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a b s t r a c t 

This paper deals with a partially-embedded single-fiber under pull-out force in comparison with a single fiber 

embedded in matrix focusing on two distinct singular stress fields. Then, the intensities of the singular stress 

fields (ISSFs) are compared at the fiber end named Point A and the fiber/surface intersection named Point E. The 

results show that if the embedded length l in is shorter, interface debonding may occur at Point A. Instead, if l in 
is longer, the interface debonding may occur at Point E. To analyze the ISSFs accurately, a mesh-independent 

technique coupled with the finite element method (FEM) is indicated by applying the same FEM mesh pattern 

to the pull-out model and the reference model. As the reference solution, a single fiber embedded in matrix is 

also calculated under arbitrary material combinations by using the body force method (BFM). Stress distributions 

along the fiber/matrix interfaces are also calculated for carbon and glass fibers. 
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. Introduction 

Wide application of fiber composite technology in various fields is

ased on taking advantage of the high strength and high stiffness of

bers. In fiber composites, both the fiber and the matrix retain their

riginal physical and chemical identities, yet together they produce a

ombination of mechanical properties that cannot be achieved with ei-

her of the constituents acting alone [1, 2] . 

Many different alternative test set-ups and experimental techniques

ave been developed in recent years to gain more insight into the basic

echanisms, dominating the properties of the fiber/matrix interface.

ne of the most popular is the pull-out test as shown in Fig. 1 , where

 single fiber or bar partially embedded in resin is pulled out from the

urrounding matrix and the corresponding relation between load P ( 𝛿)

nd displacement 𝛿 is recorded [3] . Typical relation between the pull-

ut load vs. displacement contains three typical zones, that is, linear

lastic zone, crack extension zone and fiber extruding zone [4] . 

Such debonding test or pull-out test has been used as an advanta-

eous micromechanical test used to characterize interfacial fiber/matrix

onding. To pull out the fiber, since the debonding strength should be

maller than the tensile strength of the fiber, high adhesion systems re-

uire very small embedding lengths l in ( < 100 𝜇m) [2] . The small em-

edding lengths sometimes make the test unusable because the pull-out

orce has to break the adhesion at the fiber end. The effect of the embed-

ed length on the debonding stress at the fiber end should be clarified

specially in the range of short embedded length around l in = 5 D . 
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Fig. 1 shows a two-dimensional single fiber partially embedded con-

idered in this study. The shaded (slashed) part represents a rectangular-

haped fiber whose Young’s modulus is denoted by E F and whose Pois-

on’s Ratio is denoted by 𝜈F . The grey portion represents the matrix hav-

ng a semi-infinite region whose Young’s modulus is denoted by E M 

and

hose Poisson’s Ratio is denoted by 𝜈M 

. Subscripts M, F represent the

atrix and reinforcing fiber, respectively. Assume that perfectly bonded

ber/matrix interface whose material properties vary in a stepwise man-

er across the interface. A uniform tensile stress is distributed at the free

nd of the fiber, and the total force is P . The embedding length l in rep-

esents the distance from the surface of the matrix to the buried end of

ber. Notation D represents the diameter of the fiber, i.e. the width of

he fiber in this 2D analysis. Point E is used to represents the interface

n the surface of the matrix. Similarly, Point A represents the interface

orner at the fiber end. Notations E F , 𝜈F , E M 

, 𝜈M 

represent the Young’s

odulus and Poisson’s ratio of fiber and matrix, respectively. Singular

nterface stress fields [5–7] , which will be explained in the next section,

re indicated in Fig. 1 around Point A and Point E. They are controlled

y the intensity of the singular stress fields (ISSFs, denoted by 𝐾 

A 
𝜎, 𝜆A 1 

tc.) [5–7] . 

Many researchers have been working on fiber pull-out experiments.

or example, Scheer et al. [8] experimentally investigated interfacial

eeling of reinforcing fibers, focusing on the energy release rate. Zhan-

arov et al. [9, 10] investigated the pull-out force versus displacement.

he P ( 𝛿) curve of pull-out test and P ( 𝛿) curve of micro-bond tests is simi-

ar, i.e. crack propagation may starts from the fiber entry Point E [8–10] .

arotzke C. et al. [11] investigated the influence of thermally induced
 September 2019 
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Nomenclature 

FEM Finite element method 

ISSF Intensity of singular stress field 

BFM Body force method 

RWCIM Reciprocal work contour integral method 

Point A Fiber buried end 

Point E Fiber intersection on the surface of the matrix 

E, E F , E M 

Young’s modulus 

𝜈, 𝜈F , 𝜈M 

Young’s modulus 

G, G F , G M 

Shear modulus 

K , K I , K II , K 𝜎 , K 𝜏 Intensity of singular stress field (ISSF) 

F, F I , F II Dimensionless ISSF 

𝜎x , 𝜎y Tension or compression stress 

𝜏 Shear stress 

l Fiber length 

l in Fiber embedding length 

D Width of the fiber 

𝜎∞ Tension stress on the boundary of infinite plate 

P Pull-force on the free end of fiber 

𝛼, 𝛽 Dundurs’ material composite parameters 

𝜆, 𝜆𝐴 
1 , 𝜆

𝐴 
2 , 𝜆

𝐸 
1 , 𝜆

𝐸 
2 Singular index 

e min Minimum element size in FEM 

r 1 , r 2 , r 3 Distance from Point A or Point E along the in- 

terface 

Subscripts 

F Fiber 

M Matrix 

FEM Corresponding values in FEM analysis 

I Mode I deformation 

II Mode II deformation 

A Corresponding values at Point A 

E Corresponding values at Point E 
∗ Corresponding values in reference model 

tresses and interfacial friction on the interfacial debonding process, fo-

using on the energy release rate. Wang C et al. [12] and K.-H. Tsai et al.

13] investigated the process of fiber pull-out test, focusing on peeling

nd friction slip, it is observed that crack initiate at the fiber bonded end
oint A during the fiber pull-out test [12, 13] . In a rod pull out test that

ery similar to fiber pull-out test, Atkinson, et al. [14] observed crack

nitiation sometimes occur at Point A and sometimes occur at Point E in

ig. 1 . 

In the previous pull-out experiments, the interface strength was dis-

ussed between the fiber and the matrix without paying attention to the

ntensity of singular stress field (ISSF). As shown in Fig. 1 , however, due

o the singular stress fields crack initiation sometimes occurs at Point A,

ometimes occur at Point E. Then, the crack may propagate causing final

ailure. Therefore, to evaluate the mechanical strength of the compos-

tes, it is necessary to know the ISSFs at these two points. In the previous

tudies, the shear-lag theory was widely used to discuss the shear stress

istribution of the fiber interface. However, this theory is simply based

n one-dimensional fiber model assuming the fiber interface transmits

nly the shear stress [15–17] ; and therefore, this theory cannot express

he singular stress fields. In other words, a lot of analytical studies have

een done to clarify pull-out phenomena [18–20] , but no studies are

vailable for the ISSF. 

The authors’ recent studies have shown that the ISSFs are useful

or evaluating the interface strength because they control the adhesive

trength for butt and lap joints [21–27] . Therefore, this paper will focus

n the ISSFs of a single fiber partially embedded in a matrix under pull

ut force. Then, the effect of fiber embedded length on the ISSFs will be

nvestigated and the severities at the fiber end Point A and at the fiber

ntry Point E will be compared by considering their fiber interface stress

istributions. The final goal of this study is to clarify the fiber pull out

echanism toward designing suitable fiber reinforced composites. 

. Singular stress fields and the ISSF at the fiber end 

In this study the finite element method (FEM) is applied to calculat-

ng the ISSFs. Since the FEM stress values are usually affected by the

esh size, in the previous study [28, 29] the same mesh pattern is ap-

lied around the singular points for unknown and reference problems.

hen, it was found that the FEM stress ratio of the unknown and refer-

nce problem is constant independent of the mesh size. Therefore, the

EM stress ratio is equal to the ISSF ratio because the FEM mesh error

an be eliminated by considering FEM stress ratio and applying the same

esh (Detail is discussed in Tables 2a and 2b ). By choosing the refer-

nce problem as an exact solution available, the ISSF of the unknown

roblem can be obtained by multiplying the FEM stress ratio and the
Fig. 1. Two-dimensional pull-out model for partially em- 

bedded fiber with the singular stress fields along the local 

coordinates r 1 , r 2 , r 3 . The intensities of the singular stress 

fields (ISSFs) are denoted by 𝐾 

A 
𝜎, 𝜆A 

1 
etc. [5–7] . 
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Fig. 2. 2D modelling: (a) a single rectangular fiber 

pull-out from a semi-infinite plate; (b) a single rect- 

angular fiber in an infinite plate under remote tension 

used as the reference solution. 

Table 1 

Mechanical properties. 

Fiber/Matrix (a): Carbon Fiber/ Epoxy (b): Glass Fiber/ Epoxy 

E F (GPa) 276 75 

E M (GPa) 3.03 3.3 

𝜈F 0.30 0.17 

𝜈M 0.35 0.35 

𝛼 0.9775 0.9071 

𝛽 0.2250 0.2016 

𝜆𝐴 

1 0.7784 0.7632 

𝜆𝐴 

2 0.6158 0.6218 

𝜆𝐸 

1 0.6751 0.6592 

𝜆𝐸 

2 0.9999 0.9992 

D ( 𝜇m) 20 20 

l in ( 𝜇m) 100 100 

Crack initiation Point A Point A 
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f  

d  
SSF of the exact solution. Regarding fiber end Point A, a single fiber in

n infinite plate can be chosen as the reference problem. The analysis

ethod used in this study can be called the proportional method since

he method is based on the proportional FEM stress fields [30–35] . This

esh-independent technique is a convenient ISSF calculation method,

nd the obtained ISSFs are denoted by 𝐾 

A 
𝜎, 𝜆A 1 

etc. [5–7] . 

Fig. 1 shows the two-dimensional model of fiber pull-out problem

onsidered in this paper. Here, a 2D rectangular shape is used to repre-

ent the fiber focusing on the singular stress fields at Point A and Point

. Although cylindrical shape may be more suitable for representing the

ber, the non-singular term caused by the circumferential strain must

e removed and the analysis becomes complicated [24, 25] . Therefore,

his modelling should be considered after considering the rectangular

odelling. 

Table 1 shows mechanical properties of the Fiber/Matrix considered

n this study. The base material Epon 828 can be obtained by curing

 bisphenol A type liquid epoxy resin with m-phenylenediamine. In

he previous study, for example, a pull-out test was conducted for a

ingle glass-fiber whose diameter D = 21 𝜇m from the matrix Epon 828

28] . Since the aspect ratio l in / D mainly controls the pull-out behavior,

 = 20 𝜇m is assumed as shown in Table 1 and Fig. 2 . Here, l denotes the

otal fiber length and l in the denotes the embedded length; then, l in / D = 5

eans l in = 100 𝜇m. To obtain the ISSF at the fiber end, model as shown

n Fig. 2 (b) is used as a reference problem. This is because the exact

olution is available for the problem as shown in Fig. 2 (b) [5, 36–38] ,

hich is a rectangular fiber fully embedded in an infinite plate and the

otal length of the fiber is 2 l in . Symbol 𝜎∞ in Fig. 2 denotes the uniform

ensile stress on the boundary of the infinite plate. 

In this study, the ISSFs at Point A and Point E, for the problem as

hown in Fig. 1 , are mainly discussed by varying l in . Then, the x-y co-

rdinate system as shown in Fig. 1 is used. The y-direction corresponds
o the axial direction of the fiber, and the x-direction corresponds to the

adial direction of the fiber. Notation r 1 denotes the distance from Point

 in the x-direction, and r 2 denotes the distance from Point A in the

-direction. Then, r 1 = 0 and r 2 = 0 means Point A. Notation r 3 denotes

he distance from Point E in the y-direction, and r 3 = 0 represents Point

. 

Note that the singular stress field at Point A in Fig. 2 (a) is similar to

he singular stress field at Point A 

∗ of the reinforcing fiber in the matrix

hown in Fig. 2 (b). The ISSF of Point A 

∗ in Fig. 2 (b) can be calculated by

he body force method (BFM) [5, 36–38] . The BFM is a powerful analyti-

al method to obtain accurate solutions, which can be virtually regarded

s exact solutions. 

Till recently, a lot of studies have considered Dundurs’ composite

arameters of typical engineering materials. Suga et al. investigated

he parameters and mechanical compatibility of various material joints

39] . Yuuki [40] showed the variations of the parameters in the 𝛼 − 𝛽

pace for the materials combinations among metal, ceramics, resin, and

lass. Here, 𝛼, 𝛽 denote Dundurs bimaterial parameters [41] defined

y equation (A.1) in Appendix A . In this study, analysis is carried out

nder plane strain assumption. Singular indexes 𝜆𝐴 
1 and 𝜆𝐴 

2 at the cor-

er A can be calculated by solving equations (A.2a) and (A.2b), re-

pectively [36, 42] . For the material combination Carbon Fiber/Epoxy

n Table 1 (a), 𝛼 = 0.9775, 𝛽 = 0.2250), 𝜆𝐴 
1 = 0 . 7784 and 𝜆𝐴 

2 = 0 . 6158 . 
The ISSF at Point A 

∗ in Fig. 2 (b) was discussed in [5, 37, 42] . It should

e noted that Eqs. (1) and (2) [28, 42] express the singular stress at Point

 

∗ in Fig. 2 (b) and also Point A in Fig. 2 (a). Here, 𝐾 

A 
𝜎,𝜆A 1 

, 𝐾 

A 
𝜎,𝜆A 2 

denote

SSFs for normal stress at Point A and 𝐾 

A 
𝜏,𝜆A 1 

and 𝐾 

A 
𝜏,𝜆A 2 

denote ISSFs for

hear stress. ISSFs 𝐾 

A 
𝜎,𝜆A 1 

and 𝐾 

A 
𝜏,𝜆A 1 

correspond to Mode I deformation

nd ISSFs 𝐾 

A 
𝜎,𝜆A 2 

and 𝐾 

A 
𝜏,𝜆A 2 

correspond to Mode II deformation. 
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𝑟 1 
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𝜏, 𝜆A 2 

𝑟 1 
1− 𝜆A 2 

(1) 

 

 

 

 

 

 

 

 

 

𝜎A 
𝑥 

(
𝑟 2 
)
= 

𝐾 

A 
𝜎, 𝜆A 1 

𝑟 2 
1− 𝜆A 1 

− 

𝐾 

A 
𝜎, 𝜆A 2 

𝑟 2 
1− 𝜆A 2 

𝜏A 
𝑥𝑦 

(
𝑟 2 
)
= 

𝐾 

A 
𝜏, 𝜆A 1 

𝑟 2 
1− 𝜆A 1 

− 

𝐾 

A 
𝜏, 𝜆A 2 

𝑟 2 
1− 𝜆A 2 

(2) 

For the singular stress field at Point A, the interface corner of dif-

erent materials, the indexes of the singular stress field are different

epending on the mode I and mode II deformation [5] . In order to de-
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Table 2a 

FEM Stress ratio of symmetrical type with 𝜆𝐴 

1 = 0 . 7784 
when l in = 100 𝜇m in Fig. 2 (a) and l in = 500 𝜇m in Fig. 2 (b) 

for the material combination in Table 1 (a). 

Smallest mesh size Smallest mesh size 

e min = 3 − 9 [mm] e min = 3 − 10 [mm] 

𝑟 

𝑒 𝑚𝑖𝑛 

𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 ) 𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 ) 
𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) 
𝑟 

𝑒 𝑚𝑖𝑛 

𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 ) 𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 ) 
𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) [MPa] [MPa] 

0.0 1.290 0.117 0.0 1.647 0.117 

0.5 1.038 0.117 0.5 1.328 0.117 

1.0 0.779 0.116 1.0 0.998 0.117 

1.5 0.699 0.116 1.5 0.896 0.116 

2.0 0.692 0.115 2.0 0.889 0.116 

Table 2b 

FEM stress ratio of skew-symmetrical type with 𝜆𝐴 

2 = 
0 . 6158 when l in = 100 𝜇m in Fig. 2 (a) and l in = 500 𝜇m in Fig. 

2 (b) for the material combination in Table 1 (a). 

Smallest mesh size Smallest mesh size 

e min = 3 − 9 [mm] e min = 3 − 10 [mm] 

𝑟 

𝑒 𝑚𝑖𝑛 

𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) 𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) 
𝜎A∗ 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) 
𝑟 

𝑒 𝑚𝑖𝑛 

𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) 𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) 
𝜎A∗ 
II , 𝐹𝐸𝑀 

( 𝑟 1 ) [MPa] [MPa] 

0.0 10.161 0.104 0.00 15.497 0.104 

0.5 4.279 0.104 0.5 6.524 0.104 

1.0 1.821 0.104 1.0 2.773 0.104 

1.5 2.913 0.104 1.5 4.438 0.104 

2.0 3.048 0.104 2.0 4.642 0.104 
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a 2  
ermine the ISSFs, it is necessary to consider the two distinct mode I

nd mode II singular stress fields at the same time. The shear stress

long the interface of fiber and matrix has been widely discussed by

sing the shear-lag theory [8, 10, 15–17] , which is simply based on a

ne-dimensional model and cannot express singular stress fields. 

At the vicinity of Point A, the stress distribution corresponding to

ode I deformation is denoted by 𝜎𝐴 
I ( 𝑟 ) , as shown in Eq. (3) . It is pro-

ortional to 1∕ 𝑟 1− 𝜆
𝐴 
1 . And the stress distribution corresponding to Mode

I deformation, denoted by 𝜎𝐴 
II ( 𝑟 ) , is proportional to 1∕ 𝑟 1− 𝜆

𝐴 
2 . These sin-

ular stress fields together determine the stress distributions along the

nterfaces near Point A. Each ISSF can be defined as parameters 𝐾 

A 
I , 𝜆A 1 

nd 𝐾 

A 
II , 𝜆A 2 

as shown in Eq. (4) . In this equation, we can put r = r 1 = r 2 . 

 

 

 

 

 

2 𝜎𝐴 
I ( 𝑟 ) = 𝜎𝐴 

𝑦 

(
𝑟 1 
)
+ 𝜎𝐴 

𝑥 

(
𝑟 2 
)

2 𝜎𝐴 
II ( 𝑟 ) = 𝜎𝐴 

𝑦 

(
𝑟 1 
)
− 𝜎𝐴 

𝑥 

(
𝑟 2 
) (𝑟 = 𝑟 1 = 𝑟 2 

)
(3)

 

 

 

 

 

𝐾 

𝐴 

I ,𝜆𝐴 
1 
= lim 

𝑟 →0 

[
𝜎𝐴 
I ( 𝑟 ) ⋅ 𝑟 

1− 𝜆𝐴 
1 
]

𝐾 

𝐴 

II ,𝜆𝐴 
2 
= lim 

𝑟 →0 

[
𝜎𝐴 
II ( 𝑟 ) ⋅ 𝑟 

1− 𝜆𝐴 
2 
] (4)

The ISSFs 𝐾 

A 
𝜎,𝜆A 1 

and 𝐾 

A 
𝜏,𝜆A 1 

in Eq. (1) can be determined from the ISSF

 

𝐴 

I ,𝜆𝐴 
1 
. For Fig. 2 , the ISSFs 𝐾 

A 
𝜎,𝜆A 1 

and 𝐾 

A 
𝜏,𝜆A 1 

are proportional to 𝐾 

𝐴 

I ,𝜆𝐴 
1 

and

he ISSFs 𝐾 

A 
𝜎,𝜆A 

and 𝐾 

A 
𝜏,𝜆A 

are proportional to 𝐾 

𝐴 

II ,𝜆𝐴 
. 
2 2 2 

Table 3a 

FEM stress ratio of the first term with 𝜆𝐸 

1 = 0 .
in Fig. 1 (a) for the material combination in T

Smallest mesh size e min = 3 − 9 [mm] Smalles

𝑟 

𝑒 𝑚𝑖𝑛 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) [MPa] 
𝜎𝐸 

𝐹𝐸𝑀, 𝜆1 
( 𝑟 ) 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) 
𝑟 

𝑒 𝑚𝑖𝑛 

0.0 13.022 1.34 0.0 

0.5 11.102 1.34 0.5 

1.0 8.131 1.34 1.0 

1.5 6.775 1.34 1.5 

2.0 6.389 1.34 2.0 
The normalized stress intensity factors 𝐹 

∗ 
I and 𝐹 

∗ 
𝐼𝐼 

can be acquired

n the basis of BFM [37–42] . And the definition of 𝐹 

∗ 
I and 𝐹 

∗ 
𝐼𝐼 

of the

eference problem were expressed as shown in Eq. (5) [37] , in which

∞ = 1 is tension stress at the boundary of the infinite matrix, as shown

n Fig. 2 (b). 

 

 

 

 

 

𝐹 

∗ 
I = 𝐾 

∗ 
I ,𝜆𝐴 

1 
∕ 
[
𝜎∞

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
1 
]

𝐹 

∗ 
II = 𝐾 

∗ 
II ,𝜆𝐴 

2 
∕ 
[
𝜎∞

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
2 
] (5) 

Therefore, the normalized stress intensity factors of the fiber pull-out

roblem, as shown in Fig. 2 (a), are defined similarly as follows: 

 

 

 

 

 

𝐹 I = 𝐾 

𝐴 

I ,𝜆𝐴 
1 
∕ 
[
( 𝑃 ∕ 𝐷 ) 

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
1 
]

𝐹 II = 𝐾 

𝐴 

II ,𝜆𝐴 
2 
∕ 
[
( 𝑃 ∕ 𝐷 ) 

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
2 
] (6) 

By using the proportional method [30–35] mentioned above, F I and

 II for the pull-out problem can be calculated from the ISSFs 𝐹 

∗ 
I and

 

∗ 
II of the reference problem. As is shown in Eq. (7) . Here, 𝜎𝐴 

I , 𝐹𝐸𝑀 

( 𝑟 )
nd 𝜎𝐴 ∗ 

I , 𝐹𝐸𝑀 

( 𝑟 ) represent the stress distributions corresponding to Mode

 deformation in FEM analysis as mentioned above. Similarly, 𝜎𝐴 
II , 𝐹𝐸𝑀 

( 𝑟 )
nd 𝜎𝐴 ∗ 

II , 𝐹𝐸𝑀 

( 𝑟 ) correspond to Mode II deformation. 

𝐹 I 
𝐹 

∗ 
I 

= 

𝜎𝐴 
I , 𝐹𝐸𝑀 

( 𝑟 ) 

𝜎𝐴 ∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) 
, 
𝐹 II 
𝐹 

∗ 
II 

= 

𝜎𝐴 
II , 𝐹𝐸𝑀 

( 𝑟 ) 

𝜎𝐴 ∗ 
II , 𝐹𝐸𝑀 

( 𝑟 ) 
. (7)

The Finite Element Method (FEM) has been widely used for many

ngineering applications [43–45] . Regarding fiber reinforced compos-

te analyses, Stern et al. [46] developed a path independent integral

ormula for the computation of the intensity of the stress singularity by

sing FEM. Atkinson et al. [14] , Povirk et al. [20] , and Freund et al.

47] conducted fiber pullout simulation studies by using a circular rigid

ylinder. Hann et al. [48] investigated the effect of contact angle, load-

ng position and loading type in micro-bond test by using FEM. Ash

t al. [49] investigated the effect of bead geometry and knife angle in

icro-bond test via FEM. Zhang et al. [50] studied the effects of in-

erfacial debonding and sliding on fracture characterization of unidi-

ectional fibre-reinforced composites by using FEM. Brito-Santana et al.

51] studied influence of the debonding between fiber and matrix in

icro scale via the FEM. FEM is widely used in studies in fiber rein-

orced composites [52–58] . Ahmed et al. [59–63] studied sensing, low

oss and birefringent etc. by using FEM. In this analysis software MSC

arc is used to express the pull-out model for Figs. 1 and 2 (a), and the

eference model for Fig. 2 (b). Stress distributions along the interfaces

 r 1 , r 2 ) are calculated by applying the same mesh pattern to the pull-out

odel and reference model. Thus stress ratio [ 𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) ] and

 𝜎A 
𝐼 𝐼 , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
𝐼 𝐼 , 𝐹𝐸𝑀 

( 𝑟 ) ] can be calculated between the pull-out model

nd the reference model. This method was used in [23–29] . 

As is shown in Eq. (3) , 𝜎𝐴 
I , 𝐹𝐸𝑀 

( 𝑟 ) is calculated from the stress distri-

utions 𝜎𝐴 
𝑦 
( 𝑟 1 ) along the interface r 1 and 𝜎𝐴 

𝑥 
( 𝑟 2 ) along the interface r 2 by

sing the pull-out model ( Fig. 2 (a)). Similarly, 𝜎𝐴 ∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) is calculated

rom the stress distributions 𝜎𝐴 ∗ 
𝑦 

( 𝑟 1 ) along the interface r 1 and 𝜎𝐴 ∗ 
𝑥 

( 𝑟 2 )
long the interface r by using the reference model ( Fig. 2 (b)). Material
 6751 when l in = 100 𝜇m and l in = 200 𝜇m 

able 1 (a). 

t mesh size e min = 3 − 10 [mm] RWCIM 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) [MPa] 
𝜎𝐸 

𝐹𝐸𝑀, 𝜆1 
( 𝑟 ) 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) 

𝐾 𝐸 
𝜎, 𝜆1 

𝐾 𝐸 
∗ 

𝜎, 𝜆1 

9.114 1.34 

7.770 1.34 

5.691 1.34 1.34 

4.742 1.34 

4.472 1.34 
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Table 3b 

FEM stress ratio of the second term with 𝜆𝐸 

2 = 0 . 9999 when l in = 100 𝜇m and l in = 200 𝜇m 

in Fig. 1 (a) for the material combination in Table 1 (a). 

Smallest mesh size e min = 3 − 9 [mm] Smallest mesh size e min = 3 − 10 [mm] RWCIM 

𝑟 

𝑒 𝑚𝑖𝑛 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) [MPa] 
𝜎𝐸 

𝐹𝐸𝑀, 𝜆2 
( 𝑟 ) 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) 
𝑟 

𝑒 𝑚𝑖𝑛 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) [MPa] 
𝜎𝐸 

𝐹𝐸𝑀, 𝜆2 
( 𝑟 ) 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) 

𝐾 𝐸 
𝜎, 𝜆2 

𝐾 𝐸 
∗ 

𝜎, 𝜆2 

0.0 -0.010 0.873 0.00 -0.011 0.932 

0.5 -0.016 0.866 0.5 -0.016 0.908 

1.0 -0.016 0.868 1.0 -0.017 0.923 0.970 

1.5 -0.016 0.875 1.5 -0.017 0.923 

2.0 -0.016 0.879 2.0 -0.016 0.926 

Table 4a 

ISSFs at Point A, 𝐾 

A 
𝜎, 𝜆A 

1 
, 𝐾 

A 
𝜎, 𝜆A 

2 
, 𝐾 

A 
𝜏, 𝜆A 

1 
, 𝐾 

A 
𝜏, 𝜆A 

2 
in Fig. 1 for the material combination in 

Table 1 (a). 

l in 𝐾 

A 
𝜎, 𝜆A 

1 
𝐾 

A 
𝜎, 𝜆A 

2 
𝐾 

A 
𝜏, 𝜆A 

1 
𝐾 

A 
𝜏, 𝜆A 

2 

[ 𝜇m] [MPa ⋅ m 

1 − 0.7784 ] [MPa ⋅ m 

1 − 0.6158 ] [MPa ⋅ m 

1 − 0.7784 ] [MPa ⋅ m 

1 − 0.6158 ] 

50 0.214 0.288 0.126 0.182 

100 0.154 0.224 0.0907 0.141 

150 0.126 0.185 0.0742 0.117 

200 0.109 0.163 0.0642 0.103 

250 0.0970 0.147 0.0572 0.0929 

300 0.0875 0.134 0.0516 0.0846 

350 0.0805 0.124 0.0475 0.0785 

400 0.0749 0.116 0.0441 0.0733 

450 0.0698 0.109 0.0411 0.0687 

500 0.0658 0.103 0.0388 0.0650 

1000 0.0430 0.0689 0.0253 0.0435 

Table 4b 

ISSFs at point A, 𝐾 

A 
𝜎, 𝜆A 

1 
, 𝐾 

A 
𝜎, 𝜆A 

2 
, 𝐾 

A 
𝜏, 𝜆A 

1 
, 𝐾 

A 
𝜏, 𝜆A 

2 
in Fig. 1 for the material combination in 

Table 1 (b). 

l in 𝐾 

A 
𝜎, 𝜆A 

1 
𝐾 

A 
𝜎, 𝜆A 

2 
𝐾 

A 
𝜏, 𝜆A 

1 
𝐾 

A 
𝜏, 𝜆A 

2 

[ 𝜇m] [MPa ⋅ m 

1 − 0.7632 ] [MPa ⋅ m 

1 − 0.6218 ] [MPa ⋅ m 

1 − 0.7632 ] [MPa ⋅ m 

1 − 0.6218 ] 

50 0.220 0.343 0.128 0.175 

100 0.152 0.258 0.0885 0.131 

150 0.120 0.207 0.0696 0.106 

200 0.101 0.177 0.0585 0.0905 

250 0.0873 0.156 0.0507 0.0796 

300 0.0767 0.139 0.0445 0.0706 

350 0.0689 0.126 0.0400 0.0641 

400 0.0627 0.115 0.0364 0.0587 

450 0.0571 0.106 0.0332 0.0538 

500 0.0528 0.0980 0.0307 0.0500 

1000 0.0296 0.0565 0.0172 0.0288 

Table 5a 

ISSFs at point E, 𝐾 

E 
𝜎, 𝜆E 

1 
, 𝐾 

E 
𝜎, 𝜏E 1 

in Fig. 1 for the material 

combination in Table 1 (a). 

l in [ 𝜇m] 𝐾 

E 
𝜎, 𝜆E 

1 
[ MPa ⋅m 1−0 . 6752 ] 𝐾 

E 
𝜏, 𝜆E 

1 
[ MPa ⋅m 1−0 . 6752 ] 

50 0.470 0.166 

100 0.346 0.122 

150 0.291 0.103 

200 0.259 0.0915 

250 0.238 0.0840 

300 0.223 0.0787 

350 0.212 0.0747 

400 0.203 0.0717 

450 0.196 0.0693 

500 0.191 0.0674 

1000 0.170 0.0599 

p  

m  

e  

s

Table 5b 

ISSFs at point E, 𝐾 

E 
𝜎, 𝜆E 

1 
, 𝐾 

E 
𝜎,𝜏E 1 

in Fig. 1 for the material com- 

bination in Table 1 (b). 

l in [ 𝜇m] 𝐾 

E 
𝜎, 𝜆E 

1 
[ MPa ⋅m 1−0 . 6591 ] 𝐾 

E 
𝜏, 𝜆E 

1 
[ MPa ⋅m 1−0 . 6591 ] 

50 0.530 0.197 

100 0.433 0.161 

150 0.389 0.144 

200 0.364 0.135 

250 0.349 0.130 

300 0.339 0.126 

350 0.332 0.123 

400 0.326 0.121 

450 0.322 0.120 

500 0.319 0.119 

1000 0.312 0.116 

 

m  

w  

e  
roperties for the fiber and matrix are set to be same for the reference

odel and pull-out model, respectively. In other words, material prop-

rties of fiber in Fig. 2 (b) and inclusion in Fig. 2 (b) are set to be the

ame. 
FEM stress distributions along the interfaces near Point A of different

esh size are shown in Tables 2a and b . Results of inclusion model

hen l in = 500 𝜇m and pull-out model when l in = 100 𝜇m are shown as

xample. As shown in Table 2a 𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 ) is FEM stress distribution,
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Fig. 3. FEM mesh pattern. 

Fig. 4. Schematic illustration of Point E FEM 

models. 
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Fig. 5. (a). ISSFs at Point A vs. embedding length for Carbon 

Fiber/Epoxy. (b). ISSFs at Point A vs. embedding length for Glass 

Fiber/Epoxy. 
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𝜎  
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t  

o  

s  

p  

i  

o  

a

3

 

e  

[  

b  

t  

𝜆

 

t  

0

i  
orresponding to 𝜆𝐴 
1 , of carbon fiber/epoxy as shown in Table 1 a, when

 in = 100 𝜇m in pull-out model. 𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) is FEM stress distribution, cor-

esponding to 𝜆𝐴 
1 , of the same material combination, when l in = 500 𝜇m

n the reference model, whose ISSF can be calculated by BFM. Simi-

arly, 𝜎𝐴 
II , 𝐹𝐸𝑀 

( 𝑟 ) in the pull-out model and 𝜎A∗ 
II , 𝐹𝐸𝑀 

( 𝑟 ) in the reference

odel, corresponding to 𝜆𝐴 
2 are shown in Table 2b . In addition,

he FEM stress ratios 𝜎A 
I , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) , 𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
II , 𝐹𝐸𝑀 

( 𝑟 )
re calculated from the above mentioned FEM stress

istributions. 

As shown in Tables 2a and b , the stress distributions 𝜎𝐴 
I , 𝐹𝐸𝑀 

( 𝑟 ) ,
𝐴 
II , 𝐹𝐸𝑀 

( 𝑟 ) are different depending on the mesh size. However,

he stress ratio between unknown model and reference model, i.e.
A 
I , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
I , 𝐹𝐸𝑀 

( 𝑟 ) and 𝜎A 
II , 𝐹𝐸𝑀 

( 𝑟 )∕ 𝜎A∗ 
II , 𝐹𝐸𝑀 

( 𝑟 ) are independent of

esh size, and keep in converges within four significant digits. In fact,

he stress at the edge of the interface is infinite. Therefore, the value

f the stress varies greatly depending on the mesh size. From the data

hown in Tables 2a and b , it is found that the stress ratio between the

ull-out problem and the reference problem can be obtained accurately

ndependent of the mesh size. Then the ISSF of pull-out problem can be

btained from the FEM stress ratio and the ISSF of reference problems,

s shown in Eq. (7) . 
e
. Singular stress field and the ISSF at the fiber entry point 

The singular stress field at Point E as shown in Fig. 2 (a) is differ-

nt from that of Point A but similar to the interface end for lap joints

33, 64] . The value of singular indexes ( 𝜆𝐸 
1 , 𝜆

𝐸 
2 ) around the corner E can

e determined by solving the characteristic Eq. (8) [65, 66] . For most of

he material combinations the singular indexes 𝜆𝐸 
𝑖 

have two real roots
𝐸 
1 and 𝜆𝐸 

2 corresponding to two different singular fields [67] . 

4 𝑠𝑖 𝑛 2 ( 𝜋𝜆) 
{ 

𝑠𝑖 𝑛 2 
(

𝜋𝜆

2 

)
− 𝜆2 

} 

𝛽2 + 4 𝜆2 𝑠𝑖 𝑛 2 ( 𝜋𝜆) 𝛼𝛽

+ 

{ 

𝑠𝑖 𝑛 2 
(

𝜋𝜆

2 

)
− 𝜆2 

} 

𝛼2 + 4 𝜆2 𝑠𝑖 𝑛 2 ( 𝜋𝜆) 𝛽

+ 2 
{ 

𝜆2 cos ( 2 𝜋𝜆) + 𝑠𝑖 𝑛 2 
(

𝜋𝜆

2 

)
cos ( 𝜋𝜆) + 

1 
2 

𝑠𝑖 𝑛 2 ( 𝜋𝜆) 
} 

𝛼

+ 𝑠𝑖 𝑛 2 
(3 𝜋𝜆

2 

)
− 𝜆2 = 0 (8) 

Here, 𝛼 and 𝛽 are defined by equation (A.1). Table 1 (a) shows for

he Carbon/Epoxy material combination, 𝛼 = 0.9775, 𝛽 = 0.2250, 𝜆𝐸 
1 =

 . 6751 , 𝜆𝐸 
2 = 0 . 9999 . Note that the singular index 𝜆𝐸 

2 = 0 . 9999 for 𝐾 

𝐸 

𝜎,𝜆𝐸 
2 

s very close to 1, corresponding to almost no singularity having little

ffect on the singular stress distribution. 
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Fig. 6. (a). ISSFs at Point E vs. embedding length for Carbon 

Fiber/Epoxy. (b). ISSFs at Point E vs. embedding length for Glass 

Fiber/Epoxy. 
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The singular stress field at the vincinity of Point E in Fig. 1 can be

xpressed as Eq. (9) . This singular stress field is identical to that of lap

oints [33, 64] . 

 

 

 

 

 

 

 

 

 

𝜎E 
𝑥 

(
𝑟 3 
)
= 

𝐾 

E 
𝜎, 𝜆E 1 

𝑟 3 
1− 𝜆E 1 

+ 

𝐾 

E 
𝜎, 𝜆E 2 

𝑟 3 
1− 𝜆E 2 

𝜏E 
𝑥𝑦 

(
𝑟 3 
)
= 

𝐾 

E 
𝜏, 𝜆E 1 

𝑟 3 
1− 𝜆E 1 

+ 

𝐾 

E 
𝜏, 𝜆E 2 

𝑟 3 
1− 𝜆E 2 

(9)

As the reference solution Reciprocal work contour integral method

RWCIM) can be used [33, 34, 64, 68] . Recently, Miyazaki et al. [34, 35]

roposed a technique of how to obtain two ISSFs corresponding to two

istinct singular stress fields by applying proportional method. To apply

his method to the pull-out problem, Fig. 4 illustrates 3 kinds of the pull-

ut models used in this technique. 

The model (a) has minimum elements whose size e min = e 0 . The FEM

tress of the model (a) is denoted by 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) |𝑒 𝑚𝑖𝑛 = 𝑒 0 and the ISSFs

n model (a) are denoted by 𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
1 

and 𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
2 

. Here, r 3 is the distance

rom the corner edge Point E in Fig. 2 (a). The model (b) has the same

ize of the model (a) but having larger minimum elements e min = n ⋅ e 0 
ompared to model (a). The FEM stress of model (b) is denoted by
𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) |𝑒 𝑚𝑖𝑛 = 𝑛 ⋅𝑒 0 and the ISSFs in model (b) are denoted by 𝐾 

𝐸,𝑏 

𝜎,𝜆𝐸 
and
1 
 

𝐸,𝑏 

𝜎,𝜆𝐸 
2 

. The model (c) is n times larger than models (a) including all ele-

ents and therefore having the same minimum mesh size of model (b).

he FEM stress of model (c) is denoted by 𝜎𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) |𝑒 𝑚𝑖𝑛 = 𝑛 ⋅𝑒 0 . It can be

erified that the stress 𝜎𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

at n ⋅ r 0 is equal to the stress 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

at r 0 .

he ISSFs in model (c) are denoted by 𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
1 

and 𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
2 

. The FEM stress

𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

should be divided into 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀, 𝜆1 
and 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀, 𝜆2 
to calculate two

SSFs 𝐾 

𝐸 
𝜎, 𝜆1 

and 𝐾 

𝐸 
𝜎, 𝜆2 

. 

𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

= 𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆1 
+ 𝜎

𝐸,𝑎 

𝐹𝐸𝑀, 𝜆2 
(10)

Similarly, 𝜎𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

and 𝜎𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

should be divided. 

𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

= 𝜎
𝐸,𝑏 

𝐹𝐸𝑀, 𝜆1 
+ 𝜎

𝐸,𝑏 

𝐹𝐸𝑀, 𝜆2 
(11a)

𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

= 𝜎
𝐸,𝑐 

𝐹𝐸𝑀, 𝜆1 
+ 𝜎

𝐸,𝑐 

𝐹𝐸𝑀, 𝜆2 
(11b)

The stress distribution 𝜎𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) at r 3 = n ⋅ r 0 is exactly equal to the

tress 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) at r 3 = r 0 as shown in Eq. (12) . 

𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
1 (

𝑟 0 
)1− 𝜆𝐸 

1 
+ 

𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
2 (

𝑟 0 
)1− 𝜆𝐸 

2 
= 

𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
1 (

𝑛 ⋅ 𝑟 0 
)1− 𝜆𝐸 

1 
+ 

𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
2 (

𝑛 ⋅ 𝑟 0 
)1− 𝜆𝐸 

2 
(12)
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Fig. 7. (a). Stress distributions when l in = 100 𝜇m for Carbon 

Fiber/Epoxy in Table 1 . (b). Stress distributions when l in = 100 𝜇m 

for Glass Fiber/Epoxy in Table 1 . 
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From Eq. (12) the following relation between 𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
1 

and 𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
1 

can

e derived. 

 

 

 

 

 

 

 

 

 

 

 

𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
1 

𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
1 

= 𝑛 
1− 𝜆𝐸 

1 

𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
2 

𝐾 

𝐸,𝑎 

𝜎,𝜆𝐸 
2 

= 𝑛 
1− 𝜆𝐸 

2 

(13) 

Since the mesh pattern is the same at the vicinity of Point E in model

b) and model (c), the following relation can be verified. 

 

 

 

 

 

 

 

 

 

 

 

𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
1 

𝐾 

𝐸,𝑏 

𝜎,𝜆𝐸 
1 

= 

𝜎
𝐸,𝑐 

𝐹𝐸𝑀, 𝜆1 

(
𝑛 ⋅ 𝑟 0 

)
𝜎

𝐸,𝑏 

𝐹𝐸𝑀, 𝜆1 

(
𝑛 ⋅ 𝑟 0 

)
𝐾 

𝐸,𝑐 

𝜎,𝜆𝐸 
2 

𝐾 

𝐸,𝑏 

𝜎,𝜆𝐸 
2 

= 

𝜎
𝐸,𝑐 

𝐹𝐸𝑀, 𝜆2 

(
𝑛 ⋅ 𝑟 0 

)
𝜎

𝐸,𝑏 

𝐹𝐸𝑀, 𝜆2 

(
𝑛 ⋅ 𝑟 0 

)
(14) 
Substituting Eq. (13) into Eq. (14) and using the 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) |𝑟 3 = 𝑟 0 =
𝐸,𝑐 

𝑥,𝐹𝐸𝑀 

( 𝑟 3 ) |𝑟 3 = 𝑛 ⋅𝑟 0 , the following equation is obtained. 

 

 

 

 

 

 

 

𝜎
𝐸,𝑏 

𝐹𝐸𝑀, 𝜆1 

(
𝑛 ⋅ 𝑟 0 

)
= 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆1 

(
𝑟 0 
)

𝑛 
1− 𝜆𝐸 

1 

𝜎
𝐸,𝑏 

𝐹𝐸𝑀, 𝜆2 

(
𝑛 ⋅ 𝑟 0 

)
= 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆2 

(
𝑟 0 
)

𝑛 
1− 𝜆𝐸 

2 

(15) 

Substituting Eq. (15) into Eq. (11a) the following equation is ob-

ained [34, 35] . 

𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

= 𝜎
𝐸,𝑏 

𝐹𝐸𝑀, 𝜆1 
+ 𝜎

𝐸,𝑏 

𝐹𝐸𝑀, 𝜆2 

= 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆1 

𝑛 
1− 𝜆𝐸 

1 
+ 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆2 

𝑛 
1− 𝜆𝐸 

1 

(16) 

When the simultaneous Eqs. (10) and (16) are solved on the
𝐸,𝑎 

𝑥,𝐹𝐸𝑀, 𝜆1 
and 𝜎𝐸,𝑎 

𝑥,𝐹𝐸𝑀, 𝜆2 
, the following equations are obtained. By using

his method, the stress distributions corresponding to the two indexes
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Fig. 8. (a). Stress distributions when l in = 1000 𝜇m for Car- 

bon Fiber/Epoxy in Table 1 . (b). Stress distributions when 

l in = 1000 𝜇m for Glass Fiber/Epoxy in Table 1 . 
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c  

a  

b  

i in 
𝐸 
1 , 𝜆

𝐸 
2 can be obtained in FEM. 

 

 

 

 

 

 

 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆1 
= 

𝜎
𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

1 − 𝑛 𝜆1 − 𝜆2 
− 

𝜎
𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

𝑛 𝜆2 −1 − 𝑛 𝜆1 −1 

𝜎
𝐸,𝑎 

𝐹𝐸𝑀, 𝜆2 
= 

𝜎
𝐸,𝑎 

𝑥,𝐹𝐸𝑀 

1 − 𝑛 𝜆2 − 𝜆1 
+ 

𝜎
𝐸,𝑏 

𝑥,𝐹𝐸𝑀 

𝑛 𝜆2 −1 − 𝑛 𝜆1 −1 

(17)

As shown in Eq. (18) , if the ISSFs 𝐾 

𝐸 ∗ 
𝜎, 𝜆1 

and 𝐾 

𝐸 ∗ 
𝜎, 𝜆2 

are known in a ref-

rence problem, the ISSFs of a unknown problem can be obtained from

EM stress ratio 𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 )∕ 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) and 𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 )∕ 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) . Here,

𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) and 𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) are FEM stress distributions in the model cor-

esponding to unknown problem, and are divided by using Eq. (17) . Sim-

larly, 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) and 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) corresponding to the reference prob-

em. 

 

 

 

 

 

 

 

𝐾 

𝐸 
𝜎, 𝜆1 

𝐾 

𝐸 ∗ 
𝜎, 𝜆1 

= 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

𝐾 

𝐸 
𝜎, 𝜆2 

𝐾 

𝐸 ∗ 
𝜎, 𝜆2 

= 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

(18)

Tables 3a and b shows FEM stress ratio 𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 )∕ 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) and

𝐸 
𝐹𝐸𝑀, 𝜆

( 𝑟 )∕ 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆

( 𝑟 ) for Carbon Fiber/Epoxy in Table 1 (a) obtained

2 2 
y using the technique described above. Here, 𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

( 𝑟 ) is the value

or l in = 100 𝜇m and 𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

( 𝑟 ) is the value for l in = 200 𝜇m. In Table 3a ,

he stress ratio is independent of the mesh size and coincides with the

esults of RWCIM, which is explained in the Appendix C . In Table 3b ,

owever, the stress ratio varies by about 10% error. This is because the

ingular index 𝜆𝐸 
2 = 0 . 9999 ≈ 1 . Since 𝜆𝐸 

2 ≈ 1 means almost no singular-

ty with smaller values 𝐾 

𝐸 

𝜎, 𝜆𝐸 
2 
∕ 𝑟 

1− 𝜆𝐸 
2 

3 and 𝐾 

𝐸 

𝜏, 𝜆𝐸 
2 
∕ 𝑟 

1− 𝜆𝐸 
2 

3 in Eq. (9) , the sin-

ular stress is mainly controlled only by 𝐾 

𝐸 

𝜎, 𝜆𝐸 
1 

and 𝐾 

𝐸 

𝜏, 𝜆𝐸 
1 

[28, 29] . The

WCIM can be used to obtain the reference values although a large cal-

ulation time is necessary for the integral path. The proportional method

an be conveniently focusing on the singular point to calculate the ISSFs

y varying the fiber dimensions. 

. Results and discussion 

In short fiber reinforced composites most fibers’ aspect ratios are

lose to l / D = 30 [38] . In this study, assume the fiber width D = 20 𝜇m

nd the total fiber length l = 600 𝜇m. If half of the fiber length is em-

edded in the matrix, as shown in Fig. 2 (a), the fiber embedded length

s about l = 300 𝜇m. 
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Fig. 9. (a). Stress at r = 1 𝜇m of different embedding length for 

Carbon Fiber/Epoxy. (b). Stress at r = 1 𝜇m of different embedding 

length for Glass Fiber/Epoxy 
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c  

t  
.1. ISSF at point A 

Table 4a and Fig. 5 a show the ISSFs denoted by 𝐾 

A 
𝜎, 𝜆A 1 

, 𝐾 

A 
𝜎, 𝜆A 2 

, 𝐾 

A 
𝜏, 𝜆A 1 

,

 

A 
𝜏, 𝜆A 2 

[5] at Point A for carbon fiber/epoxy by varying l in varies from

0 𝜇m to 1000 𝜇m. Table 4b and Fig. 5 (b) show the ISSFs for glass

ber/epoxy. It is seen that ISSFs decrease with increasing l in . This is con-

istent with the experimental results showing that the maximum pull-out

orce increases with increasing l in [8, 69] . 

By assuming the total fiber length of l = 600 𝜇m, the ISSFs are

ompared when l in = 150 𝜇m (1/4 embedded length) and l in = 300 𝜇m

1/2 embedded length). As shown in Table 4a for carbon fiber/epoxy,

ode I ISSF, 𝐾 

A 
𝜎, 𝜆A 1 

= 0.0875 at l in = 300 𝜇m is 30.6% smaller than

 

A 
𝜎, 𝜆A 1 

= 0.126 at l in = 150 𝜇m and the modeIIISSF 𝐾 

A 
𝜎, 𝜆A 2 

= 0.134 at

 in = 300 𝜇m is 27.6% smaller than 𝐾 

A 
𝜎, 𝜆A 2 

= 0.185 at l in = 150 𝜇m. 

As shown in Table 4b for glass fiber/epoxy, mode I ISSF

 

A 
𝜎, 𝜆A 1 

= 0.0767 at l in = 300 𝜇m is 36.1% smaller than 𝐾 

A 
𝜎, 𝜆A 1 

= 0.120 at
 in = 150 𝜇m. Regarding Mode IIISSF, 𝐾 

A 
𝜎, 𝜆A 2 

= 0.139 at l in = 300 𝜇m is

2.8% smaller than 𝐾 

A 
𝜎, 𝜆A 2 

= 0.207 at l in = 150 𝜇m. As shown in Fig. 5 (b)

nd Table 4b , the ISSFs 𝐾 

A 
𝜏, 𝜆A 1 

and 𝐾 

A 
𝜏, 𝜆A 2 

are also about 40% smaller than

he ISSFs 𝐾 

A 
𝜎, 𝜆A 1 

and 𝐾 

A 
𝜎, 𝜆A 2 

for glass fiber/epoxy. 

It is seen that ISSFs at l in = 300 𝜇m are smaller than the ISSFs at

 in = 150 𝜇m. As shown in Fig. 5 (a) and Table 4a , the ISSFs 𝐾 

A 
𝜏, 𝜆A 1 

and

 

A 
𝜏, 𝜆A 2 

are about 40% smaller than the ISSFs 𝐾 

A 
𝜎, 𝜆A 1 

and 𝐾 

A 
𝜎, 𝜆A 2 

for carbon

ber/epoxy. In Section 4.3 , therefore, the ISSFs 𝐾 

A 
𝜎, 𝜆A 1 

and 𝐾 

A 
𝜎, 𝜆A 2 

will

e discussed. 

.2. ISSF at point E 

Table 5a and Fig. 6 (a) shows ISSFs 𝐾 

E 
𝜎, 𝜆E 1 

, 𝐾 

E 
𝜎, 𝜆E 2 

at Point E for

arbon fiber/epoxy by varying l in from 50 𝜇m to 1000 𝜇m. Regarding

he first term 𝐾 

E 
𝜎, 𝜆E 

in Eq. (9) for carbon fiber/epoxy, 𝐾 

E 
𝜎, 𝜆E 

= 0.223

1 1 



N.-A. Noda, D. Chen and G. Zhang et al. International Journal of Mechanical Sciences 165 (2020) 105196 

a  

T  

a

i  

s  

P  

S  

c

4

 

s  

s  

p  

a  

l  

b  

t  

t

 

i  

i  

E  

s  

𝜎  

F  

l  

𝜎  

h  

a  

o

 

A  

fi  

d  

P  

t  

s  

a  

P  

i

5

 

w  

a  

d  

fi  

c

(

 

 

 

 

(  

 

 

 

 

 

(  

 

 

 

 

 

D

 

r

A

 

M  

i  

t  

M  

a  

(  

i

A

S

T

 

F  

m  

G  

m  

t  

c

⎧⎪⎨⎪⎩
 . 

 

[  

b  

l  

o  

l  

b  

I  

F

 

b  

[

Table A.1 

Convergence of the ISSFs in Fig. 2(b) for the material combination 

in Table 1(a). 

M 𝐹 ∗ I = 𝐾 

∗ 
I , 𝜆𝐴 

I 
∕[ 𝜎∞

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
1 ] 𝐹 ∗ II = 𝐾 

∗ 
II , 𝜆𝐴 

2 
∕[ 𝜎∞

√
𝜋( 𝐷∕2 ) 1− 𝜆

𝐴 
2 ] 

8 0.6780 1.132 

7 0.6782 1.133 

6 0.6780 1.133 

5 0.6783 1.130 
t l in = 300 𝜇m is 23.4% smaller than 𝐾 

E 
𝜎, 𝜆E 1 

= 0.291 at l in = 150 𝜇m.

able 5b and Fig. 6 (b) show the ISSFs for glass fiber/epoxy. The ISSF

t Point E decreases with increasing l in . Regarding the first term 𝐾 

E 
𝜎, 𝜆E 1 

n Eq. (9) for glass fiber/epoxy, 𝐾 

E 
𝜎, 𝜆E 1 

= 0.339 at l in = 300 𝜇m is 12.9%

maller than 𝐾 

E 
𝜎, 𝜆E 1 

= 0.389 at l in = 150 𝜇m. The ISSF decreasing rate at

oint E becomes smaller than that at Point A especially when l in is large.

ince the ISSF 𝐾 

E 
𝜏, 𝜆E 1 

is 60% smaller than the ISSF 𝐾 

E 
𝜎, 𝜆E 1 

for this material

ombination, 𝐾 

E 
𝜎, 𝜆E 1 

is discussed in the next section. 

.3. Comparison between Point A and Point E 

When the single embedded fiber is under pull-out force, singular

tress fields should be compared at Point A and Point E. However, those

ingular stress fields are different in properties, it is not possible to com-

are those two ISSFs directly. Therefore, the normal stress distributions

long the interfaces between the fiber and matrix are focused. The shear-

ag theory [15–17] has been widely used to discussed stress distribution,

ut is not enough for discussing the singular stress fields. This is because

he shear-lag theory is based on a simple one-dimensional approxima-

ion of the fiber. 

The comparison of stress distributions along the interfaces are shown

n Figs. 7 and 8 , that is, 𝜎A 
𝑦 
( 𝑟 1 ) along 𝑟 1 , 𝜎A 

𝑥 
( 𝑟 2 ) along r 2 around Point A

n Fig. 1 and 𝜎E 
𝑥 
( 𝑟 3 ) along r 3 around Point E. Equations used in Fig. 7 are

qs. (1) and (2) [5] and (9) [6, 7] , as shown in Fig. 1 . Since compres-

ive stress 𝜎A 
𝑥 
( 𝑟 2 ) does not cause the debonding directly, 𝜎A 

𝑦 
( 𝑟 1 ) and

E 
𝑥 
( 𝑟 3 ) are mainly compared in the following discussion. As shown in

ig. 7 (a) for carbon fiber/epoxy and Fig. 7 (b) for glass fiber/epoxy when

 in = 100 𝜇m, since the stress 𝜎A 
𝑦 
( 𝑟 1 ) at Point A is larger than the stress

E 
𝑥 
( 𝑟 3 ) at Point E, debonding may occur at Point A earlier. On the other

and, when l in = 1000 𝜇m in Figs. 7 (b) and 8 (b), since the stress 𝜎E 
𝑦 
( 𝑟 3 )

t point E is larger than the stress 𝜎A 
𝑦 
( 𝑟 1 ) at point A, debonding may

ccur earlier at Point E. 

Fig. 9 shows the comparison of stress 𝜎A 
𝑦 
( 𝑟 1 ) at r 1 = 1 𝜇m close to Point

 and the stress 𝜎E 
𝑥 
( 𝑟 3 ) at r 3 = 1 𝜇m close to Point E by varying l in .The

xed position r 1 = r 3 = 1 𝜇m is selected because the singular stress having

ifferent singular indexes. In Fig. 9 (a) when l in = 450 𝜇m, the severity at

oint A and Point E is almost the same for carbon fiber/epoxy based on

he assumption 𝜎A 
𝑦 
( 𝑟 1 ) |r 1 =1 μm = 𝜎E 

𝑥 
( 𝑟 3 ) |𝑟 3 =1 μm . If the stress at different po-

ition r 1 = r 3 ≠ 1 𝜇m is used, for example, if the stresses at r 1 = r 3 = 2 𝜇m

re compared, the severities are almost the same when l in = 425 𝜇m at

oint A and Point E. As shown in Fig. 9 (b), when l in = 150 𝜇m, the sever-

ties of Point A and Point E are almost the same for glass fiber/epoxy. 

. Conclusions 

In this paper, a partially-embedded single-fiber under pull-out force

as considered focusing on two distinct singular stress fields appearing

t fiber end and entry points. To compare the severities, singular stress

istributions were obtained analytically along the interfaces along the

ber end and along the fiber entry interface. Then, the following con-

lusions were obtained. 

1) The mixed-mode ISSFs at the fiber end denoted by 𝐾 

A 
𝜎, 𝜆A 1 

, 𝐾 

A 
𝜎, 𝜆A 2 

decrease with increasing the fiber embedded length l in . Under fixed

fiber length l = 600 𝜇m, the ISSFs at l in = (1/2) l is about 30% smaller

than the ISSFs at l in = (1/4) l for carbon fiber/epoxy, and the ISSFs

at l in = (1/2) l is about 40% smaller than the ISSFs at l in = (1/4) l for

glass fiber/epoxy. 

2) The two ISSFs denoted by 𝐾 

E 
𝜎, 𝜆E 1 

, 𝐾 

E 
𝜎, 𝜆E 2 

at the fiber entry point de-

crease with increasing the fiber embedded length l in . For example,

the ISSFs at l in = (1/2) l is about 20% smaller than at l in = (1/4) l for

carbon fiber/epoxy. The ISSFs at l = (1/2) l is about 10% smaller
in 
than the ISSFs at l in = (1/4) l for glass fiber/epoxy. The ISSF decreas-

ing rate at Point E becomes smaller than that at Point A especially

when l in is large. 

3) The severities were compared at the fiber end and fiber entry point

by focusing on the stress jut 1 𝜇m away from the singular point

by varying l in (see Fig. 9 ). For carbon fiber/epoxy, the severities

at the fiber end and fiber entry point are almost the same when

l in = 450 𝜇m. For glass fiber/epoxy, the severities are almost the same

when l in = 125 𝜇m. For shorter embedded length, the buried fiber end

becomes more dangerous. 
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ppendix A. ISSFs under Arbitrary Material Combination for a 

ingle Rectangle Fiber in an Infinite Plate Subjected to Remote 

ension 

In this Appendix, the intensity of singular stress fields (ISSFs) in

ig. 2 (b) are shown in the 𝛼 − 𝛽 space. Here, 𝛼, 𝛽 denote Dundurs bi-

aterial parameters [41] , which are defined by equation (A.1). Here,

 F and G M 

are shear modulus, which can be transformed from Young’s

odulus E F , E M 

and Poisson’s Ratios 𝜈F , 𝜈M 

. Subscripts M, F represent

he matrix and reinforcing fiber, respectively. In this study, analysis is

arried out on the basis of plane assumption. 

 

 

 

 

 

𝛼= 

𝐺 𝐹 ( 𝜅𝑀 

+1 ) − 𝐺 𝑀 

( 𝜅𝐹 +1 ) 
𝐺 𝐹 ( 𝜅𝑀 

+1 ) + 𝐺 𝑀 

( 𝜅𝐹 +1 ) 
𝛽 = 

𝐺 𝐹 ( 𝜅𝑀 

−1 ) − 𝐺 𝑀 

( 𝜅𝐹 −1 ) 
𝐺 𝐹 ( 𝜅𝑀 

+1 ) + 𝐺 𝑀 

( 𝜅𝐹 +1 ) 
, 𝜅𝑖 = 

{ 

(
3 − 𝜈𝑖 

)
∕ 
(
1 + 𝜈𝑖 

)
( 𝑃 𝑙𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 ) (

3 − 4 𝜈𝑖 

)
( 𝑃 𝑙𝑎𝑖𝑛 𝑠𝑡𝑟𝑎𝑖𝑛 ) ( 𝑖 = 𝑀, 𝐹 )

(A.1) 

By using the BFM coupled with singular integral equation

36, 37, 42] , the following ISSFs 𝐹 

∗ 
I and 𝐹 

∗ 
II at Point A 

∗ in Fig. 2 (b) can

e calculated. Here, the fiber’s total length is fixed as the aspect ratio

 / D = 10. For the material combination (a) in Table 1 , the convergency

f the solution is shown in Table A.1 by varying the number of col-

ocation M increasing the order of polynomial approximation at each

oundary division. Four digits accuracy can be seen. The normalized

SSFs in Fig. 2 (b) defined by Eq. (5) are shown in Table A.2.a , A.2.b and

ig. A.1 under arbitrary material combination. 

Singular indexes 𝜆𝐴 
1 and 𝜆𝐴 

2 around the corner A and corner A 

∗ can

e calculated by solving equations (A.2a) and (A.2b) on 𝜆, respectively

36, 42] . 

https://doi.org/10.13039/501100008768
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Fig. A.1. ISSFs for a single rectangle fiber in an infinite 

plate subjected to remote tension in Fig. 2 (b). 

Table A.2.a 

𝐹 ∗ I for a Single Rectangle Fiber in an Infinite Plate Subjected to Remote 

Tension in Fig. 2 (b) when l / D = 10. 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 0.623 0.513 0.434 0.370 0.322 0.280 0.245 

𝛽 = 0.2 0.584 0.484 0.412 0.353 0.304 0.265 –

𝛽 = 0.3 0.563 0.469 0.393 0.334 0.297 – –

𝛽 = 0.4 0.547 0.449 0.382 – – – –

Table A.2.b 

𝐹 ∗ II for a Single Rectangle Fiber in an Infinite Plate Subjected to Remote 

Tension in Fig. 2 (b) when l / D = 10. 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 1.208 1.131 1.189 1.371 1.675 2.198 3.106 

𝛽 = 0.2 1.019 0.993 1.086 1.290 1.629 2.141 –

𝛽 = 0.3 0.870 0.883 1.014 1.240 1.598 – –

𝛽 = 0.4 0.753 0.810 0.955 – – – –

 

0  

r

A

S

 

p  

Table B.1.a 

𝐹 I ∕ 𝐹 ∗ I when l in / D = 5 in Fig. 2 (a) and l / D = 10 in Fig. 2 (b). 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 0.0864 0.111 0.128 0.139 0.145 0.146 0.143 

𝛽 = 0.2 0.0862 0.108 0.122 0.130 0.133 0.132 –

𝛽 = 0.3 0.0851 0.105 0.116 0.122 0.123 – –

𝛽 = 0.4 0.0832 0.100 0.110 – – – –

Table B.1.b 

𝐹 II ∕ 𝐹 ∗ II when l in / D = 5 in Fig. 2 (a) and l / D = 10 in Fig. 2 (b). 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 0.0766 0.0935 0.104 0.111 0.115 0.118 0.119 

𝛽 = 0.2 0.0760 0.0928 0.103 0.109 0.113 0.115 –

𝛽 = 0.3 0.0749 0.0915 0.101 0.107 0.111 – –

𝛽 = 0.4 0.0733 0.0895 0.0991 – – – –

Table B.2.a 

F I when l in / D = 5 in Fig. 2 (a). 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 0.05384 0.05707 0.05569 0.05163 0.04673 0.04099 0.03502 

𝛽 = 0.2 0.05032 0.05220 0.05019 0.04579 0.04052 0.03501 –

𝛽 = 0.3 0.04792 0.04898 0.04562 0.04065 0.03644 – –

𝛽 = 0.4 0.04553 0.04511 0.04209 – – – –

Table B.2.b 

F II when l in / D = 5 in Fig. 2 (a). 

𝛼 = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

𝛽 = 0.1 0.09249 0.10581 0.12418 0.15250 0.19326 0.25863 0.36925 

𝛽 = 0.2 0.07743 0.09214 0.11202 0.14115 0.18444 0.24687 –

𝛽 = 0.3 0.06516 0.08079 0.10280 0.13304 0.17696 – –

𝛽 = 0.4 0.05519 0.07249 0.09466 – – – –

fi  

F  

i  

a  

P

Here, the singular indexes 𝜆𝐴 
1 and 𝜆𝐴 

2 have real values in the range

 < 𝑅𝑒 ( 𝜆𝐴 
𝑖 
) < 1 if 𝛽( 𝛼 − 𝛽) > 0. In equations (A.2), we can put 𝛾 = 𝜋/2

epresenting the angle between interfaces r 1 and r 2 . 

𝐷 1 ( 𝛼, 𝛽, 𝛾, 𝜆) = ( 𝛼 − 𝛽) 2 𝜆2 [ 1 − 𝑐𝑜𝑠 ( 2 𝛾) ] 

− 2 𝜆( 𝛼 − 𝛽) 𝑠𝑖𝑛 ( 𝛾) { 𝑠𝑖𝑛 ( 𝜆𝛾) + 𝑠𝑖𝑛 [ 𝜆( 2 𝜋 − 𝛾) ] } 
+ 2 𝜆( 𝛼 − 𝛽) 𝛽 ⋅ 𝑠𝑖𝑛 ( 𝛾) { 𝑠𝑖𝑛 [ 𝜆( 2 𝜋 − 𝛾) ] − 𝑠𝑖𝑛 ( 𝜆𝛾) } 
+ 

(
1 − 𝛼2 ) − 

(
1 − 𝛽2 )𝑐𝑜𝑠 ( 2 𝜆𝜋) 

+ 

(
𝛼2 − 𝛽2 ) cos [ 2 𝜆( 𝛾 − 𝜋) ] = 0 (A.2a) 

𝐷 2 ( 𝛼, 𝛽, 𝛾, 𝜆) = ( 𝛼 − 𝛽) 2 𝜆2 [ 1 − 𝑐𝑜𝑠 ( 2 𝛾) ] 

+ 2 𝜆( 𝛼 − 𝛽) 𝑠𝑖𝑛 ( 𝛾) { 𝑠𝑖𝑛 ( 𝜆𝛾) + 𝑠𝑖𝑛 [ 𝜆( 2 𝜋 − 𝛾) ] } 
− 2 𝜆( 𝛼 − 𝛽) 𝛽 ⋅ 𝑠𝑖𝑛 ( 𝛾) { 𝑠𝑖𝑛 [ 𝜆( 2 𝜋 − 𝛾) ] − 𝑠𝑖𝑛 ( 𝜆𝛾) } 
+ 

(
1 − 𝛼2 ) − 

(
1 − 𝛽2 )𝑐𝑜𝑠 ( 2 𝜆𝜋) 

+ 

(
𝛼2 − 𝛽2 ) cos [ 2 𝜆( 𝛾 − 𝜋) ] = 0 (A.2b) 

ppendix B. ISSFs under Arbitrary Material Combination for a 

ingle Fiber Subjected to Pull-out Force from a Semi-Infinite Plate 

In this Appendix, the ISSFs in Fig. 2 (a) at the fiber buried end under

ull-out are shown in the 𝛼 − 𝛽 space. The fiber embedding length is
xed as l in / D = 5. Tables B.1.a , B.1.b and Fig. B.1 show the ISSF ratios for

ig. 2 (a) and (b) obtained by using the proportional method explained

n Section 2 . Table B.2.a , B.2.b and Fig. B.2 show the normalized ISSFs

t Point A in Fig. 2 (a) calculated from the ISSF ratios and the ISSFs at

oint A 

∗ shown in Appendix A . 
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Fig. B.1. (a) . FEM stress ratio. B.1(b) FEM stress ratio. 

Fig. B.2. (a) . F I when l in / D = 5 in Fig. 2 (a). B.2(b). F II when l in / D = 5 in Fig. 2 (a). 
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Fig. C.1. Integral path C for RWCIM 

( C = C 1 + C 2 + C 3 + C 4 + C 5 + C 6 ). 
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ppendix C. Reference Solution Obtained by Using Reciprocal 

ork Contour Integral Method (RWCIM) 

The ISSFs 𝐾 

𝐸 

𝜎, 𝜆𝐸 
1 

, 𝐾 

𝐸 

𝜏, 𝜆𝐸 
1 

at the fiber entry Point E in Fig. 2 (a) can be

alculated by using the proportional method explained in Section 3 from

he FEM stress ratios as shown in Eq. (18) , which is 
𝐾 𝐸 

𝜎, 𝜆1 
𝐾 𝐸 

∗ 
𝜎, 𝜆1 

= 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆1 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆1 

,

𝐾 𝐸 
𝜎, 𝜆2 

𝐾 𝐸 
∗ 

𝜎, 𝜆2 

= 

𝜎𝐸 
𝐹𝐸𝑀, 𝜆2 

𝜎𝐸 ∗ 
𝐹𝐸𝑀, 𝜆2 

. To obtain the reference solution 𝐾 

𝐸 ∗ 

𝜎, 𝜆𝐸 
1 

, 𝐾 

𝐸 ∗ 

𝜏, 𝜆𝐸 
1 

The

WCIM may be suitable. This method is based on the concept of Betti’s

aw, pioneered by Stern et al. [46] . Carpenter et al. [68] and Sinclair

t al. [70] adapted this method to the general opening crack problem.

y mean of Williams ́ eigenfunction expansion method, displacement

nd stress in the vicinity of the interface corner edge can be expressed

s [68, 71] : 

𝑖𝑗 = 

∞∑
𝑘 =1 

𝐾 𝑘 𝑓 𝑖𝑗 
(
𝜃, 𝜆𝑘 

)
𝑟 𝜆𝑘 −1 (C.1) 

 𝑖 = 

∞∑
𝑘 =1 

𝐾 𝑘 𝑔 𝑖 
(
𝜃, 𝜆𝑘 

)
𝑟 𝜆𝑘 (C.2) 

Here, 𝜆k is singular index obtained by solving Eq. (8) in Section 3 .

or most of the material combinations the singular indexes 𝜆𝐸 
𝑖 

have two

eal roots 𝜆𝐸 
1 and 𝜆𝐸 

2 corresponding to two different singular fields [67] .

ere, K k is ISSF corresponding to singular index 𝜆k , obtained by RWCIM

iscussed in this section. As shown in Fig. C.1 , symbol r is the radial dis-

ance away from Point E. Eigenfunctions f ij and g i depend on 𝜆k and 𝜃.

hen 𝜃 = 0, and use 𝐾 𝜎, 𝜆𝑘 
to denote K k f 𝜃( 𝜃, 𝜆k ), equation (C.1) is ex-

ressed as Eq. (9) . Denote by u i the displacement field and 𝜎ij the trac-

ion vector on a contour C = C 1 + C 2 + C 3 + C 4 + C 5 + C 6 + C 𝜀 , as shown

n Fig. C.1 , equation C.3 [68] is obtained from Betti’s Law: 

𝐶 

(
𝜎𝑖𝑗 𝑢 

∗ 
𝑖 
− 𝜎∗ 

𝑖𝑗 
𝑢 𝑖 

)
𝑑𝑠 = 0 . (C.3)

Here, 𝑢 ∗ 
𝑖 

and 𝜎∗ 
𝑖𝑗 

correspond to any other such solution. Contour C 𝜀 is

 three-quarter circle contour with a radius 𝜀 . Separate the contour into

 𝜀 and C R = C 1 + C 2 + C 3 + C 4 + C 5 + C 6 , equation C.3 becomes [72] : 

 𝜀 = ∫
𝐶 𝜀 

(
𝜎𝑖𝑗 𝑢 

∗ 
𝑖 
− 𝜎∗ 

𝑖𝑗 
𝑢 𝑖 

)
𝑑𝑠 = − ∫

𝐶 𝑅 

(
𝜎𝑖𝑗 𝑢 

∗ 
𝑖 
− 𝜎∗ 

𝑖𝑗 
𝑢 𝑖 

)
𝑑𝑠. (C.4)

Then, the integral I 𝜀 can be calculated from the path independent

ontour C R , without need for accurate data in the vicinity of the Point

 in FEM calculation. ISSF K k corresponding to singular index 𝜆k can

hen be obtained. Combined with f ij for 𝜎 and 𝜏 respectively, expressed

s 𝐾 

𝐸 

𝜎, 𝜆𝐸 
1 

, 𝐾 

𝐸 

𝜎, 𝜆𝐸 
2 

, 𝐾 

𝐸 

𝜏, 𝜆𝐸 
1 

, 𝐾 

𝐸 

𝜏, 𝜆𝐸 
2 

in Section 3 . Worth mentioning that, for

he integral path C shown in Fig. C.1 , contours C 1 and C 2 locate along

he stress free surface, and therefore, the integrals along these contours

re zero. 
Plane strain condition is selected for carrying out the linear elastic

nalyses in MSC Marc software. Representation of the selected mesh pat-

ern for developing these analyses is similar to that as shown in Fig. 3 .

round the interface corner edge eight-node elements are utilized, while

or other regions away from the interface corner edge, four-node ele-

ents are selected. 

RWCIM can be used to provide the reference ISSFs. However, RWCIM

equires a large number of calculations for complex operations with

atrix as well as numerical integrations along the path. The proposed

ethod in Section 3 to calculate the ISSFs (from a reference solution of

he ISSF) is just as accurate as the RWCIM, when calculating the first

erm, being more convenient and practical. In this method, comparison

etween two models can be made from the FEM stress ratios, easily. 
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