4段式圧延機用複合ワークロールにおける 圧延中の内部応力と疲労損傷評価

野田 尚昭・佐野 義一・高瀬 康・堀田 源治

はじめに

鋼の熱間圧延では、ワークロールの耐摩耗・耐 肌荒れ性と耐熱き裂性を改善する様々な研究が行 われており^{1)~6},現在では、熱間圧延でハイス製 複合ロール(ハイスロールともいう)が、幅広く用 いられている⁷⁾⁸⁾.このロールは、遠心鋳造法で製 造され、高炭素系高速度鋼(HSS)と球状黒鉛鋳鉄 (DCI)がそれぞれ外層材と内層材として使用され ている⁹⁾.ハイス製複合ロールはロール寿命に達 するまでの総圧延長さが、それ以前の高合金グレ ンロールや高クロムロールに対比して 10 倍以上に 達するものもある.

ワークロール表層は、表面肌荒れ等による表面 粗さや摩耗を除去するために、バックアップロー ルよりも少ない圧延量で頻繁に研削される. この ため、バックアップロールで問題となるスポーリ ング(ロール表面から発生した転がり疲労き裂が 内部に向かって生じる表層剥離)はほとんど生じ ない.しかし,使用中に研削される外層と異なり, ロール内部のHSS/DCI境界部および内層は,ロー ル全寿命に相当する10⁷回を越える繰返し荷重を 受ける.しかも、HSS/DCI境界層の鋳造過程で, 遠心鋳造固有の微小欠陥や不健全なミクロ組織 が生じることがあり,圧延負荷の繰返しによって HSS/DCI境界やその内部における剥離事象を伴 う.このように、ロールの長寿命化に加えて,圧 延材の高強度化に伴う高負荷圧延など、ロール使 用条件が厳しくなる中で、ロール内部を起点とす る疲労破壊に関する知見が不十分である.

図1に本稿で対象とする内部疲労破壊の例を示 す¹⁰⁾¹¹⁾.図1(a)に示す高合金グレンロールの破 壊起点では、ロール軸方向中央部のGrain/FC境 界付近でロール内部から表面に向かう半だ円形の ビーチマークが観察される.このようなGrain/FC 境界付近の剥離は、ロール胴端部でも生じること があり、主として半径方向応力 σ_rによって剥離が 生じる.このように、本研究で対象とするワーク ロールの内部破壊と、ロールメーカーが評価を

図1 バイメタルワークロールの結晶粒 / FC 境界での破損(結晶粒 = 結晶粒黒鉛, FC= フレーク黒鉛鋳鉄). (a) 破面. A:境界付近, B:シェルのビーチマーク, C:ロール面, (b) 剥離き裂の断面図¹⁰⁾¹¹.

行っているバックアップロールのスポーリング(表 層剥離)^{12)~14)}は、同じ疲労破壊でも破壊のメカニ ズムが全く異なる.すなわち、転がり疲労により バックアップロールにはスポーリングが生じるが、 そのメカニズムは主として転がり疲労に基づく表 層数 mm 内部を起点とするものであり、せん断応 力に支配される.このような現状を鑑みて、筆者 らはこれまで研究のないワークロール内部の疲労 破壊に対する強度評価の必要性を痛感してきた. すなわち、ロール自体の強度に関する要因と圧延 上の負荷要因に基づいて、ロール全域で疲労危険 度評価を行い、信頼性保障の観点からロール全域 の強度を明らかにすることが重要であると考える.

そこで、本稿では、4段圧延機用ハイス製複合 ロールを対象に、ロール内部に生じる圧延応力に 着目して、疲労破壊の危険部位に注目した研究に ついて紹介する.なお、ここでは圧延により生じ る応力の意味で圧延応力を用いる.最終的な破壊 リスクの評価に、ロールの残留応力を考慮するこ とは、不可欠であるが、その導入のための熱処理 方法は各ロールメーカーによっても異なる.よっ て、ここでは、まずこれまで研究の見当たらない 圧延中のロールに生じる応力を明確にするため、 残留応力はゼロとする.そして、圧延応力の観点 から、これまでのロール破損事故例¹⁰⁾¹⁵⁾も参考に して、疲労破壊危険部位を明らかにする.これま でに行われた圧縮応力場での疲労の研究は、転が り疲労試験のような特別な試験方法に限定されて おり、一般によく用いられる通常の疲労試験によ る評価は行われていない、すなわち、通常の疲労 破壊が圧縮応力場でどのように生じるかを考慮し た研究は極めて少ない^{16)~18)}.よって、本稿では、 圧縮応力下での耐久限度線図を提案する.

解析方法

表1に解析で用いたロール寸法諸元と圧延荷 重 P_{total} 線荷重 $p_{\text{B}}^{\text{ave}} = P_{\text{total}}/L$, $p_{\text{S}}^{\text{ave}} = P_{\text{total}}/W$ を 示す. 図2に示すようにワークロールの直径 $D_{\text{W}} = 660 \text{ mm}$,長さL = 1800 mm,バックアップロー ルの直径 $D_{\text{B}} = 1400 \text{ mm}$,長さL = 1800 mmとし

表1 ロール寸法諸元と圧延荷重 P_{total} ,線荷重 $p_{\text{B}}^{\text{ave}} = P_{\text{total}}/L$, $p_{\text{S}}^{\text{ave}} = P_{\text{total}}/W$.

		圧延 ロール	バックアップ ロール	圧延鋼 ^{a)}
寸法	直径 (mm)	$D_{\rm W} = 660$	$D_{\rm B} = 1400$	—
	長さ/幅(mm)	L = 1800	L = 1800	W = 1200
王延祥 Ptotal(苛重, (kN)		16400	
バック (kN/ 荷重,	クアップロール mm) からの線 p ^{ave}		$P_{\text{total}}/L = 9.1$	
圧延鋼 (kN/mm) か らの線荷重, P ^{ave}			$P_{\rm total}/W = 13.7$	

a) 口の厚さ:4.9mm, 出口の厚さ:3.3mm, 接点幅: 23mm

図2 4 連圧延機の 3 次元 FEM モデル.

た. 圧延材 (Rolled steel) の幅は W = 1200 mm とす る. 圧延荷重はロール全体で $P_{\text{total}} = 16400 \text{ kN}$ を負 荷することを標準とする¹⁹⁾²⁰⁾. このとき, 圧延材 による線荷重は $p_s^{\text{ave}} = P_{\text{total}}/W$ となる. また, 図 2 に示すようにバックアップロールには長さ 90 mm, 深さ 20 mm の面取りを設ける²¹⁾. 面取りの必要性 については [実圧延を想定したロールの疲労危険 度評価] の節で述べる.

表2に解析で使用するロールの材料特性を示 す²²⁾. バックアップロールは高クロム鋼を使用し, ワークロールの外層は高炭素ハイス(ハイスまた

表2 解析で使用するロールの材料特性.

特性	HSS	HCI	バックアップロール
引張応力 (MPa)	1575	415	1575
残留応力 ^{b)} (MPa)	630	166	630
耐力 (MPa)	1270	410	_
ヤング率 (GPa)	230	174	210
ポアソン比	0.3	0.28	0.3
密度 (kg/m ³)	7600	7300	7800

b) 文献 22) より

図3 HSS 層と DCI 層の両方の応力-ひずみ線図.

主っ	TICC B	L	DCI	屋の両	SOLV	当時口	(maga 0/)	26)27)
ৰ ১	102 周	\sim	DUI	眉の回り	ノッノロー	子成刀	(IIIass /o)	

	C	Si	Mn	Р	S	Ni	Cr	Mo	Со	V	W	Mg
HSS	$1 \sim 3$	<2	<1.5	<1	<1	<5	$2\sim7$	<10	<10	$3 \sim 10$	<20	<10
DCI	$2.5 \sim 4$	$1.5\sim 3.1$	<1	< 0.1	< 0.1	$0.4 \sim 5$	$0.01 \sim 1.5$	$0.1 \sim 1$	<1	<1	<1	$0.02 \sim 0.08$

金属 Vol.92 (2022) No.2

は HSS で表示する) を, ワークロールの内層は球 状黒鉛鋳鉄 (DCI) を用いるものとする.外層は厚 み60mm(r=270~330mm)である. これまでの 研究より、熱による応力の変化は、表層1mm程 度までしか及ばず、今回対象としている HSS/DCI 境界付近には及ばない23)24) ことが知られている. また、ここで対象とするロール内部の熱応力は圧 延開始後から1時間ほどでロール内外温度差がなく なり、50~80℃で定常状態に達するので消滅する. ロール摩耗によるロール組み換えまでに通常10時 間以上使用されることから、疲労破壊を考える場 合に圧延開始初期の熱応力による影響を無視する 場合が多い11).よって、本研究では温度は室温と する. 図3に室温でのワークロールのHSS層と DCI層の両方の応力-ひずみ線図を示す.これは、 材料特性のデータベース (J-MatPro²⁵⁾) を利用し ている. 表3に同様部分の化学成分(mass%)を 示す²⁶⁾²⁷⁾

ロール回転により生じるワーク ロールの応力変化

ロール内部起点の疲労破壊を考察するに際して さきの調査結果⁶⁾を参考にして破壊リスクの高い ロール内部3次元空間領域(危険領域)を経験に基 づいて想定する.その危険領域においてロール回 転に対応して変動する半径方向応力 σ_r に注目する. ロール内部疲労破壊事例によれば,破壊起点部は r = -定面,すなわち半径方向に直行する面に沿っ て見られる¹⁰⁾¹⁵⁾.

本節ではロール内部の疲労を支配する最大応力 振幅発生位置を解析結果に基づいて考察する.応 力振幅の変動は円周方向に現れるので、ここでは 基本的な形状のロールを対象にする.

図4 バックアップロールとワークロール間の線圧力 pB(z)と p^{ave}の定義.

図5 図4において、 $P/P_{total} = 0$ のとき、ワーク表面のz = 0に生じる σ_r の周方向の変動z = 0.

ワークロール表面の圧延応力の周方向の 応力変化

圧延状態の解析では圧延トルクを無視し,圧延 荷重のみを考慮する.図4に解析に用いる線荷重 $p_{\rm B}(z), p_{\rm S}^{\rm ave}$ のモデルを示す.ワークロールはバック アップロールと $\theta = 90^{\circ}$ で接触し,線荷重 $p_{\rm B}$ を受け る.また,圧延材と $\theta = -90^{\circ}$ で接触し,線荷重 $p_{\rm S}^{\rm ave}$ を受ける.線荷重 $p_{\rm S}$ はワークロール摩耗プロフィー ルの影響は受けにくいが、圧延材の幅方向に温度の 影響を受けて変動する。その解析法は一般化され ていないので、ここでは $p_{sv}^{ave} = const.$ として扱う。

図5にワークロール表面のz=0に生じる σ_r の周 方向の変動を示す.表面応力と内部応力が周方向 に同様に変化することは後述する(図7,図8参照). 注目する応力 σ_r において接触域 $\theta = -90^\circ$ (圧延材 側)が最大圧縮応力となる. $\theta = 90^\circ$ (バックアップ ロール側)がそれに次いで大きい.これは、圧延材 から受ける荷重幅が 1200 mm であり、バックアッ プロールから受ける荷重幅より短いことによる.

ワークロール表面と HSS/DCI 境界の軸方向 の応力変化

次に図 6 (a) に示すワークロールの表面 $(\phi = 330 \text{ mm})$ と HSS/DCI 境界面 $(\phi = 270 \text{ mm})$ におけ る 5 つの角度 $(\theta = -90^\circ, -45^\circ, 0^\circ, 45^\circ, 90^\circ)$ での z 方 向の応力分布を比較する. 図 1 の例に示すように, HSS/DCI 境界に生じたき裂は,表面ならびに周方 向に進展する.よって,圧縮の最大をとる σ_r に注 目すれば十分である.破壊は σ_r によって生じてい るので,ここでは,圧縮の最大をとる σ_r に注目する. 図 6 (b) にロールの表面,HSS/DCI 境界面における 各角度の応力 σ_r を示す.前節では z = 0 の表面で θ

(184)

図6 z方向の表面 r = 330 mm および境界層 r = 270 mm に沿った応力分布 σ_r . (a) ワークロールの表面および境界層, (b) 分布 σ_r (HSS/DCI 境界および $P/P_{\text{total}} = 1$ の 場合の表面) $/P_{\text{total}} = 1.0$.

= -90°において最も大きい圧縮応力が発生してい ることが示された. 軸方向の表面と HSS/DCI 境界 面の応力分布に注目した場合でも同様に、 $\theta = -90^{\circ}$ (圧延側)で最大圧縮応力が各種応力で発生してい る. $\theta = 90^{\circ}$ (バックアップロール側) がそれに次い で大きい. その他の応力 σ_{θ} , σ_{z} についても解析を 行ったが、応力 σ_{r} が最大圧縮応力となる. そのた め、解析では応力 σ_{r} に着目して考察を行う必要が ある. 参考までに、圧縮応力 σ_{r} は、表面 (r = 330 mm) において $\sigma_{r} = 817$ MPa < 1270 MPaとなり外層 (HSS) の降伏応力を下回っている. 同様に、HSS/DCI 境 界 (r = 270 mm) においても σ_r = 388 MPa < 410 MPa となり内層 (DCI) の降伏応力以下である.

HSS/DCI 境界付近の軸方向の応力変化

図7にHSS/DCI境界層r=270mmの内側近傍 からロール表面まで 255 mm $\leq r \leq 330$ mm の σ_r を 示す. 図7(a)は、バックアップロール側($\theta = 90^\circ$) におけるワークロールとバックアップロールの接 触領域 z ≤ 900 mm の σr を示す. 図 7 (a) に示す r = 一定の σ_r の応力分布には,接触領域の端部付 近でピークがみられる. 図7(b)は, 圧延側(θ = -90°) でのワークロールと圧延材の σ_r を示す. 同 様に、接触端部でその接触領域 $z \le 600 \text{ mm} \text{ } \sigma_r$ が大きく、表面の最大応力位置は、内部でも同様 である. 図7(a), (b)を同じで比べると図7(b)の 圧縮応力が大きいことがわかる.図7(c)に応力分 布のコンター図を示す. この等高線図から, 圧延 鋼の長さ W/2=600 mm が, バックアップロール 長さより小さいため、 γ が小さいロール内部まで大 きな圧縮応力が生じていることがわかる.

本研究で扱う疲労破壊は図1の例に示すように、 ロール内部で発生し、ハイス (HSS) と球状黒鉛鋳 鉄 (DCI)の HSS/DCI 境界部を含む内部から生じ る.すなわち、図1に示すような HSS/DCI 境界近 傍のき裂発生に関して、HSS/DCI 境界付近の σ_r の 応力振幅が重要である。そこで本稿では、「実圧延 を想定したロールの疲労危険度評価」の節で実圧 延を近似した条件を決定した後、「結論とまとめ」 の節で、このような、これまで研究のなされていな い HSS/DCI 境界層近くの疲労破壊を対象として、 HSS/DCI 境界層近くの疲労破壊を対象として、

ワークロールに設ける摩耗プロ フィールの線荷重への影響

本節の解析に用いるロールプロフィール, 圧延 負荷及び解析対象を表4に示す. ここでは, ロー ルプロフィール hc, hwを変化させたときの線荷重 に対する影響を考察して実圧延条件を決定する.

ワークロールはバックアップロールから線荷重

図7 HSS/DCI境界層 r = 270 mm の内側近傍からロール表面まで $255 \text{ mm} \le r \le 330 \text{ mm}$ の σ_r . (a) バックアップロール 側, (b) 圧延鋼側, (c) 図2の $\theta = \pm 90^\circ$ における σ_r のコンター図.

表4 解析に用いるロールプロフィールと圧延負荷および解析対象.

	D-	ルプロフィール ()	mm)	口延营重比	日栖とする幼児	
バックフ		ップロール	圧延ロール	1 加速何重比		
	面取り長さ <i>l</i> c	クラウン量 h _c	摩耗量 hw	P/P_{total}	(kN/mm)	
一般プロフィール	90	0.5	$0 \sim 0.3$	$0.5 \sim 1.5$	線圧力 pB	

 $p_{B}(z)$ を, 圧延材から p_{S}^{ave} を受ける. ワークロール がバックアップロールから受ける線荷重 $p_{B}(z)$ は, 式 (1) で与えられる. また,総圧延荷重Pは式 (2) で,線荷重 p_{B}^{ave} は式 (3) で, 圧延材から受ける線 荷重 p_{S}^{ave} は式 (4) で与えられる (図4参照)²⁸⁾. なお, 式 (1) と (3) は,線荷重の平均値 $p_{B}(z) \ge p_{B}^{ave}$ の違 いを説明している.

$$p_{\rm B}(z) = \int_{\frac{\pi}{2} - \theta_1}^{\frac{\pi}{2} + \theta_1} \sigma_r(r, \theta, z)_{r=330\rm{mm}} \cos^2\theta r d\theta \ (1)$$

$$p_{\rm B}(z) = \int_{\frac{\pi}{2} - \theta_1}^{z_1} \sigma_r(r, \theta, z)_{r=330\rm{mm}} \cos^2\theta r d\theta \ (1)$$

$$b = \int_0^z p_{\rm B}(z) \, dz \tag{2}$$

$$\dot{p}_{\rm B}^{\rm ave} = \dot{p} / L \tag{3}$$

$$p_{\rm S}^{\rm ave} = p/W \tag{4}$$

ここで, θ1 は, 図4(a) に示される接触領域の角度,

86

 z_1 は接触長さである.また, $\sigma_r|_{r=330}$ はロール表面 の接触応力である.なお,接触角 θ_1 は小さいので 応力の座標変換は無視できる.線荷重 $p_B^{ave} = P/L$ は一般に用いられるワークロールへの外力であ る.図4に示す線荷重 p_S^{ave} は前節で述べたように $p_S^{ave} = P/W = \text{comst.}$ として扱う.

実圧延モデルにおけるワークロールの摩耗 プロフィールとバックアップロールのクラ ウンプロフィール

緒言に述べたように、ロール全域で、疲労危険 度評価を行うため、図2に示すバックアップロー ル直径D_B(2)に設ける適切なクラウン量h_cと、ワー クロールの直径D_W(2)に生じる適切な摩耗量プロ フィールを設定する.同時に、ロールの熱膨張に よるロールの形状変化(サーマルクラウン)もバッ クアップロールによる線荷重分布に影響を与える が、摩耗プロフィールに対比して滑らかに変化す るので、ここでは無視する.ここで、バックアッ プロール直径D_B(2)に設けるクラウン量h_cと、 ワークロールに生じる直径D_W(2)を式(5)、(6) で表現し図8に示す.基本条件では摩耗量h_w=0 である.l_aは、ワークロールの曲線部の長さであ り、l_bは、バックアップロールの曲線部の長さで ある.

 $D_{\rm B}(z) = 1400 + 2h_{\rm c}\sqrt{1 - z/l_{\rm b}}$ (5)

$$D_{\rm B}(z) = 660 - 2h_{\rm w}\sqrt{1 - z/l_{\rm a}} \tag{6}$$

式(6)の摩耗プロフィールは、摩耗端部での変 化が大きく、ロール中央に向かって摩耗量 hw が緩 やかに変化する.円弧形状で与えられる場合に比 べて、バックアップロールのクラウンプロフィー ルの式(5)の最大相対誤差は、hc=0.5 mm に対し て 0.06/0.5 = 12%以内で一致させている.

式 (5), (6) を用いて解析に用いる適切なバック アップロールのクラウン量 h_c を考察する. バッ クアップロールの曲がりによるたわみ $\Delta \delta_z$ は中 心軸における軸方向胴部端部のたわみ $\delta_{z=900}$ と 軸方向中央のたわみ $\delta_{z=0}$ の差から求まり, $\Delta \delta_z =$ $\delta_{z=900} - \delta_{z=0} = 0.2 \text{ mm}$ となる. また, 接触相手の ワークロールの最大摩耗量は, $h_w^{\text{max}} = 0.3 \text{ mm}$ と 見積もることができる. クラウン量 h_c は, これ らの和, すなわち $h_c = \Delta \delta_z + h_w^{\text{max}}$ とすればよい. よって, バックアップロールのクラウン量 $h_c =$ $\Delta \delta_z + h_w^{\text{max}} = 0.2 \text{ mm} + 0.3 \text{ mm} = 0.5 \text{ mm}$ とする.

実圧延モデルにおけるワークロール摩耗プ ロフィール

実圧延モデルで用いるワークロールの適切な摩 耗プロフィールを検討するために、図8で、クラ ウン量 $h_c = 0.5 \text{ mm}$ を固定して、ワークロールの 摩耗量 hw = 0, 0.1, 0.2, 0.3 mm と変化させて、線 荷重 pB(z) への影響を議論する. 図9に異なる摩 耗量における接触領域に沿った線荷重 pB(z)を 示す. 摩耗量 hw = 0 のとき線荷重 pB(z) が最も 大きくなり、その発生位置は摩耗量 hw が増加す るにつれてロール端面側に移動する.図10に圧 延荷重 P/Ptotal = 0.5, 1.0, 1.5 に対する最大線荷重 pB(z)とその位置を示す. ここでは, 圧延材温度や 圧延荷重の設定誤差等のばらつきや、嚙みこみ時 の衝撃等を考慮して圧延荷重を標準荷重に対して P/Ptotal = 0.5~1.5 とした. 図 10 に示すように,最 大線荷重 pB(z) は圧延荷重 P/Ptotal によらず、摩耗 量hwが増加とともに小さくなる.最大線荷重の発 生位置は $h_w = 0$ のとき圧延材幅端部 (z = 600 mm) 付近で発生し、hwが増加すると、この位置はロー

手**忙里**.

金属 Vol.92 (2022) No.2

(187)

クアップロール

 $l_{\rm b} = 810 \, {\rm mm}$

クラウン曲線

曲線摩耗

=690 mm

210

図9 $h_c = 0.5$ mm, $P/P_{total} = 1.0$ および $h_w = 0, 0.1, 0.2, 0.3$ mm のときのバックアップロールよりの線圧力 $P_B(z)$ (図中の点は実際の回転状態を表す).

図 10 圧延荷重 *P*/*P*_{total} = 0.5, 1.0, 1.5 に対する最大線 荷重 *P*_B(*z*) とその位置.

ルの端面へ移動する. これは, ロール中心のク ラウンが高く, 端面に向かっていくにつれてクラ ウンが徐々に小さくなっていることが関係してい る.

以降の解析では,最大摩耗量 $h_w^{max} = 0.3 \text{ mm}$ では, $p_B(z)$ が小さいので,最大線荷重 $p_B(z)$ が比較的高く,摩耗量も比較的大きい $h_w = 0.2 \text{ mm}$ を用いる.

実圧延を想定したロールの 疲労危険度評価

前節までの議論より、バックアップロール面取 り長さ $l_c = 90 \text{ mm}$ 、クラウン量 $h_c = 0.5 \text{ mm}$ 、ワー クロール摩耗量 $h_w = 0.2 \text{ mm}$ と設定し、実圧延を 想定した解析を行う、表4に解析に用いるロール プロフィールと圧延負荷および解析対象を示す、 ここで、圧延荷重は $P/P_{\text{total}} = 1.0$ が標準であるが、 実圧延で想定される噛みこみ時の衝撃や、圧延材 温度低下などの危険要因を考慮して、本節ではよ り厳しい条件 $P/P_{\text{total}} = 1.5$ を設定する。

ロール内部応力の解析結果

HSS/DCI境界付近での剥離やロール中心付近か らの破損事例 (図 1) を考慮して,想定される危険 領域の疲労強度を考察する.ロール回転ごとに表 れる応力 σ_r の最大・最小値のサイクルがロール内部 疲労き裂の駆動力である²⁹⁾.そこで,注目するロー ル内部の位置を図 11 にB²⁷⁰₉₀₀| $_{\theta=90^{\circ}}$, B²⁷⁰₉₀₀| $_{\theta=90^{\circ}}$, B²⁷⁰₉₀₀| $_{\theta=0^{\circ}}$, C⁰_{0~900}| $_{\theta=90^{\circ}}$, C⁰_{0~900}| $_{\theta=0^{\circ}}$, として示 す.ここで,B²⁷⁰₉₀₀| $_{\theta=-90^{\circ}}$ を例とすると,上付き添 字 270 は,座標 r = 270 mm を表し、下付き添え 字 0~900 は,座標 z = 0~900 mm を表す.これ らの位置で圧延材から受ける荷重 $p_{\rm B}^{\rm ave}$ ($\theta = -90^{\circ}$) と,バックアップロールから受ける $p_{\rm B}^{\rm ave}$ ($\theta = 90^{\circ}$) のそれぞれに注目する.

図 12 には HSS/DCI 境界上の圧延材側($\theta = -90^{\circ}$) とバックアップロール側($\theta = 90^{\circ}$) それぞれ の応力 σ_r の軸方向変化を示す. これらの圧縮応力 はロール胴長中央z = 0から胴端z = 900 mm の間 でほぼ一定である. その引張りの最大値はz = 0 に て $\sigma_{max}^{\theta=0^{\circ}} = 4$ MPa と無視できる程度である.

次に、図 12 により疲労破壊に支配的な応力で ある応力振幅 σ_a の値とその位置を求める. 応力振 幅 σ_a は圧延材側 ($\theta = -90^\circ$) で最小値を示す範囲 (0 $\leq z \leq 600 \text{ mm}$) とバックアップロール側 ($\theta = 90^\circ$) で最小値を示す範囲 ($600 \text{ mm} \leq z \leq 900 \text{ mm}$) に分 けて考える. ここで z = 600 mm は 2 つの応力分布

88

600

が交差する軸方向の位置である. ロール胴中央を 含む圧延材側 ($\theta = -90^{\circ}$) の範囲における最小応力 は $\sigma_{nnin}^{\theta=-90^{\circ}} = -602$ MPa であり,同様に最大応力振幅 はz=0 において $\sigma_{a}^{max} = \sigma_{nnin}^{\theta=0^{\circ}} - \sigma_{nnin}^{\theta=90^{\circ}} = 606$ MPa で ある.以下この位置 (r, z) = (270 mm, 0) を B₀²⁷⁰ で 表す.一方,ロール胴端部を含むバックアップ ロール側 ($\theta = 90^{\circ}$) 側の範囲における最小応力は $\sigma_{nnin}^{\theta=90^{\circ}} = -486$ MPa であり,この領域での最大応 力振幅はz = 750 mm において $\sigma_{a}^{max} = \sigma_{nnin}^{\theta=0^{\circ}} - \sigma_{nnin}^{\theta=-90^{\circ}}$ = 488 MPa が求まる.以下この位置 (r, z) = (270 mm, 250 mm) をB₂₇₀²⁷⁰ で表す.

図 13 にワークロールー周にわたる HSS/DCI 境 界上 (r = 270 mm)の応力分布を示す.実線の中央 の応力 σ_r at z = 0 に注目すると,圧延材側で最大圧 縮応力 σ_r ,次いでバックアップロール側の圧縮応

図 13 *P*/*P*_{total} = 1.5 のとき, *z* = 0 および*z* = 750 mm でのワークロールー周にわたる HSS/DCI 境界上 (*r* = 270 mm) の応力分布 *σ_r*.

続いて、中心部からの破壊を想定して図 14 で ワークロール中心 (*r*,*z*) = (0,0) での応力振幅を考 察する.中心 (*r*,*z*) = (0,0) では最大引張応力 $\sigma_{max}^{\theta=90^{\circ}}$ = 47 MPa (θ = 90°),最大圧縮応力 $\sigma_{max}^{\theta=0^{\circ}}$ = -85 MPa

図 14 $P/P_{\text{total}} = 1.5$ のときの圧延ロール中心r = 0から $\theta = 0^{\circ}$ と $\theta = 90^{\circ}$ までのz方向の圧延応力 σ_r .

表5 最大応力,最小応力,平均応力,応力振幅 (P/P_{total} = 1.5 のときの円周上の B₀²⁷⁰, B₇₅₀, C₀⁰).

円周上の点	σ _{rmax} (MPa)	$\sigma_{r \min}$ (MPa)	σ _m (MPa)	σ _a (MPa)
${ m B}_{0}^{270}$	4	-602	-299	303
B_{750}^{270}	2	-486	-242	244
C_0^0	47	-85	-19	66

 $(\theta = 0^{\circ}), が生じ, 最大応力振幅 <math>\sigma_a^{max} = 132 \text{ MPa}$ となる.以下,中心 (r, z) = (0, 0)を C_0^0 とする.

以上述べた3つの危険領域にB²⁷⁰|rolled steel, B²⁷⁰|backup roll, C⁰ をまとめて図15に示す. 表5 にこれらの3点の応力振幅および平均応力を示す.

耐久線図による疲労危険度評価

表5より、ロール内部の注目点はいずれも圧縮 応力場にある. このような圧縮応力場での疲労破 壊は軸受や圧延用バックアップロールでは転がり 疲労として多くの研究例がある^{30)~33)}.しかし、い ずれの材料強度も主として転がり疲労強度で評価 されており,通常の疲労試験による評価は適用さ れていない. すなわち, 通常の疲労試験による強 度のデータは大きな圧縮場ではほとんど見当たら ない⁸⁾. これまでの圧縮応力場での疲労の研究に よれば、疲労き裂発生段階では、平均応力の影響 はほとんど認められず、き裂発生寿命は応力振幅 によって支配されることが示されている^{16)~18)}. -方,き裂進展段階では、完全な圧縮状態(例えば、 図 16 (c)) でき裂は停留し、疲労破壊には至らない ことが知られている16)~18). そこで,これまで議論 がなされていない、大きな圧縮応力場における疲 労強度を耐久線図を用いて以下のように考える.

図16は大きな圧縮場における疲労強度と耐久 線図であり、以下のような考え方で筆者らが創案 したものである.はじめに、修正グッドマン線の 延長線上のaと圧縮片振り45°の線との交点をE とする.点Eは圧縮片振り(図16(c))であるため、 疲労に伴うすべり線は発生するが、最終破断には

図 15 圧延ロール内の円上にある3つの危険領域 $(B_0^{270}|_{rolled steel}, B_{750}^{270}|_{backup roll}, C_0^0).$

90

金属 Vol.92 (2022) No.2

図 16 危険領域における 3 点 B²⁷⁰₅₀, B²⁷⁰₀, C⁰₀. (a) 疲労限度図, (b) D 点の応力, (c) E 点の応力, (d) F 点の応力, (e) 安全率の定義.

至らない^{16)~18)}. そこで、点Eに最終破断を生じ させるために必要な引張応力振幅を点 D の両振り 疲労限である σw0 をもとに考察する. 図 16 (b) の 点 D の σ_{w0} の引張側の応力振幅 $\sigma_a = \sigma_{w0} = 166$ MPa に対して、図16(c)の点Eの圧縮側の応力振幅は σ_a = 554 MPa (277 MPa × 2) と 3 倍以上である. 点 E での疲労損傷は、疲労き裂発生段階のものであ り、応力振幅により支配されるので、点 D の損傷 に比べて格段に大きい.したがって、点Eでき裂 を進展させるための引張応力として点 F'の σw0 を 考えるとそれは過大となる.一方,点 E ではこれ までの研究からすべり線は発生するが⁶⁾⁸⁾,き裂の 進展と最終破断は生じない.よって、点Eと点F' の中間である点 F を通る直線を圧縮側平均応力に おける耐久線図とする.加えて圧縮強度 -σ_Bおよ び, 圧縮側の片側疲労振幅限界 σ_Bを強度限界域と して A-D-F-G-H を耐久線図とする.図 16 には危 険領域における3点B²⁷⁰₂, B²⁷⁰₀, C⁰₀を示す. 安全率 SF はいずれも1以上あり、安全側にあるが、圧延 材側に存在する B²⁷⁰ が相対的に最も危険側にある ことがわかった.一方、ロール中心部 C⁰では、危 険度は小さく,実体ロールでの経験とかけ離れてい るのは、残留応力や材料欠陥を考慮していないこと による、応力の大きさに対する、疲労耐久限界強さ の比を安全率 SF と定義して (図 16 中), 疲労危険

度を評価する指標とする. 図 16 (a) の〇は,先の研 究で求めた残留応力を重ね合わせた場合の B_0^{270} の 結果^{34)~36)}である.この場合には,SF = 0.95 < 1 と なり,さきの調査結果¹⁰⁾¹¹⁾にあるように,実際のロー ル破壊がこの付近で生じることと一致する.

結論とまとめ

本稿では、4段圧延機用ハイス製複合ロール (内層 DCI)を対象に、ロール内部に生じる圧延 応力に着目して, 疲労危険度評価の面から考察し た. 負荷要因として, 圧延応力の影響を第一義と し、残留応力はゼロとした. そして、圧延応力の 観点から、これまでのロール破損事故例10)11)も 参考にして、疲労破壊危険部位を考察した.用 いた圧延条件は、具体的には、実在製鉄所の平 均的な圧延材における条件を参考にして¹⁶⁾一定 とし、ワークロールの直径 Dw=660 mm,長さ L = 1800 mm, バックアップロール(高クロム鋼)の直径 $D_{\rm B} = 1400 \, \text{mm}$,長さ $L = 1800 \, \text{mm}$ とした (図2参照). 圧延材の幅W=1200mmとし, 圧延 荷重は全体で Ptotal = 16400 kN を標準とした¹⁹⁾²⁰⁾. なお, 圧延負荷要因に含まれ, 圧延初期に現れる 熱応力は、疲労への影響が小さく無視した、以下 に得られた結論を示す.

(1) 実圧延での疲労破壊の経験に基づく危険領 域 (HSS/DCI 境界近傍と中心) に注目して,疲労破 壊危険度を考察した.その結果,圧延材側の線荷 重に対応する HSS/DCI 境界部 B₀²⁷⁰ と,バックアッ プロール側の線荷重のピークに対応する HSS/DCI 境界部B₅₀ とで,それぞれ大きい応力振幅が生じ, 疲労破壊危険度の高いことを示した.

(2) 疲労破壊危険部の考察において、ロール回転ごとに生じる最大・最小のロール半径方向応力 σ_rを基に、耐久線図を用い、相対安全率 SF を定 義して疲労レベルを評価した.疲労破壊危険領域 の解析結果は、外内層 HSS/DCI 境界と内層中央 部それぞれを起点とする実ロールの破壊事例を裏 付けるものである.

(3) ロール内部疲労を支配する半径方向応力 σr に関して, 圧縮応力域での公知の破壊条件がない ため, 圧縮応力下での耐久限度線図を提案した. 具体的には完全片振荷重下では最終破断に至らな いことから, 必要な引張応力を推定した.

なお,今後,残留応力を含めた実圧延条件を近 似したもとで,疲労破壊危険部位および危険部位 をより詳細すなわち残留応力,材料欠陥を含む強 度を考察していく必要がある.

参考文献

- K. Goto, Y. Matsuda, K. Sakamoto and Y. Sugimoto: Basic Speed Characteristics and Microstructure Steel Rolls for Hot Rolling Mill :ISIJ Int., 32 (1992), 1184.
- Y. J. Kang, J. C. Oh, H. C. Lee and S. Lee: Effects of carbon and chromium additions on the wear resistance and surface roughness of cast high-speed steel: Metall. Mater. Trans. A, **32** (2001), 2515.
- J. W. Park, H. C. Lee and S. Lee: Composition, Microstructure, Hardness, and Wear Properties of High-Speed Steel Rolls: Metall. Mater. Trans. A, 30 (1999), 399.
- 4) 大段剛, 辻本豊, 木村広之:優れた耐摩耗性を有 する高合金グレンロールの開発, 鋳造工学, 85 No.6 (2013), 361.
- M. Sedlaček, B. Podgornik and S. Milanovič: A modified heat treatment to improve the properties of double-layer cast rolls: Mater. Technol., 48 (2014), 983.
- 6) A. Molinari, M. Pellizzari, A. Tremea, A. Biggi and G.

Corbo: Effect of matrix microhardness on thermal fatigue behavior of spincast high speed steels for hot rolls: Mater. Sci., **21** (2013) 352.

- 7) 上宮田和則,石川晋也,宮原広郁,紺野裕司:熱間 圧延ロール用に開発した高耐摩耗型鋳鉄ロールの耐 摩耗特性に及ぼす MC 型炭化物の影響,鉄と鋼,106 No.12 (2020), 883.
- Y. Sano, T. Hattori and M. Haga: Characteristics of Highcarbon High Speed Steel Rolls for Hot Stri p Mill, ISIJ Int., 32 (1992), 1194.
- N. A. Noda, Y. Sano, M. R. Aridi, K. Tsuboi and N. Oda: Residual Stress Differences between Uniform and Non-Uniform Heating Treatment of Bimetallic Roll, Effect of Creep Behavior on Residual Stress, Metals, 8 (2018), 952.
- 10) 佐野義一,木村和夫:ホットストリップミル仕上後 段作業ロールに生じるスポーリングの統計的解析,鉄 と鋼,9(1987),1154.
- 11) 佐野義一:熱間圧延用ロールにおける内部疲労破壊 と課題:第245回日本材料学会疲労部門委員会第36 回強度設計・安全性評価部門委員会合同委員会報告書, 京都(1999),40.
- H. Li, Z. Jiang, K. A. Tieu and W. Sun: Analysis of premature failure of work rolls in a cold strip plant, Wear, 263 (2007), 1442.
- G. Pantazopoulos and A. Vazdirvanidis: Fractographic and Metallographic Study of Spalling Failure of Steel Straightener Rolls, J. Fail. Anal. Prev. 8 (2008), 509.
- 14) Q. Dong, J.-G. Cao, H.-B. Li, Y.-S. Zhou, T.-L. Yan and W.-Z. Wang: Analysis of Spalling in Roughing Mill Backup Rolls of Wide and Thin Strip Hot Rolling Process: Steel Research Int., 86 (2015), 129.
- 15) K. H. Schroder: A Basic Understanding of the Mechanics of Rolling Mill Rolls, Eisenwerk Sulzau-Werfen, ESW-Handbook, Tenneck, Austria 2003.
- 16) 西谷弘信,山下尚義: 70/30 黄銅疲れき裂の発生および伝ばに対する平均応力の影響,日本機械学会論文集A編,32 242 (1966),1456.
- 17) 西谷弘信,後藤真宏:S45C焼なまし材の引張圧縮 疲労におけるき裂発生および初期き裂伝ばに及ぼす平 均応力の影響,日本機械学会論文集A編,50460(1984), 1926.
- 18) 秋庭義明,田中啓介,谷口尚正:片振圧縮繰返し下における低炭素鋼切欠材での微小疲労き裂伝ばと停留,日本機械学会論文集A編,53 493 (1987),1768.
- 19) 佐野義一:鉄鋼・非鉄金属圧延加工用ロールの最近 の技術,第93回塑性加工学講座「棒線形菅の圧延中

92

心とした塑性加工の基礎と応用」,名古屋,199.

- 20) 酒井悠正,野田尚昭,佐野義一,張国偉,高瀬康: スリーブ組立式圧延ロールの界面クリープに及ぼす駆動トルクの影響,鉄と鋼,105 12 (2019), 1126.
- 21) 社団法人日本鉄鋼協会:わが国における最近のホットストリップ製造技術:社団法人日本鉄鋼協会,東京 (1986),311.
- 22) 濱田繁, 迫田優, 佐々木大輔, 上田正治, 野口博司: 微視組織構造に注目したパーライト鋼の疲労限度特性 評価について, 材料, 60 9 (2011), 790.
- 23) 関本靖裕,田中守通,沢田良三,古賀政義:熱間圧 延条件のワークロール表面温度に及ぼす影響,鉄と鋼, 10 (1975), 2337.
- 24) 関本靖裕:熱間圧延ロールの材質と寿命(塑性加工 用工具の材質と寿命特集号),塑性と加工,23 (1982), 952.
- 25) 株式会社ユーイーエス・ソフトウェア・アジア: JMatPro, (online), available from (https://www.usiasia.com/jmatpro/) (accessed 2021-07-16).
- 26) N. A. Noda, K. Hu, Y. Sano, K. Ono and Y. Hosokawa: Residual Stress Simulation for Hot Strip Bimetallic Roll during Quenching: Steel Research Int., 87 (2016), 1478.
- 27) N. A. Noda, K. Hu, Y. Sano, K. Ono and Y. Hosokawa: Usefulness of Non-Uniform Heating and Quenching Method for Residual Stress of Bimetallic Roll: FEM Simulation Considering Creep Behavior, Steel Research Int., 83 (2017), 1.
- K. L. Johnson: Contact Mechanics, Cambridge University Press, (2003), 92.
- G. Luo and Y. Liu: Two simplified methods for fatigue crack growth prediction under compression-compression cyclic loading, Mar. Struct., 58 (2018), 367.
- 30) 寺田岳,清水茂夫:軸受鋼における回転曲げ疲労試 験に関する研究,2010年度精密工学会春季大会学術 講演会論文集2010S(0),(2010),695.
- 31) 長瀬光夫,清水茂成,清水英明,田部博輔,工藤浩一, 後藤宏:厚板仕上圧延機用補強ロールの疲労層と改削 基準について,鉄と鋼,9(1970),1201.
- 32) T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima and T. Nakamura: Statistical duplex S

 N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime, Int. Journal of Fatigue, **32** (2010), 497.

- 33) E. Zalnezhad, A. A. D. Sarhan and P. Jahanshahi: A New Fretting Fatigue Testing Machine Design, Utilizing Rotating-Bending Principle Approach: Int. J. Adv. Manuf. Technol., **70** (2014), 2211.
- 34) N. A. Noda, Y. Sano, M. R. Aridi, K. Tsuboi and N. Oda: Residual Stress Differences between Uniform and Non-Uniform Heating Treatment of Bimetallic Roll: Effect of Creep Behavior on Residual Stress, Metals, 8 11 (2018), 952.
- 35) 野田尚昭, M. R. Aridi, 鳥越亮太, 坪井健二, 佐野義一: 焼戻し処理による複合圧延ロールの残留応力低減効果 と考察, 塑性と加工, 61 716 (2020), 183.
- 36) 野田尚昭, M. R. Aridi, R. Abdul Rafar, 孫子豊, 佐 野義一, 高田翔, 高瀬康: 複合スリーブロールにおけ る残留応力への製造プロセスによる影響, 設計工学, 56 (2021), 581.

のだ・なおあき NODA Nao-Aki

1984 九州大学大学院工学研究科機械工学専攻博士課程修了.九 州工業大学工学部講師・助教授を経て,現在教授. 焼嵌め式ロー ラや特殊ボルト等の産学連携に関する研究に従事. 日本設計 工学会論文賞受賞. 日本機械学会フェロー. 自動車技術会フェ ロー. 2019-2021 日本材料学会九州支部長.

さの・よしかず SANO Yoshikazu

1967 九州大学大学院機械修了.日立金属㈱入社.1992 技師長. 1996 九州大学より博士(工学)授与.学術研究員,九州工業大 学支援研究員を経て㈱ホーシン技術顧問.焼嵌め式ロールの構 造設計に関する研究に従事.(公社)日本設計工学会 2019 年度 論文賞受賞.

たかせ・やすし TAKASE Yasushi

1985 九州工業大学技術職員. 1993 同工学部設計生産工学科夜間主コース卒業. 2002 技術専門職員. 2007「任意寸法の試験片に対して正確な応力集中係数を与える計算式に関する研究」で博士(工学). 2020 年度日本塑性加工学会教育賞受賞.

ほった・げんじ HOTTA Genji

1979 九州工業大学卒業. ㈱日鉄エレックスを経て 2008 有明工 業高等専門学校機械工学科教授. 2012 熊本大学より博士(工学) 授与. 2019 より九州工業大学客員教授, 2021 西日本工業大学 客員教授. 日本技術士会ものづくり部会長. 2021 年度技術士功 労章受章.