0.505 | —     | —     | —     |
| -0.50 |       | 1.264 | 0.842 | 0.722 | 0.635 | 0.551 | —     | —     | —     |
| -0.40 |       | 1.467 | 1.000 | 0.822 | 0.718 | 0.615 | _     | —     | —     |
| -0.30 |       | 1.609 | 1.118 | 0.913 | 0.796 | 0.697 | —     | —     |       |
| -0.20 |       | 1.690 | 1.153 | 1.000 | 0.889 | 0.797 | 0.404 |       |       |
| -0.10 |       |       | 1.103 | 1.037 | 0.955 | 0.890 | 0.767 |       |       |
| 0.00  |       |       | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | —     | —     |
| 0.10  |       |       | 0.767 | 0.890 | 0.955 | 1.037 | 1.103 | —     | —     |
| 0.20  |       |       | 0.404 | 0.797 | 0.889 | 1.000 | 1.153 | 1.690 | —     |
| 0.30  |       |       | —     | 0.697 | 0.796 | 0.913 | 1.118 | 1.609 |       |
| 0.40  |       |       | —     | 0.615 | 0.718 | 0.822 | 1.000 | 1.467 |       |
| 0.50  |       |       | —     | 0.551 | 0.635 | 0.722 | 0.842 | 1.264 | —     |
| 0.60  |       |       | —     | 0.505 | 0.559 | 0.638 | 0.724 | 1.000 | 3.291 |
| 0.70  |       |       | —     | —     | 0.486 | 0.558 | 0.626 | 0.800 | 1.855 |
| 0.80  |       |       |       | —     | 0.450 | 0.487 | 0.538 | 0.636 | 1.000 |
| 0.90  |       |       |       |       | 0.381 | 0.412 | 0.456 | 0.534 | 0.726 |
| 0.95  |       |       |       |       | 0.349 | 0.381 | 0.422 | 0.491 | 0.643 |
| 1.00  |       |       |       | _     | 0.332 | 0.357 | 0.395 | 0.446 | 0.540 |

\* In bold frame line: Bad pair and Equal pair

When  $\lambda < 1$  (Bwad pair),  $F_{\sigma} < 1$  When  $\lambda = 1$  (Equal pair),  $F_{\sigma} = 1$  When  $\lambda < 1$  (Good pair),  $F_{\sigma} > 1$ 





Fig. A1  $F_{\sigma}$  for bonded plate

A1 は  $h/W \ge 1$  の場合に相当する。Fig. A1 には特異性指数  $\lambda > 1 となる F_{\sigma}^{2D} = K_{\sigma}^{2D}/(\sigma W^{1-\lambda})$ の範囲もあわせて示してい る。接着剤による接合界面端部の応力分布は,FEM では直 接求めることができないが,寸法の異なる接着接合板の ISSF の比ならば FEM で求めることができるので, どちら かの ISSF が既知であれば, 求めたい問題の ISSF について 知ることができる。

高瀬 康 (たかせ やすし)

#### - 著者紹介



野田尚昭(のだ なおあき) 1984年九州大学大学院工学研究科機械工学専攻博 士課程単位取得満期退学,工学博士。同年九州工 業大学講師,87年助教授,03年教授。85年リー ハイ大学客員研究員,96年山東工業大学客座教 授,03年華東交通大学兼職教授,05年サリー大 学客員研究員,08年山東大学客座教授,10年河 南科技大学兼職教授。



佐野義一(さの よしかず) 1964年九州大学大学院機械工学専攻修士課程修 了。同年,日立金属(株)若松工場に入社。02年 (株)日立金属若松技術顧問。04年九州食上能力 開発大学校特任教授,九州大学学術研究員。10年 より九州工業大学支援研究員。博士(工学)。技 術士(金属・金属加工部門)。

1985年九州工業大学機械工学科勤務。93年九州 工業大学工学部設計生産工学科夜間主コース卒

業。02年技術専門職員。07年強度研究用試験片 の応力集中に関する研究で博士(工学)取得。



任 飛(にん ひ) 2014年山東大学機械工学専攻修士課程修了。現 在.九州工業大学大学院工学府機械知能工学専攻 博士後期課程在学中。接着継手の強度評価に関す

る研究に従事。



高木 怜(たかき れい) 2017年九州工業大学機械知能工学科卒業。現在, 同大学大学院工学府機械知能工学専攻博士前期課 程在学中。接着継手の強度評価に関する研究に従 事。



**宮崎達二郎**(みやざき たつじろう) 2003 年九州大学大学院機械科学専攻博士後期課程 修了。博士(工学)。同年琉球大学工学部機械シ ステム工学科講師。現在,准教授。金属疲労とそ の補修,接着接合材の強度に関する研究に従事。



**坪井健二**(つぼい けんじ) 現在,九州工業大学工学部機械知能工学科在学 中。接着継手の強度評価に関する研究に従事。

論文