# Study on Intensity of Singular Stress Field at the Fiber Entry Point in Pull-Out Test and Microbond Test Used for Fiber Reinforced Composites

(繊維強化複合材料の引抜試験とマイクロボンド試験にお ける繊維入口部に生じる特異応力場の強さに関する研究)

By

**CHEN Dong** 

**Department of Mechanical Engineering** 

Kyushu Institute of Technology

#### Acknowledgments

I would like to express thanks to my supervisor, Professor Nao-Aki Noda, for his constant encouragement and guidance. I am also grateful to Dr. Yoshikazu Sano, who has been giving valuable advices on my research and japanese studies.

I am thankful to Mr. Yasushi Takase, who helped me a lot.

I appreciate it very much, that Mr. Yinsa Huang picked me up from the airport and accommodate me when I arrived Japan for the first time.

I would like to express my thanks to Professor Tatsujiro MIYAZAKI from University of the Ryukyus for his helpful advice on various technical issues discussed in this study. I am also thankful to the members of our research group, Mr Rei TAKAKI, Mr Biao WANG, and Ms Akane INOUE for their generous support for this study.

I appreciate it that Prof. Taiyan Qin and Prof. Chunhui Xu taught me programming and introduced me this doctoral study experience.

I am thankful to my friends, Kejun Hu, Rong Li, Fei Ren, Guowei Zhang, Hiromasa Sakai, Xi Liu, Yunpeng Huang, Yunting Huang, Yunong Shen, Hongfang Zhai, Jian Song, Sirui Wang, Geng Gao, Zifeng Sun who helped me a lot.

Finally, I am grateful for the financial support provided by Japanese Government (Monbukagakusho: MEXT), which made it possible for my study in Japan, is gratefully acknowledged.

#### Abstract

Wide application of fiber composite technology in various fields is based on taking advantage of the high strength and high stiffness of fibers. In fiber composites, both the fiber and the matrix retain their original physical and chemical identities, yet together they produce a combination of mechanical properties that cannot be achieved with either of the constituents acting alone. Many different alternative test set-ups and experimental techniques have been developed in recent years to gain more insight into the basic mechanisms, dominating the properties of the fiber/matrix interface. Among these experimental tests, Pull-out test and Micro-bond test are most widely used. A lot of analytical studies have been done to clarify pullout phenomena in pull-out test and micro-bond test, but no studies are available for the intensity of singular stress field (ISSF) at the singular points that cause crack initiation.

This intensity should be analyzed to evaluate the fiber/matrix interface properly. Previously, the finite element method and proportional method were used to evaluate the ISSF of butt joint and lap joint. These methods are used to study the ISSF in pull-out test and micro-bond test. This thesis is composed of total of 5 chapters and organized as follows.

Chapter 1, gives an introduction of the pull-out test and micro-bond test and other experiments that used to evaluate the fiber/matrix interface in composites. Also gives an introduction of the finite element method and proportional method, which are mainly used in this study. Then the research purpose of this thesis is introduced, focusing on clarification of the pull-out mechanism of the fiber/matrix interface, and analysis of the ISSFs of different geometry and material combinations in pull-out test and micro-bond test.

In Chapter 2, deals with a partially-embedded single-fiber under pull-out force in comparison with a single fiber embedded in matrix focusing on two distinct singular stress fields. Glass fiber/epoxy of pull-out test is mainly studied in this chapter. Then, the intensities of the singular stress fields (ISSFs) are compared at the fiber end named Point  $A^*$  and the fiber/surface intersection named Point  $E^*$ . To analyze the ISSFs accurately, a body force method (BFM) is used as the reference problem.

In Chapter 3, the intensity of singular stress field (ISSF) is analyzed at the fiber entry/exit

points in micro-bond test. The obtained ISSFs at the fiber entry point in micro-bond test are compared to the single fiber pull-out under the same fiber geometry. The results show that care should be taken for the previous micro-bond test geometry since the ISSF varies sensitively depending on the testing geometry. To control the initial fiber/matrix debonding and evaluate the bonding behavior correctly, suitable testing geometries are proposed in micro-bond testing.

In Chapter 4, ISSF of carbon fiber/epoxy is analyzed for verifying the conclusions obtained in Chapter2 and Chapter3. The fiber end named Point  $A^*$  is easier to debond, if the bonded length is short. The fiber entry named Point  $E^*$  is easier to debond, if the bonded length is long. This is same for Glass fiber/epoxy and Carbon fiber/epoxy. However, the bonded length when Point  $A^*$  and Point  $E^*$  is equal severe is different for different material combination. As the reference solution, a single fiber embedded in matrix is also calculated under arbitrary material combinations by using the body force method (BFM). By using this reference, the ISSFs in pull-out test is evaluated in the alpha-beta space. For Glass fiber/epoxy, the ISSF of Pull-out at Point  $E^*$  is about 0.75 of that at Point E in micro-bond test. This ratio is verified for Carbon fiber/epoxy and Aramid fiber/epoxy.

Finally, Chapter 5 provides the major conclusions, the most significant outcomes and contributions and suggestions for future works.

#### 論文要旨

繊維強化複合材料は、金属と比べて比強度が高く、価格も低いため、建設・海洋産 業、航空宇宙技術・輸送分野・産業機器などに広く用いられている.強化繊維として、 炭素繊維、ガラス繊維およびアラミド繊維のような非金属強化材料がよく用いられて いる.これら繊維強化複合材料において、強化繊維と母材間の界面強度特性が重要で あるため、引抜き試験及びマイクロボンド試験が、多くの研究者に用いられており、 その実験結果が議論されている.しかし、それらの試験において、界面の特異応力場 には、ほとんど注意が払われておらず、繊維と母材の界面に平均応力が使用されてい るため、正確な議論がなされていない.したがって、そのマイクロボンド試験では、 不適切と思われる試験条件が使用されており、実験結果に大きなばらつきがみられる. また、引抜試験とマイクロボンド試験の関係が明確でなく、両者の実験結果を比較す ることができないなどの問題がある.

そこで、本論文では、引抜試験とマイクロボンド試験における繊維母材間の界面に 生じる特異応力場の強さ(ISSF)に注目して解析を行った.そして、ISSF に及ぼす試験 寸法の影響や、二つの試験方法の関係、ならびに、設計上の指針についてまとめた. 本論文は、以下の5つの章から構成なる.

第1章では、複合材料の繊維と母材の界面接着強度の評価に使用される引抜試験と マイクロボンド試験、および関連する他の実験の概要を述べるとともに、これらの試 験において繊維入口部に生じる特異応力場について説明した。その特異応力場の強さ ISSF の解析のため、本研究で使用する有限要素法(FEM)と比例法、ならびに、ISSF に基づく接着強度の評価方法について述べた。また、引抜試験における埋め込み端部 の解析には、基準問題として2次元長方形介在物問題の特異応力場を用いればよいこ とを示した。また、引抜試験とマイクロボンド試験における、繊維と母材の界面に生 じるはく離のメカニズムや、試験寸法の影響および材料の組み合わせが異なる場合に おける2つの試験での ISSF の変化について述べた。

第2章では、ガラス繊維強化複合材料(Glass/Epoxy)の引抜試験について、繊維と 母材の界面に生じる2つの異なる特異応力場に注目し、埋め込み端部(点 A\*)と繊維入 口部(点 E\*)に生じる ISSF を比較した. 点 A\*と点 E\*の ISSF の厳しさを比較するうえ

iv

で、両者の特異応力場は特異性が異なるので、ISSFのみで直接比較することはできない.そこで、本論文では、繊維のはく離に最も影響すると考えられる特異点近傍の異 材接合界面の、引張応力分布に注目した.点 A\*、E\*における垂直応力で壊れやすさを 比較すると繊維埋込部長さが短いとき、点 A\*が点 E\*より壊れやすく、繊維埋込部長さ が長いとき、点 E\*が点 A\*より壊れやすいことを明らかにした.

第3章では、ガラス繊維強化複合材料(Glass/Epoxy)のマイクロボンド試験におけ る、繊維退出部(点 A)および繊維入口部(点 E)のISSF について述べた. マイクロボ ンド試験における、繊維入口部(点 E)でのISSF は、同じ繊維寸法における第2章で 述べている引抜試験の繊維入口部(点 E\*)のISSF と比較できる. その結果、埋込部長 さがISSF に与える影響はマイクロボンド試験でも引抜試験と同様の傾向を示すこと を明らかにした. また、引抜試験のISSF はいずれの埋込部長さにおいてもマイクロ ボンド試験のISSF のおよそ 0.7 倍の大きさとなることを示した. マイクロボンド試 験におけるナイフエッジ寸法の影響について議論した結果、マイクロボンド試験の ISSF はこの寸法によって敏感に変化することと、多くのマイクロボンド試験で不適 切な試験寸法が採用されていることを指摘した. 試験の際に繊維と母材のはく離を制 御し結合挙動を正しく評価するために、マイクロボンド試験における適切な試験寸法

第4章では、ガラス繊維強化複合材料で得られた結論が他の強化繊維でも成り立つ か検証した.具体的には、任意の材料組合せに対して繊維入口部に生じる特異応力場 の強さを求めるための基準問題と ISSF 解析の手順を示した.そして、炭素繊維強化 複合材料(Carbon/Epoxy)やアラミド繊維強化複合材料(Aramid/Epoxy)等における ISSF を検討した.その結果、これらの材料組み合わせにおいてもガラス繊維強化複合 材料(Glass/Epoxy)と同様のナイフエッジ寸法の影響が現れることを示した.さらに、 マイクロボンド試験と引抜試験の関係についての議論を行っており、たとえば、炭素 繊維強化複合材料(Carbon/Epoxy)の場合、引抜試験の ISSF はマイクロボンド試験の ISSF の約0.60 倍となることを明らかにした.

第5章は総括であり、本研究で得られた主要な結論を要約した.

v

# Contents

| Acknowledgments i                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abstractii                                                                                                                                                                                                                                                                                                                             |
| 論文要旨iv                                                                                                                                                                                                                                                                                                                                 |
| Contents vi                                                                                                                                                                                                                                                                                                                            |
| Nomenclature                                                                                                                                                                                                                                                                                                                           |
| Chapter 1 Introduction 1                                                                                                                                                                                                                                                                                                               |
| 1.1 Research Backgrounds 1                                                                                                                                                                                                                                                                                                             |
| 1.2 Intensity of singular stress field (ISSF) 4                                                                                                                                                                                                                                                                                        |
| 1.3 Proportional method by using finite element method (FEM)                                                                                                                                                                                                                                                                           |
| 1.4 Reference Solution Obtained by Using Reciprocal Work Contour Integral Method                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                        |
| (RWCIM)                                                                                                                                                                                                                                                                                                                                |
| (RWCIM)                                                                                                                                                                                                                                                                                                                                |
| (RWCIM)                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>(RWCIM)</li></ul>                                                                                                                                                                                                                                                                                                             |
| <ul> <li>(RWCIM)</li></ul>                                                                                                                                                                                                                                                                                                             |
| <ul> <li>(RWCIM)</li></ul>                                                                                                                                                                                                                                                                                                             |
| (RWCIM)                                                                                                                                                                                                                                                                                                                                |
| (RWCIM)6Chapter 2. Intensity of Singular Stress Field in Pull-out test.92.1 Introduction92.2 Singular stress fields and the ISSF at the fiber end112.3 Singular stress field and the ISSF at the fiber entry point182.4. Results and discussion.242.5. Conclusions30Chapter 3 Intensity of Singular Stress Field in Micro-bond Test.32 |
| (RWCIM)                                                                                                                                                                                                                                                                                                                                |

| 3.3. Results and Discussion                                                             |
|-----------------------------------------------------------------------------------------|
| 3.4. Conclusions                                                                        |
| Appendix 3.A: Modelling of a single fiber pull-out embedded in a semi-infinite region.  |
|                                                                                         |
| Appendix 3.B: An example of FEM mesh and stress distributions for the micro-bond        |
| test                                                                                    |
| Chapter 4 Material Combination Effects on ISSFs in Pull-out Test and Micro-bond Test 52 |
| 4.1 Carbon fiber/Epoxy vs. Glass fiber/Epoxy 52                                         |
| 4.1 ISSF at Point A in pull-out test                                                    |
| 4.2 ISSF at Point E in Pull-out test                                                    |
| 4.3 ISSF in micro-bond test for Carbon fiber/Epoxy in comparison with Glass             |
| fiber/Epoxy                                                                             |
| 4.4 ISSFs under Arbitrary Material Combination for a Single Rectangle Fiber in an       |
| Infinite Plate Subjected to Remote Tension                                              |
| 4.5 ISSFs under Arbitrary Material Combination for a Single Fiber Subjected to Pull-    |
| out Force from a Semi-Infinite Plate                                                    |
| 4.6 Conclusions                                                                         |
| Chapter 5 Conclusions                                                                   |
| Reference                                                                               |

# Nomenclature

| FEM                              | Finite element method                                                                   |
|----------------------------------|-----------------------------------------------------------------------------------------|
| ISSF                             | Intensity of singular stress field                                                      |
| IFSS                             | Interfacial shear strength based on average shear stress                                |
| Point A                          | Fiber exit point for micro-bond test                                                    |
| Point E                          | Fiber entry point for micro-bond test                                                   |
| Point A*                         | Fiber buried end for pull-out test                                                      |
| Point E*                         | Fiber entry point for pull-out test                                                     |
| $l_M$                            | Size of the matrix for pull-out test                                                    |
| l <sub>b</sub> , l <sub>in</sub> | Fiber bonded length                                                                     |
| $l_g$                            | Knife gap opening                                                                       |
| D                                | Width of the fiber in 2D analysis, fixed as $D = 20 \mu m$                              |
| Р                                | Total pull-force on the free end of fiber                                               |
| $\theta_{C}$                     | Contact angle of matrix and fiber                                                       |
| r <sub>i</sub>                   | Distance from Point $i$ ( $i = A, E, E^*$ ) along the interface                         |
| $E_F$                            | Young's modulus of fiber                                                                |
| $E_M$                            | Young's modulus of matrix and droplet                                                   |
| $ u_F$                           | Poisson's ratio of fiber                                                                |
| $\nu_M$                          | Poisson's ratio of matrix and droplet                                                   |
| $G_F$                            | Shear modulus of fiber                                                                  |
| $G_M$                            | Shear modulus of matrix and droplet                                                     |
| α, β                             | Dundurs' parameters                                                                     |
| $\lambda, \lambda_1, \lambda_2$  | Singular index                                                                          |
| $\sigma^i_x$                     | Stress in the x-direction at Point $i$ ( $i = A, E, E^*$ )                              |
| $\sigma^i_{x,FEM}(r_i)$          | Stress distribution along $r_i$ in FEM analysis.                                        |
| $K^{i}_{\sigma,\lambda_{1}}$     | ISSF at Point <i>i</i> ( <i>i</i> = A, E, E <sup>*</sup> ) corresponding to $\lambda_1$ |
| $K^i_{\sigma,\lambda_2}$         | ISSF at Point <i>i</i> ( <i>i</i> = A, E, E <sup>*</sup> ) corresponding to $\lambda_2$ |
| $K^i_{\sigma}$                   | ISSF at Point $i$ ( $i = A, E, E^*$ )                                                   |
| $e_{min}$                        | Minimum element size in FEM modelling                                                   |
| $\Delta \theta_{C}$              | Change of $\theta_c$ after deformation                                                  |
| $u_y^i(0)$                       | Displacement in the y-direction at Point <i>i</i>                                       |
| x                                | Distance from Point $i$ the x-direction along the surface                               |
| $u_y^i(x)$                       | Displacement in the y-direction along the surface from Point $i$                        |
|                                  |                                                                                         |

# **Chapter 1 Introduction**

#### **1.1 Research Backgrounds**

Wide application of fiber composite technology in various fields is based on taking advantage of the high strength and high stiffness of fibers. In fiber composites, both the fiber and the matrix retain their original physical and chemical identities, yet together they produce a combination of mechanical properties that cannot be achieved with either of the constituents acting alone <sup>1),2)</sup>. As shown in Fig. 1.1(a) is a typical structure of fiber reinforced composite (FRC). Fig. 1.1(b) illustrate a typical fault that will appear in the FRC and influence the quality of FRC.



(a) Fiber reinforced composite (FRC)





# Fig. 1.1 Schematic of fiber reinforced composite

Many different alternative test set-ups and experimental techniques have been developed in recent years to gain more insight into the basic mechanisms, dominating the properties of the fiber/matrix interface. One of the most popular is the pull-out test as shown in Fig. 1.2. The other one is micro-bond test as shown in Fig. 1.3. These test methods are very useful to evaluate the quality of the FRC.



Fig. 1.2 Schematic of pull-out test

In the pull-out test, a single fiber or bar partially embedded in resin is pulled out from the surrounding matrix and the corresponding relation between load  $P(\delta)$  and displacement  $\delta$  is recorded <sup>3</sup>). Typical relation between the pull-out load vs. displacement contains three typical zones, that is, linear elastic zone, crack extension zone and fiber extruding zone <sup>4</sup>).

The pull-out test has been used as an advantageous micromechanical test used to characterize interfacial fiber/matrix bonding. To pull out the fiber, since the debonding strength should be smaller than the tensile strength of the fiber, high adhesion systems require very small embedding lengths  $l_{in}$  (< 100µm)<sup>2</sup>. However, the small embedding lengths sometimes make the test unusable because the pull-out force has to break the adhesion at the fiber end. The effect of the embedded length on the debonding stress at the fiber end should be clarified especially in the range of short embedded length around  $l_b = 5D$ .

Micro-bond test as shown in Fig. 1.3 is easier to conduct compared to pull-out test. In the Preparation of the specimen, matrix is deposited on to the surface of fiber in the form of one or more discrete microdroplets. The droplets will form concentrically around the fiber in the shape of ellipsoids. And retain their shape after appropriate curing. The droplet dimensions can only be measured after cured. The bonded length  $l_b$  of fiber are dominated not only by the fiber,

Mechanical Engineering Dept.

but also dominated by the quantity of matrix. For Glass fiber and Carbon fiber  $(50~300 \mu m)$  Kevlar  $(50~500 \mu m)$ . In micro-bond test, large bond length is difficult.



Fig. 1.3 Schematic of micro-bond test

Push out test and Fragmentation test as shown in Fig. 1.4 is also widely used in different evaluation of FRC. Push-out test are usually conducted on thin slices of unidirectional composite plates. As shown in the figure, the yellow parts represent the matrix and the green part represents fiber, the fiber is pushed out from the matrix. Fragmentation tests are usually conducted on single-filament model composites to measure the interfacial shear strength. As shown in the figure, the green parts represent fiber and the yellow part represents matrix. In this experiment, there is only one fiber or several fibers lined up in a line. The load is applied to both ends of the whole sample.









Fig. 1.5 Modelling of pull-out test and micro-bond test

The authors' recent studies have shown that the ISSFs are useful for evaluating the interface strength because they control the adhesive strength for butt and lap joints <sup>5)–11)</sup>. Therefore, this paper will focus on the ISSFs of a single fiber partially embedded in a matrix under pull out force by using the 2D model as shown in Fig. 1.5. Then, the effect of fiber embedded length on the ISSFs will be investigated and the severities at the fiber end Point A and at the fiber entry Point E will be compared by considering their fiber interface stress distributions. The final goal of this study is to clarify the fiber pull out mechanism toward designing suitable fiber reinforced composites. In this research, the intensity of singular stress fields in the pull-out test and microbond test will be studied.

# 1.2 Intensity of singular stress field (ISSF)

The normal singular stress, which may cause debonding at the entry point, can be expressed as follows: <sup>12</sup>

$$\sigma_x^i = \frac{\kappa_{\sigma,\lambda_1}^i}{r_i^{1-\lambda_1}} + \frac{\kappa_{\sigma,\lambda_2}^i}{r_i^{1-\lambda_2}}, \ (i = A, E, E^*)$$
(1.1)

Here  $\lambda_1$  and  $\lambda_2$  are singular indexes, which can be calculated by solving the following characteristic equations <sup>13),14)</sup>. Singular indexes at Point E and Point E<sup>\*</sup> in Fig. 1.5 are same,

but singular indexes at Point A and Point  $A^*$  in Fig. 1.5 are different. In micro-bond test, Point A and Point E have same singular indexes. Therefore, the ISSFs at Point A, Point E and Point  $E^*$  can be compared. But they cannot be directly compared with Point  $A^*$ .

$$4sin^{2}(\pi\lambda)\left\{sin^{2}\left(\frac{\pi\lambda}{2}\right)-\lambda^{2}\right\}\beta^{2}+4\lambda^{2}sin^{2}(\pi\lambda)\alpha\beta$$
$$+\left\{sin^{2}\left(\frac{\pi\lambda}{2}\right)-\lambda^{2}\right\}\alpha^{2}+4\lambda^{2}sin^{2}(\pi\lambda)\beta$$
$$+2\left\{\lambda^{2}\cos(2\pi\lambda)+sin^{2}\left(\frac{\pi\lambda}{2}\right)\cos(\pi\lambda)+\frac{1}{2}sin^{2}(\pi\lambda)\right\}\alpha$$
$$+sin^{2}\left(\frac{3\pi\lambda}{2}\right)-\lambda^{2}=0$$
(1.2)

Here,  $\alpha$ ,  $\beta$  denote bi-material parameters of Dundurs <sup>15)</sup>, and  $G_F$  and  $G_M$  are shear modulus, which can be transformed from Young's modulus  $E_F$ ,  $E_M$  and Poisson's ratios  $v_F$ ,  $v_M$ . Subscripts M, F represent the matrix and the reinforcing fiber, respectively. In this study, analysis is carried out under plane strain.

$$\alpha = \frac{G_F(\kappa_M + 1) - G_M(\kappa_F + 1)}{G_F(\kappa_M + 1) + G_M(\kappa_F + 1)}, \qquad \beta = \frac{G_F(\kappa_M - 1) - G_M(\kappa_F - 1)}{G_F(\kappa_M + 1) + G_M(\kappa_F + 1)'},$$
  

$$\kappa_i = \begin{cases} (3 - \nu_i)/(1 + \nu_i) & (Plain \ stress) \\ (3 - 4\nu_i) & (Plain \ strain) \end{cases} (i = M, F)$$
(1.3)

### 1.3 Proportional method by using finite element method (FEM)

Finite element method (FEM) analysis should be well conducted and may require experience and skills for engineering applications  $^{16)-24)}$ . In this analysis, a mesh independent proportional method is used to calculate the ISSF  $K_{\sigma}^{i}$  defined in equation (1.1). The ISSF can be calculated from the ratio of FEM stress  $\sigma_{x,i}^{FEM}(r_{i})$  as shown in equation (1.4)  $^{12)-14),25)}$ .

$$\frac{K_{\sigma}^{i}}{K_{\sigma}^{j}} \cong \frac{\sigma_{x,FEM}^{i}(r_{i})}{\sigma_{x,FEM}^{j}(r_{j})}, \ (i,j = A, E, E^{*})$$
(1.4)

For example, although the stress distribution  $\sigma^{E}_{x,FEM}(r_{E})$  varies depending on the FEM

mesh size, the FEM stress ratio  $\sigma_{x,FEM}^{E}(r_{E})/\sigma_{x,FEM}^{E^{*}}(r_{E^{*}})$  is almost the same independent of mesh size. This is because the same mesh pattern is applied to the singular stress region to cancel the FEM error. The FEM stress ratio can be regarded as the real stress ratio although the FEM stress cannot express the real singular stress. Since the stress ratio can be obtained accurately, the ISSF of unknown problem can be obtained from the ISSF of reference solutions with the ratio as shown in equation (1.4).

# 1.4 Reference Solution Obtained by Using Reciprocal Work Contour Integral Method (RWCIM)

The ISSFs  $K_{\sigma,\lambda_1^E}^E$ ,  $K_{\tau,\lambda_1^E}^E$  at the fiber entry Point E in pull-out can be calculated by using the proportional method explained in Section 1.3 from the FEM stress ratios as shown in equation (1.4) which is  $\frac{K_{\sigma,\lambda_1}^E}{K_{\sigma,\lambda_1}^{E^*}} = \frac{\sigma_{FEM,\lambda_1}^E}{\sigma_{FEM,\lambda_1}^{E^*}}, \frac{K_{\sigma,\lambda_2}^E}{\kappa_{\sigma,\lambda_2}^{E^*}} = \frac{\sigma_{FEM,\lambda_2}^E}{\sigma_{FEM,\lambda_2}^{E^*}}$  To obtain the reference solution  $K_{\sigma,\lambda_1^E}^{E^*}, K_{\tau,\lambda_1^E}^{E^*}$ . The RWCIM may be suitable. This method is based on the concept of Betti's Law, pioneered by Stern et al. <sup>19</sup>. Carpenter et al. <sup>26</sup> and Sinclair et al. <sup>27</sup> adapted this method to the general opening crack problem. By mean of Williams' eigenfunction expansion method, displacement and stress in the vicinity of the interface corner edge can be expressed as <sup>26),28</sup>:

$$\sigma_{ij} = \sum_{k=1}^{\infty} K_k f_{ij}(\theta, \lambda_k) r^{\lambda_k - 1}$$
(1.5)

$$u_i = \sum_{k=1}^{\infty} K_k g_i(\theta, \lambda_k) r^{\lambda_k}$$
(1.6)

Here,  $\lambda_k$  is singular index obtained by solving equation (1.2) in Section 1.2. For most of the material combinations the singular indexes  $\lambda_i^E$  have two real roots  $\lambda_1^E$  and  $\lambda_2^E$  corresponding to two different singular fields <sup>29</sup>. Here,  $K_k$  is ISSF corresponding to singular index  $\lambda_k$ , obtained by RWCIM discussed in this section. As shown in Fig. 1.6, symbol r is the radial distance away from Point E. Eigenfunctions  $f_{ij}$  and  $g_i$  depend on  $\lambda_k$  and  $\theta$ . When  $\theta = 0$ , and use  $K_{\sigma,\lambda_k}$  to denote  $K_k f_{\theta}(\theta, \lambda_k)$ , equation (1.5) is expressed as equation (1.1). Denote by  $u_i$  the displacement field and  $\sigma_{ij}$  the traction vector on a contour  $C = C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_{\varepsilon}$ , as shown in Fig. 1.6, equation (1.7) <sup>26</sup> is obtained from Betti's Law:

$$\oint_C \left(\sigma_{ij} u_i^* - \sigma_{ij}^* u_i\right) ds = 0. \tag{1.7}$$

Here,  $u_i^*$  and  $\sigma_{ij}^*$  correspond to any other such solution. Contour  $C_{\varepsilon}$  is a three-quarter circle contour with a radius  $\varepsilon$ . Separate the contour into  $C_{\varepsilon}$  and  $C_R = C_1 + C_2 + C_3 + C_4 + C_5 + C_6$ , equation (1.7) becomes <sup>30</sup>:

$$I_{\varepsilon} = \int_{\mathcal{C}_{\varepsilon}} (\sigma_{ij} u_i^* - \sigma_{ij}^* u_i) \, ds = -\int_{\mathcal{C}_R} (\sigma_{ij} u_i^* - \sigma_{ij}^* u_i) \, ds.$$
(1.8)

Then, the integral  $I_{\varepsilon}$  can be calculated from the path independent contour  $C_R$ , without need for accurate data in the vicinity of the Point E in FEM calculation. ISSF  $K_k$  corresponding to singular index  $\lambda_k$  can then be obtained. Combined with  $f_{ij}$  for  $\sigma$  and  $\tau$  respectively, expressed as  $K_{\sigma,\lambda_1^E}^E$ ,  $K_{\sigma,\lambda_2^E}^E$ ,  $K_{\tau,\lambda_1^E}^E$ . Worth mentioning that, for the integral path C shown in Fig.1.6, contours  $C_1$  and  $C_2$  locate along the stress-free surface, and therefore, the integrals along these contours are zero.



**Fig. 1.6.** Integral path C for RWCIM ( $C = C_1 + C_2 + C_3 + C_4 + C_5 + C_6$ ).

Plane strain condition is selected for carrying out the linear elastic analyses in MSC Marc software. Around the interface corner edge eight-node elements are utilized, while for other regions away from the interface corner edge, four-node elements are selected.

RWCIM can be used to provide the reference ISSFs. However, RWCIM requires a large number of calculations for complex operations with matrix as well as numerical integrations along the path. The proportional method in Section 1.3 to calculate the ISSFs (from a reference solution of the ISSF) is just as accurate as the RWCIM, when calculating the first term, being more convenient and practical. In this method, comparison between two models can be made from the FEM stress ratios, easily.



Chapter 2. Intensity of Singular Stress Field in Pull-out test.

# **2.1 Introduction**



(ISSFs) are denoted by  $K_{\sigma,\lambda_1^{A^*}}^{A^*}$  etc. <sup>31)-33)</sup>.

Fig. 2.1 shows a two-dimensional single fiber partially embedded considered in this study. The shaded (slashed) part represents a rectangular-shaped fiber whose Young's modulus is denoted by  $E_F$  and whose Poisson's Ratio is denoted by  $v_F$ . The grey portion represents the matrix having a semi-infinite region whose Young's modulus is denoted by  $E_M$  and whose Poisson's Ratio is denoted by  $v_M$ . Subscripts M, F represent the matrix and reinforcing fiber, respectively. Assume that perfectly bonded fiber/matrix interface whose material properties vary in a stepwise manner across the interface. A uniform tensile stress is distributed at the free end of the fiber, and the total force is P. The embedding length  $l_b$  represents the distance from the surface of the matrix to the buried end of fiber. Notation D represents the diameter of the fiber, i.e. the width of the fiber in this 2D analysis. Point E<sup>\*</sup> is used to represents the interface on the surface of the matrix. Similarly, Point A<sup>\*</sup> represents the interface corner at the fiber end. Notations  $E_F$ ,  $v_F$ ,  $E_M$ ,  $v_M$  represent the Young's modulus and Poisson's ratio of fiber and matrix, respectively. Singular interface stress fields <sup>31)–33</sup>, which will be explained in the next section, are indicated in Fig. 2.1 around Point A<sup>\*</sup> and Point E<sup>\*</sup>. They are controlled by the intensity of the singular stress fields (ISSFs, denoted by  $K_{\sigma, \lambda_1^A}^A$  etc.) <sup>31)–33</sup>.

Many researchers have been working on fiber pull-out experiments. For example, Scheer et al. <sup>34</sup> experimentally investigated interfacial peeling of reinforcing fibers, focusing on the energy release rate. Zhandarov et al. <sup>35),36)</sup> investigated the pull-out force versus displacement. The  $P(\delta)$  curve of pull-out test and  $P(\delta)$  curve of micro-bond tests is similar, i.e. crack propagation may starts from the fiber entry Point E<sup>\*</sup> <sup>34)–36</sup>. Marotzke C. et al. <sup>37)</sup> investigated the influence of thermally induced stresses and interfacial friction on the interfacial debonding process, focusing on the energy release rate. Wang C. et al. <sup>38)</sup> and K.-H. Tsai et al. <sup>39)</sup> investigated the process of fiber pull-out test, focusing on peeling and friction slip, it is observed that crack initiate at the fiber bonded end Point A<sup>\*</sup> during the fiber pull-out test <sup>38),39)</sup>. In a rod pull out test that very similar to fiber pull-out test, Atkinson, et al. <sup>20)</sup> observed crack initiation sometimes occur at Point A<sup>\*</sup> and sometimes occur at Point E<sup>\*</sup> in Fig. 2.1.

In the previous pull-out experiments, the interface strength was discussed between the fiber and the matrix without paying attention to the intensity of singular stress field (ISSF). As shown in Fig. 2.1, however, due to the singular stress fields crack initiation sometimes occurs at Point  $A^*$ , sometimes occur at Point  $E^*$ . Then, the crack may propagate causing final failure. Therefore, to evaluate the mechanical strength of the composites, it is necessary to know the ISSFs at these two points. In the previous studies, the shear-lag theory was widely used to discuss the shear stress distribution of the fiber interface. However, this theory is simply based on onedimensional fiber model assuming the fiber interface transmits only the shear stress  $^{40)-42}$ ; and therefore, this theory cannot express the singular stress fields. In other words, a lot of analytical studies have been done to clarify pull-out phenomena  $^{21),24),43}$ , but no studies are available for the ISSF.

The authors' recent studies have shown that the ISSFs are useful for evaluating the interface strength because they control the adhesive strength for butt and lap joints  $^{5)-11}$ . Therefore, this paper will focus on the ISSFs of a single fiber partially embedded in a matrix under pull out force. Then, the effect of fiber embedded length on the ISSFs will be investigated and the severities at the fiber end Point A<sup>\*</sup> and at the fiber entry Point E<sup>\*</sup> will be compared by considering their fiber interface stress distributions. The final goal of this study is to clarify the fiber pull out mechanism toward designing suitable fiber reinforced composites.

#### 2.2 Singular stress fields and the ISSF at the fiber end

In this study the finite element method (FEM) is applied to calculating the ISSFs. Since the FEM stress values are usually affected by the mesh size, in the previous study <sup>44),45)</sup> the same mesh pattern is applied around the singular points for unknown and reference problems. Then, it was found that the FEM stress ratio of the unknown and reference problem is constant independent of the mesh size. Therefore, the FEM stress ratio is equal to the ISSF ratio because the FEM mesh error can be eliminated by considering FEM stress ratio and applying the same mesh (Detail is discussed in Table 2.2a and b). By choosing the reference problem as an exact solution available, the ISSF of the unknown problem can be obtained by multiplying the FEM stress ratio and the ISSF of the exact solution. Regarding fiber end Point A<sup>\*</sup>, a single fiber in an infinite plate can be chosen as the reference problem. The analysis method used in this study can be called the proportional method since the method is based on the proportional FEM stress fields <sup>12),25),46)-49)</sup>. This mesh-independent technique is a convenient ISSF calculation method, and the obtained ISSFs are denoted by  $K_{\sigma, A^{A}}^{A}$  etc. <sup>31)–33)</sup>.

Fig. 2.1 shows the two-dimensional model of fiber pull-out problem considered in this paper. Here, a 2D rectangular shape is used to represent the fiber focusing on the singular stress fields at Point  $A^*$  and Point  $E^*$ . Although cylindrical shape may be more suitable for representing the fiber, the non-singular term caused by the circumferential strain must be removed and the analysis becomes complicated <sup>8),9)</sup>. Therefore, this modelling should be considered after considering the rectangular modelling.

Table 2.1 shows mechanical properties of the Fiber/Matrix considered in this study. The base material Epon 828 can be obtained by curing a bisphenol A type liquid epoxy resin with mphenylenediamine. In the previous study, for example, a pull-out test was conducted for a single glass-fiber whose diameter  $D = 21 \mu m$  from the matrix Epon 828 <sup>44</sup>. Since the aspect ratio  $l_b/D$  mainly controls the pull-out behavior,  $D = 20 \mu m$  is assumed as shown in Table 2.1 and Fig. 2.2. Here, l denotes the total fiber length and  $l_b$  the denotes the embedded length; then,  $l_b/D = 5$  means  $l_b = 100 \mu m$ . To obtain the ISSF at the fiber end, model as shown in Fig. 2.2(b) is used as a reference problem. This is because the exact solution is available for the problem as shown in Fig. 2.2(b) <sup>31),50)-52</sup>, which is a rectangular fiber fully embedded in an infinite plate and the total length of the fiber is  $2l_b$ . Symbol  $\sigma_{\infty}$  in Fig. 2.2 denotes the uniform tensile stress on the boundary of the infinite plate.

|                            | Fiber                     | Matrix (Droplet)     |  |
|----------------------------|---------------------------|----------------------|--|
| Motorial                   | Glass                     | Enour                |  |
| Material                   | fiber                     | Ероху                |  |
| Young's Modulus (GPa)      | 75                        | 3.3                  |  |
| Poisson's Ratio            | 0.17                      | 0.35                 |  |
| Dundurs' Peremeter         | $\alpha = 0.9071$         |                      |  |
| Dundurs Farameter          | $\beta = 0.2016$          |                      |  |
| Singular Index at Daint A* | λ                         | $_{1}^{E*} = 0.7632$ |  |
| Singular index at Point A  | λ                         | $E_2^{E*} = 0.6218$  |  |
| Singular Index at Daint E* | λ                         | $E_1^{E*} = 0.6592$  |  |
| Singular muex at Point E   | $\lambda_2^{E*} = 0.9992$ |                      |  |

 Table 2.1. Mechanical properties of Glass fiber/Epoxy

In this study, the ISSFs at Point A<sup>\*</sup> and Point E<sup>\*</sup>, for the problem as shown in Fig. 2.1, are mainly discussed by varying  $l_b$ . Then, the x-y coordinate system as shown in Fig. 2.1 is used. The y-direction corresponds to the axial direction of the fiber, and the x-direction corresponds to the radial direction of the fiber. Notation  $r_1$  denotes the distance from Point A<sup>\*</sup> in the x-direction. Then,  $r_1 = 0$  and  $r_2 = 0$  means Point A<sup>\*</sup>. Notation  $r_3$  denotes the distance from Point E<sup>\*</sup> in the y-direction, and  $r_3 = 0$  represents Point E<sup>\*</sup>.



Fig. 2.2. 2D modelling: (a) a single rectangular fiber pull-out from a semi-infinite plate; (b) a single rectangular fiber in an infinite plate under remote tension used as the reference solution.

Note that the singular stress field at Point A<sup>\*</sup> in Fig. 2.2(a) is similar to the singular stress field at Point A<sup>\*</sup> of the reinforcing fiber in the matrix shown in Fig. 2.2(b). The ISSF of Point A<sup>\*</sup> in Fig. 2.2(b) can be calculated by the body force method (BFM)  $^{31),50)-52}$ . The BFM is a powerful analytical method to obtain accurate solutions, which can be virtually regarded as exact solutions.

Till recently, a lot of studies have considered Dundurs' composite parameters of typical engineering materials. Suga et al. investigated the parameters and mechanical compatibility of various material joints <sup>53</sup>). Yuuki <sup>54</sup> showed the variations of the parameters in the  $\alpha - \beta$  space for the materials combinations among metal, ceramics, resin, and glass. Here,  $\alpha$ ,  $\beta$  denote Dundurs bimaterial parameters <sup>15</sup> defined by equation (1.3) in Chapter 1. In this study, analysis is carried out under plane strain assumption. Singular indexes  $\lambda_1^A$  and  $\lambda_2^A$  at the corner A can be calculated by solving equations (4.2a) and (4.2b), respectively <sup>50),55</sup>. For the material combination Glass Fiber/Epoxy in Table 2.1,  $\alpha = 0.9071$ ,  $\beta = 0.2016$ ),  $\lambda_1^A = 0.7632$  and  $\lambda_2^A = 0.6218$ .

The ISSF at Point A<sup>\*</sup> in Fig. 2.2(b) was discussed in  $^{31),51),55}$ . It should be noted that equations (2.1) and (2.2)  $^{44),55}$  express the singular stress at Point A<sup>\*</sup> in Fig. 2.2(b) and also

Point A\* in Fig. 2.2(a). Here,  $K_{\sigma,\lambda_1^A}^A$ ,  $K_{\sigma,\lambda_2^A}^A$  denote ISSFs for normal stress at Point A\* and  $K_{\tau,\lambda_1^A}^A$  and  $K_{\tau,\lambda_2^A}^A$  denote ISSFs for shear stress. ISSFs  $K_{\sigma,\lambda_1^A}^A$  and  $K_{\tau,\lambda_1^A}^A$  correspond to Mode I deformation and ISSFs  $K_{\sigma,\lambda_2^A}^A$  and  $K_{\tau,\lambda_2^A}^A$  correspond to Mode II deformation.

$$\begin{cases} \sigma_{y}^{A}(r_{1}) = \frac{K_{\sigma, \lambda_{1}}^{A}}{r_{1}^{1-\lambda_{1}^{A}}} + \frac{K_{\sigma, \lambda_{2}}^{A}}{r_{1}^{1-\lambda_{2}^{A}}} \\ \tau_{yx}^{A}(r_{1}) = \frac{K_{\tau, \lambda_{1}}^{A}}{r_{1}^{1-\lambda_{1}^{A}}} + \frac{K_{\tau, \lambda_{2}}^{A}}{r_{1}^{1-\lambda_{2}^{A}}} \end{cases}$$
(2.1)

$$\begin{cases} \sigma_{\chi}^{A}(r_{2}) = \frac{\kappa_{\sigma, \lambda_{1}}^{A}}{r_{2}^{1-\lambda_{1}^{A}}} - \frac{\kappa_{\sigma, \lambda_{2}}^{A}}{r_{2}^{1-\lambda_{2}^{A}}} \\ \tau_{\chi y}^{A}(r_{2}) = \frac{\kappa_{\tau, \lambda_{1}}^{A}}{r_{2}^{1-\lambda_{1}^{A}}} - \frac{\kappa_{\tau, \lambda_{2}}^{A}}{r_{2}^{1-\lambda_{2}^{A}}} \end{cases}$$
(2.2)

For the singular stress field at Point A<sup>\*</sup>, the interface corner of different materials, the indexes of the singular stress field are different depending on the mode I and mode II deformation <sup>31)</sup>. In order to determine the ISSFs, it is necessary to consider the two distinct mode I and mode II singular stress fields at the same time. The shear stress along the interface of fiber and matrix has been widely discussed by using the shear-lag theory  $^{34),36),40)-42)}$ , which is simply based on a one-dimensional model and cannot express singular stress fields.

At the vicinity of Point A<sup>\*</sup>, the stress distribution corresponding to Mode I deformation is denoted by  $\sigma_{I}^{A}(r)$ , as shown in equation (2.3). It is proportional to  $1/r^{1-\lambda_{1}^{A}}$ . And the stress distribution corresponding to Mode II deformation, denoted by  $\sigma_{II}^{A}(r)$ , is proportional to  $1/r^{1-\lambda_{2}^{A}}$ . These singular stress fields together determine the stress distributions along the interfaces near Point A<sup>\*</sup>. Each ISSF can be defined as parameters  $K_{I,\lambda_{1}^{A}}^{A}$  and  $K_{II,\lambda_{2}^{A}}^{A}$  as shown in equation (2.4). In this equation, we can put  $r = r_{1} = r_{2}$ .

$$\begin{cases} 2\sigma_{\rm I}^{A}(r) = \sigma_{y}^{A}(r_{1}) + \sigma_{x}^{A}(r_{2}) \\ 2\sigma_{\rm II}^{A}(r) = \sigma_{y}^{A}(r_{1}) - \sigma_{x}^{A}(r_{2}) \end{cases} (r = r_{1} = r_{2})$$
(2.3)

Chapter 2

$$\begin{cases} K^{A}_{\mathrm{I},\lambda_{1}^{A}} = \lim_{r \to 0} \left[ \sigma^{A}_{\mathrm{I}}(r) \cdot r^{1-\lambda_{1}^{A}} \right] \\ K^{A}_{\mathrm{II},\lambda_{2}^{A}} = \lim_{r \to 0} \left[ \sigma^{A}_{\mathrm{II}}(r) \cdot r^{1-\lambda_{2}^{A}} \right] \end{cases}$$
(2.4)

The ISSFs  $K_{\sigma,\lambda_1^A}^A$  and  $K_{\tau,\lambda_1^A}^A$  in equation (2.1) can be determined from the ISSF  $K_{I,\lambda_1^A}^A$ . For Fig. 2.2, the ISSFs  $K_{\sigma,\lambda_1^A}^A$  and  $K_{\tau,\lambda_1^A}^A$  are proportional to  $K_{I,\lambda_1^A}^A$  and the ISSFs  $K_{\sigma,\lambda_2^A}^A$  and  $K_{\tau,\lambda_2^A}^A$ are proportional to  $K_{II,\lambda_2^A}^A$ .

The normalized stress intensity factors  $F_I^*$  and  $F_{II}^*$  can be acquired on the basis of BFM <sup>15),51)–55)</sup>. And the definition of  $F_I^*$  and  $F_{II}^*$  of the reference problem were expressed as shown in equation (2.5) <sup>51)</sup>, in which  $\sigma_{\infty} = 1$  is tension stress at the boundary of the infinite matrix, as shown in Fig. 2.2(b).

$$\begin{cases} F_{\rm I}^* = K_{{\rm I},\lambda_1^A}^* / \left[ \sigma_{\infty} \sqrt{\pi} (D/2)^{1-\lambda_1^A} \right] \\ F_{\rm II}^* = K_{{\rm II},\lambda_2^A}^* / \left[ \sigma_{\infty} \sqrt{\pi} (D/2)^{1-\lambda_2^A} \right] \end{cases}$$
(2.5)

Therefore, the normalized stress intensity factors of the fiber pull-out problem, as shown in Fig. 2.2(a), are defined similarly as follows:

$$\begin{cases} F_{\rm I} = K^{A}_{{\rm I},\lambda_{1}^{A}} / [(P/D)\sqrt{\pi}(D/2)^{1-\lambda_{1}^{A}}] \\ F_{\rm II} = K^{A}_{{\rm II},\lambda_{2}^{A}} / [(P/D)\sqrt{\pi}(D/2)^{1-\lambda_{2}^{A}}] \end{cases}$$
(2.6)

By using the proportional method <sup>12),25),46)-49)</sup> mentioned above,  $F_{\rm I}$  and  $F_{\rm II}$  for the pull-out problem can be calculated from the ISSFs  $F_{\rm I}^*$  and  $F_{\rm II}^*$  of the reference problem. As is shown in equation (2.7). Here,  $\sigma_{\rm I, FEM}^A(r)$  and  $\sigma_{\rm I, FEM}^{A*}(r)$  represent the stress distributions corresponding to Mode I deformation in FEM analysis as mentioned above. Similarly,  $\sigma_{\rm II, FEM}^A(r)$  and  $\sigma_{\rm II, FEM}^{A*}(r)$  correspond to Mode II deformation.

$$\frac{F_{\rm I}}{F_{\rm I}^*} = \frac{\sigma_{\rm I,FEM}^A(r)}{\sigma_{\rm I,FEM}^{A*}(r)}, \qquad \frac{F_{\rm II}}{F_{\rm II}^*} = \frac{\sigma_{\rm II,FEM}^A(r)}{\sigma_{\rm II,FEM}^{A*}(r)}.$$
(2.7)

The Finite Element Method (FEM) has been widely used for many engineering applications

<sup>16)-18)</sup>. Regarding fiber reinforced composite analyses, Stern et al. <sup>19)</sup> developed a path independent integral formula for the computation of the intensity of the stress singularity by using FEM. Atkinson et al. 20), Povirk et al. 21), and Freund et al. 22) conducted fiber pullout simulation studies by using a circular rigid cylinder. Hann et al. 56) investigated the effect of contact angle, loading position and loading type in micro-bond test by using FEM. Ash et al. <sup>57)</sup> investigated the effect of bead geometry and knife angle in micro-bond test via FEM. Zhang et al. <sup>23)</sup> studied the effects of interfacial debonding and sliding on fracture characterization of unidirectional fibre-reinforced composites by using FEM. Brito-Santana et al. 58) studied influence of the debonding between fiber and matrix in micro scale via the FEM. FEM is widely used in studies in fiber reinforced composites <sup>59)–65)</sup>. Ahmed et al. <sup>66)–70)</sup> studied sensing, low loss and birefringent etc. by using FEM. In this analysis software MSC Marc is used to express the pull-out model for Fig. 2.1 and 2.2(a), and the reference model for Fig. 2.2(b). Stress distributions along the interfaces  $(r_1, r_2)$  are calculated by applying the same mesh pattern to the pull-out model and reference model. Thus stress ratio  $\left[\sigma^{A}_{I,FEM}(r)/\sigma^{A*}_{I,FEM}(r)\right]$  and  $\left[\sigma_{II,FEM}^{A}(r)/\sigma_{II,FEM}^{A*}(r)\right]$  can be calculated between the pull-out model and the reference model. This method was used in 7)-11),44),45).



Fig. 2.3. FEM mesh pattern

As is shown in equation (2.3),  $\sigma_{1,FEM}^{A}(r)$  is calculated from the stress distributions  $\sigma_{y}^{A}(r_{1})$ along the interface  $r_{1}$  and  $\sigma_{x}^{A}(r_{2})$  along the interface  $r_{2}$  by using the pull-out model (Fig. 2.2(a)). Similarly,  $\sigma_{1,FEM}^{A*}(r)$  is calculated from the stress distributions  $\sigma_{y}^{A*}(r_{1})$  along the interface  $r_{1}$  and  $\sigma_{x}^{A*}(r_{2})$  along the interface  $r_{2}$  by using the reference model (Fig. 2.2(b)). Material properties for the fiber and matrix are set to be same for the reference model and pullout model, respectively. In other words, material properties of fiber in Fig. 2.2(b) and inclusion in Fig. 2.2(b) are set to be the same.

FEM stress distributions along the interfaces near Point A\* of different mesh size are shown in Tables 2.2a and b. Results of inclusion model when  $l_{in} = 500 \mu m$  and pull-out model when  $l_{in} = 100 \mu m$  are shown as example. As shown in Table 2.2(a)  $\sigma_{I,FEM}^{A}(r)$  is FEM stress distribution, corresponding to  $\lambda_{1}^{A}$ , of glass fiber/epoxy as shown in Table 2.1, when  $l_{in} =$ 100 $\mu m$  in pull-out model.  $\sigma_{I,FEM}^{A*}(r)$  is FEM stress distribution, corresponding to  $\lambda_{1}^{A}$ , of the same material combination, when  $l_{in} = 500 \mu m$  in the reference model, whose ISSF can be calculated by BFM. Similarly,  $\sigma_{II,FEM}^{A}(r)$  in the pull-out model and  $\sigma_{II,FEM}^{A*}(r)$  in the reference model, corresponding to  $\lambda_{2}^{A}$  are shown in Table 2.2(b). In addition, the FEM stress ratios  $\sigma_{I,FEM}^{A}(r)/\sigma_{I,FEM}^{A*}(r)$ ,  $\sigma_{II,FEM}^{A}(r)/\sigma_{II,FEM}^{A*}(r)$  are calculated from the above mentioned FEM stress distributions.

As shown in Tables 2.2a and b, the stress distributions  $\sigma_{I,FEM}^{A}(r)$ ,  $\sigma_{II,FEM}^{A}(r)$  are different depending on the mesh size. However, the stress ratio between unknown model and reference model, i.e.  $\sigma_{I,FEM}^{A}(r)/\sigma_{I,FEM}^{A*}(r)$  and  $\sigma_{II,FEM}^{A}(r)/\sigma_{II,FEM}^{A*}(r)$  are independent of mesh size, and keep in converges within four significant digits. In fact, the stress at the edge of the interface is infinite. Therefore, the value of the stress varies greatly depending on the mesh size. From the data shown in Tables 2.2a and b, it is found that the stress ratio between the pull-out problem and the reference problem can be obtained accurately independent of the mesh size. Then the ISSF of pull-out problem can be obtained from the FEM stress ratio and the ISSF of reference

Mechanical Engineering Dept.

problems, as shown in equation (2.7).

| S                   | Smallest mesh<br>$P_{min} = 3^{-9}$ [m | size                                                     |                     | Smallest mesh s<br>$2min = 3^{-10}$ [r | size<br>nml                                            |
|---------------------|----------------------------------------|----------------------------------------------------------|---------------------|----------------------------------------|--------------------------------------------------------|
| $\frac{r}{e_{min}}$ | $\sigma^{A}_{I,FEM}(r)$ [MPa]          | $ \frac{\sigma^{A}_{I,FEM}(r)}{\sigma^{A*}_{I,FEM}(r)} $ | $\frac{r}{e_{min}}$ | $\sigma^{A}_{I,FEM}(r)$ [MPa]          | $\frac{\sigma^{A}_{I,FEM}(r)}{\sigma^{A*}_{I,FEM}(r)}$ |
| 0.0                 | 1.290                                  | 0.117                                                    | 0.0                 | 1.647                                  | 0.117                                                  |
| 0.5                 | 1.038                                  | 0.117                                                    | 0.5                 | 1.328                                  | 0.117                                                  |
| 1.0                 | 0.779                                  | 0.116                                                    | 1.0                 | 0.998                                  | 0.117                                                  |
| 1.5                 | 0.699                                  | 0.116                                                    | 1.5                 | 0.896                                  | 0.116                                                  |
| 2.0                 | 0.692                                  | 0.115                                                    | 2.0                 | 0.889                                  | 0.116                                                  |

**Table 2.2(a).** FEM Stress ratio of symmetrical type with  $\lambda_1^A = 0.7784$  when  $l_{in} = 100 \mu m$  in Fig. 2.2(a) and  $l_{in} = 500 \mu m$  in Fig. 2.2(b) for the material combination in Table 2.1.

**Table 2.2(b).** FEM stress ratio of skew-symmetrical type with  $\lambda_2^A = 0.6158$  when  $l_{in} = 100 \mu \text{m}$  in Fig. 2.2(a) and  $l_{in} = 500 \mu \text{m}$  in Fig. 2.2(b) for the material combination in Table 2.1.

| -                                                     |                       |                            |                                                         |                       |                                     |                                                         |
|-------------------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------|-----------------------|-------------------------------------|---------------------------------------------------------|
| Smallest mesh size<br>$e_{min} = 3^{-9} \text{ [mm]}$ |                       |                            |                                                         |                       | Smallest mesh $e_{min} = 3^{-10}$ [ | size<br>mm]                                             |
| _                                                     | r<br>e <sub>min</sub> | $\sigma^{A}_{II,FEM}(r_1)$ | $\frac{\sigma^{A}_{II,FEM}(r_{1})}{\sigma^{A*}(r_{1})}$ | r<br>e <sub>min</sub> | $\sigma^{A}_{II,FEM}(r_{1})$        | $\frac{\sigma^{A}_{II,FEM}(r_{1})}{\sigma^{A*}(r_{1})}$ |
| _                                                     |                       | [MPa]                      | ° ∐,FEM (° 1)                                           |                       | [MPa]                               | °∐,FEM(°⊥)                                              |
|                                                       | 0.0                   | 10.161                     | 0.104                                                   | 0.00                  | 15.497                              | 0.104                                                   |
|                                                       | 0.5                   | 4.279                      | 0.104                                                   | 0.5                   | 6.524                               | 0.104                                                   |
|                                                       | 1.0                   | 1.821                      | 0.104                                                   | 1.0                   | 2.773                               | 0.104                                                   |
|                                                       | 1.5                   | 2.913                      | 0.104                                                   | 1.5                   | 4.438                               | 0.104                                                   |
|                                                       | 2.0                   | 3.048                      | 0.104                                                   | 2.0                   | 4.642                               | 0.104                                                   |
|                                                       |                       |                            | -                                                       |                       |                                     |                                                         |

# 2.3 Singular stress field and the ISSF at the fiber entry point

The singular stress field at Point E<sup>\*</sup> as shown in Fig. 2.2(a) is different from that of Point A<sup>\*</sup> but similar to the interface end for lap joints <sup>48),71)</sup>. The value of singular indexes ( $\lambda_1^E$ ,  $\lambda_2^E$ )

around the corner E can be determined by solving the characteristic equation (2.8) <sup>13),14)</sup>. For most of the material combinations the singular indexes  $\lambda_i^E$  have two real roots  $\lambda_1^E$  and  $\lambda_2^E$ corresponding to two different singular fields <sup>29)</sup>.

$$4\sin^{2}(\pi\lambda)\left\{\sin^{2}\left(\frac{\pi\lambda}{2}\right) - \lambda^{2}\right\}\beta^{2} + 4\lambda^{2}\sin^{2}(\pi\lambda)\alpha\beta + \left\{\sin^{2}\left(\frac{\pi\lambda}{2}\right) - \lambda^{2}\right\}\alpha^{2} + 4\lambda^{2}\sin^{2}(\pi\lambda)\beta$$
$$+ 2\left\{\lambda^{2}\cos(2\pi\lambda) + \sin^{2}\left(\frac{\pi\lambda}{2}\right)\cos(\pi\lambda) + \frac{1}{2}\sin^{2}(\pi\lambda)\right\}\alpha + \sin^{2}\left(\frac{3\pi\lambda}{2}\right) - \lambda^{2} = 0$$

$$(2.8)$$

Here,  $\alpha$  and  $\beta$  are defined by equation (1.3). Table 2.1 shows for the Glass/Epoxy material combination,  $\alpha = 0.9071$ ,  $\beta = 0.2016$ ,  $\lambda_1^E = 0.6592$ ,  $\lambda_2^E = 0.9992$ . Note that the singular index  $\lambda_2^E = 0.9992$  for  $K_{\sigma,\lambda_2^E}^E$  is very close to 1, corresponding to almost no singularity having little effect on the singular stress distribution.

The singular stress field at the vincinity of Point  $E^*$  in Fig. 2.1 can be expressed as equation (2.9). This singular stress field is identical to that of lap joints <sup>48),71)</sup>.

$$\begin{cases} \sigma_{\chi}^{\rm E}(r_3) = \frac{K_{\sigma,\lambda_1^{\rm E}}^{\rm E}}{r_3^{1-\lambda_1^{\rm E}}} + \frac{K_{\sigma,\lambda_2^{\rm E}}^{\rm E}}{r_3^{1-\lambda_2^{\rm E}}} \\ \tau_{\chi\gamma}^{\rm E}(r_3) = \frac{K_{\tau,\lambda_1^{\rm E}}^{\rm E}}{r_3^{1-\lambda_1^{\rm E}}} + \frac{K_{\tau,\lambda_2^{\rm E}}^{\rm E}}{r_3^{1-\lambda_2^{\rm E}}} \end{cases}$$
(2.9)

As the reference solution Reciprocal work contour integral method (RWCIM) can be used <sup>12),26),48),71)</sup>. Recently, Miyazaki et al. <sup>12),49)</sup> proposed a technique of how to obtain two ISSFs corresponding to two distinct singular stress fields by applying proportional method. To apply this method to the pull-out problem, Fig. 2.4 illustrates 3 kinds of the pull-out models used in this technique.



Fig. 2.4(a) and Fig. 2.4(b). Schematic illustration of Point E\* FEM models



Fig. 2.4(c). Schematic illustration of Point E\* FEM models

The model (a) has minimum elements whose size  $e_{min} = e_0$ . The FEM stress of the model (a) is denoted by  $\sigma_{x,FEM}^{E,a}(r_3)|_{e_{min}=e_0}$  and the ISSFs in model (a) are denoted by  $K_{\sigma,\lambda_1^E}^{E,a}$  and  $K_{\sigma,\lambda_2^E}^{E,a}$ . Here,  $r_3$  is the distance from the corner edge Point E\* in Fig. 2.2(a). The model (b) has the same size of the model (a) but having larger minimum elements  $e_{min} = n \cdot e_0$  compared to model (a). The FEM stress of model (b) is denoted by  $\sigma_{x,FEM}^{E,b}(r_3)|_{e_{min}=n\cdot e_0}$  and the ISSFs in model (b) are denoted by  $K_{\sigma,\lambda_1^E}^{E,b}$  and  $K_{\sigma,\lambda_2^E}^{E,b}$ . The model (c) is *n* times larger than models (a) including all elements and therefore having the same minimum mesh size of model (b). The FEM stress of model (c) is denoted by  $\sigma_{x,FEM}^{E,c}(r_3)\Big|_{e_{min}=n\cdot e_0}$ . It can be verified that the stress  $\sigma_{x,FEM}^{E,c}$  at  $n \cdot r_0$  is equal to the stress  $\sigma_{x,FEM}^{E,a}$  at  $r_0$ . The ISSFs in model (c) are denoted by  $K_{\sigma,\lambda_1^E}^{E,c}$  and  $K_{\sigma,\lambda_2^E}^{E,c}$ . The FEM stress  $\sigma_{x,FEM}^{E,a}$  should be divided into  $\sigma_{x,FEM,\lambda_1}^{E,a}$  and  $\sigma_{x,FEM,\lambda_2}^{E,a}$  to calculate two ISSFs  $K_{\sigma,\lambda_1}^E$  and  $K_{\sigma,\lambda_2}^E$ .

$$\sigma_{x,FEM}^{E,a} = \sigma_{FEM,\lambda_1}^{E,a} + \sigma_{FEM,\lambda_2}^{E,a}$$
(2.10)

Similarly,  $\sigma_{x,FEM}^{E,b}$  and  $\sigma_{x,FEM}^{E,c}$  should be divided.

$$\sigma_{x,FEM}^{E,b} = \sigma_{FEM,\lambda_1}^{E,b} + \sigma_{FEM,\lambda_2}^{E,b}$$
(2.11a)

$$\sigma_{x,FEM}^{E,c} = \sigma_{FEM,\lambda_1}^{E,c} + \sigma_{FEM,\lambda_2}^{E,c}$$
(2.11b)

The stress distribution  $\sigma_{x,FEM}^{E,c}(r_3)$  at  $r_3 = n \cdot r_0$  is exactly equal to the stress  $\sigma_{x,FEM}^{E,a}(r_3)$  at  $r_3 = r_0$  as shown in equation (2.12).

$$\frac{K_{\sigma,\lambda_{1}^{E}}^{E,a}}{(r_{0})^{1-\lambda_{1}^{E}}} + \frac{K_{\sigma,\lambda_{2}^{E}}^{E,a}}{(r_{0})^{1-\lambda_{2}^{E}}} = \frac{K_{\sigma,\lambda_{1}^{E}}^{E,c}}{(n \cdot r_{0})^{1-\lambda_{1}^{E}}} + \frac{K_{\sigma,\lambda_{2}^{E}}^{E,c}}{(n \cdot r_{0})^{1-\lambda_{2}^{E}}}$$
(2.12)

From equation (2.12) the following relation between  $K_{\sigma,\lambda_1^E}^{E,a}$  and  $K_{\sigma,\lambda_1^E}^{E,c}$  can be derived.

$$\begin{cases} \frac{K^{E,C}}{\sigma,\lambda_1^E} = n^{1-\lambda_1^E} \\ \frac{K^{E,C}}{\sigma,\lambda_1^E} = \frac{n^{1-\lambda_1^E}}{r^{E,C}} \\ \frac{K^{E,C}}{\kappa^{E,C}} \\ \frac{\sigma,\lambda_2^E}{\kappa^{E,C}} = n^{1-\lambda_2^E} \end{cases}$$
(2.13)

Since the mesh pattern is the same at the vicinity of Point  $E^*$  in model (b) and model (c), the following relation can be verified.

$$\begin{cases}
\frac{\kappa_{s,\lambda_{1}^{E}}^{E,c}}{\kappa_{\sigma,\lambda_{1}^{E}}^{E,c}} = \frac{\sigma_{FEM,\lambda_{1}}^{E,c}(n \cdot r_{0})}{\sigma_{FEM,\lambda_{1}}^{E,b}(n \cdot r_{0})} \\
\frac{\kappa_{\sigma,\lambda_{2}^{E}}^{E,c}}{\kappa_{\sigma,\lambda_{2}^{E}}^{E,b}} = \frac{\sigma_{FEM,\lambda_{2}}^{E,c}(n \cdot r_{0})}{\sigma_{FEM,\lambda_{2}}^{E,b}(n \cdot r_{0})}
\end{cases}$$
(2.14)

Substituting equation (2.13) into equation (2.14) and using the  $\sigma_{x,FEM}^{E,a}(r_3)|_{r_3=r_0} = \sigma_{x,FEM}^{E,c}(r_3)|_{r_3=n\cdot r_0}$ , the following equation is obtained.

$$\begin{cases} \sigma_{FEM,\lambda_1}^{E,b}(n \cdot r_0) = \frac{\sigma_{FEM,\lambda_1}^{E,a}(r_0)}{n^{1-\lambda_1^E}} \\ \sigma_{FEM,\lambda_2}^{E,b}(n \cdot r_0) = \frac{\sigma_{FEM,\lambda_2}^{E,a}(r_0)}{n^{1-\lambda_2^E}} \end{cases}$$
(2.15)

Substituting equation (2.15) into equation (2.11a) the following equation is obtained <sup>12),49)</sup>.

$$= \frac{\sigma_{x,FEM}^{E,b} = \sigma_{FEM,\lambda_1}^{E,b} + \sigma_{FEM,\lambda_2}^{E,b}}{n^{1-\lambda_1^E}} + \frac{\sigma_{FEM,\lambda_2}^{E,b}}{n^{1-\lambda_1^E}}$$

$$(2.16)$$

When the simultaneous equations (2.10) and (2.16) are solved on the  $\sigma_{x,FEM,\lambda_1}^{E,a}$  and  $\sigma_{x,FEM,\lambda_2}^{E,a}$ , the following equations are obtained. By using this method, the stress distributions corresponding to the two indexes  $\lambda_1^E$ ,  $\lambda_2^E$  can be obtained in FEM.

$$\begin{cases} \sigma_{FEM,\lambda_{1}}^{E,a} = \frac{\sigma_{x,FEM}^{E,a}}{1-n^{\lambda_{1}-\lambda_{2}}} - \frac{\sigma_{x,FEM}^{E,b}}{n^{\lambda_{2}-1}-n^{\lambda_{1}-1}} \\ \sigma_{FEM,\lambda_{2}}^{E,a} = \frac{\sigma_{x,FEM}^{E,a}}{1-n^{\lambda_{2}-\lambda_{1}}} + \frac{\sigma_{x,FEM}^{E,b}}{n^{\lambda_{2}-1}-n^{\lambda_{1}-1}} \end{cases}$$
(2.17)

As shown in equation (2.18), if the ISSFs  $K_{\sigma,\lambda_1}^{E^*}$  and  $K_{\sigma,\lambda_2}^{E^*}$  are known in a reference problem, the ISSFs of a unknown problem can be obtained from FEM stress ratio  $\sigma_{FEM,\lambda_1}^E(r)/\sigma_{FEM,\lambda_1}^{E^*}(r)$ and  $\sigma_{FEM,\lambda_2}^E(r)/\sigma_{FEM,\lambda_2}^{E^*}(r)$ . Here,  $\sigma_{FEM,\lambda_1}^E(r)$  and  $\sigma_{FEM,\lambda_2}^E(r)$  are FEM stress distributions in the model corresponding to unknown problem, and are divided by using equation (2.17). Similarly,  $\sigma_{FEM,\lambda_1}^{E^*}(r)$  and  $\sigma_{FEM,\lambda_2}^{E^*}(r)$  corresponding to the reference problem.

$$\begin{cases} \frac{K_{\sigma,\lambda_1}^E}{K_{\sigma,\lambda_1}^{E*}} = \frac{\sigma_{FEM,\lambda_1}^E}{\sigma_{FEM,\lambda_1}^{E*}} \\ \frac{K_{\sigma,\lambda_2}^E}{K_{\sigma,\lambda_2}^{E*}} = \frac{\sigma_{FEM,\lambda_2}^E}{\sigma_{FEM,\lambda_2}^{E*}} \end{cases}$$
(2.18)

Tables 2.3a and b shows FEM stress ratio  $\sigma_{FEM,\lambda_1}^E(r)/\sigma_{FEM,\lambda_1}^{E^*}(r)$  and  $\sigma_{FEM,\lambda_2}^E(r)/\sigma_{FEM,\lambda_2}^{E^*}(r)$  for Glass Fiber/Epoxy in Table 2.1 obtained by using the technique described above.

Here,  $\sigma_{FEM,\lambda_1}^E(r)$  is the value for  $l_{in} = 100\mu$ m and  $\sigma_{FEM,\lambda_2}^{E^*}(r)$  is the value for  $l_{in} = 200\mu$ m. In Table 2.3(a), the stress ratio is independent of the mesh size and coincides with the results of RWCIM. In Table 2.3(b), however, the stress ratio varies by about 10% error. This is because the singular index  $\lambda_2^E = 0.9992 \approx 1$ . Since  $\lambda_2^E \approx 1$  means almost no singularity with smaller values  $K_{\sigma,\lambda_2^E}^E/r_3^{1-\lambda_2^E}$  and  $K_{\tau,\lambda_2^E}^E/r_3^{1-\lambda_2^E}$  in equation (2.9), the singular stress is mainly controlled only by  $K_{\sigma,\lambda_1^E}^E$  and  $K_{\tau,\lambda_1^E}^E$  <sup>44),45)</sup>. The RWCIM can be used to obtain the reference values although a large calculation time is necessary for the integral path. The proportional method can be conveniently focusing on the singular point to calculate the ISSFs by varying the fiber dimensions.

**Table 2.3(a).** FEM stress ratio of the first term with  $\lambda_1^E = 0.6592$  when  $l_{in} = 100 \mu \text{m}$  and  $l_{in} = 200 \mu \text{m}$  in Fig. 2.1 (a) for the material combination in Table 2.1.

| Smallest mesh size<br>$e_{min} = 3^{-9} D$ |                                         |                                                                               |                     | Smallest me $e_{min} = 3^{-1}$          | sh size<br><sup>10</sup> D                                                    | RWCIM                                                               |
|--------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|
| $\frac{r}{e_{min}}$                        | $\sigma^{E}_{FEM,\lambda_{1}}(r)$ [MPa] | $\frac{\sigma^{E}_{FEM,\lambda_{1}}(r)}{\sigma^{E^{*}}_{FEM,\lambda_{1}}(r)}$ | $\frac{r}{e_{min}}$ | $\sigma^{E}_{FEM,\lambda_{1}}(r)$ [MPa] | $\frac{\sigma^{E}_{FEM,\lambda_{1}}(r)}{\sigma^{E^{*}}_{FEM,\lambda_{1}}(r)}$ | $\frac{K^{E}_{\sigma,\lambda_{1}}}{K^{E^{*}}_{\sigma,\lambda_{1}}}$ |
| 0.0                                        | 13.022                                  | 1.34                                                                          | 0.0                 | 9.114                                   | 1.34                                                                          |                                                                     |
| 0.5                                        | 11.102                                  | 1.34                                                                          | 0.5                 | 7.770                                   | 1.34                                                                          |                                                                     |
| 1.0                                        | 8.131                                   | 1.34                                                                          | 1.0                 | 5.691                                   | 1.34                                                                          | 1.34                                                                |
| 1.5                                        | 6.775                                   | 1.34                                                                          | 1.5                 | 4.742                                   | 1.34                                                                          |                                                                     |
| 2.0                                        | 6.389                                   | 1.34                                                                          | 2.0                 | 4.472                                   | 1.34                                                                          |                                                                     |

| Smallest mesh size<br>$e_{min} = 3^{-9} D$ |                                   |                                                                               |                     | Smallest mes $e_{min} = 3^{-1}$         | h size<br><sup>10</sup> D                                                     | RWCIM                                                               |
|--------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------|---------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|
| r<br>e <sub>min</sub>                      | $\sigma^{E}_{FEM,\lambda_{2}}(r)$ | $\frac{\sigma^{E}_{FEM,\lambda_{2}}(r)}{\sigma^{E^{*}}_{FEM,\lambda_{2}}(r)}$ | $\frac{r}{e_{min}}$ | $\sigma^{E}_{FEM,\lambda_{2}}(r)$ [MPa] | $\frac{\sigma^{E}_{FEM,\lambda_{2}}(r)}{\sigma^{E^{*}}_{FEM,\lambda_{2}}(r)}$ | $\frac{K^{E}_{\sigma,\lambda_{2}}}{K^{E^{*}}_{\sigma,\lambda_{2}}}$ |
| 0.0                                        | -0.010                            | 0.873                                                                         | 0.00                | -0.011                                  | 0.932                                                                         |                                                                     |
| 0.5                                        | -0.016                            | 0.866                                                                         | 0.5                 | -0.016                                  | 0.908                                                                         |                                                                     |
| 1.0                                        | -0.016                            | 0.868                                                                         | 1.0                 | -0.017                                  | 0.923                                                                         | 0.970                                                               |
| 1.5                                        | -0.016                            | 0.875                                                                         | 1.5                 | -0.017                                  | 0.923                                                                         |                                                                     |
| 2.0                                        | -0.016                            | 0.879                                                                         | 2.0                 | -0.016                                  | 0.926                                                                         |                                                                     |

**Table 2.3(b).** FEM stress ratio of the second term with  $\lambda_2^E = 0.9992$ when  $l_{in} = 100 \mu m$  and  $l_{in} = 200 \mu m$  in Fig. 2.1(a) for the material combination in Table 2.1.

### 2.4. Results and discussion.

In short fiber reinforced composites most fibers' aspect ratios are close to  $l/D = 30^{-52}$ . In this study, assume the fiber width  $D = 20 \ \mu\text{m}$  and the total fiber length  $l = 600 \ \mu\text{m}$ . If half of the fiber length is embedded in the matrix, as shown in Fig. 2.2(a), the fiber embedded length is about  $l_{in} = 300 \ \mu\text{m}$ .

# 2.4.1 ISSF at Point A\*

As shown in Table 2.4 for glass fiber/epoxy, mode I ISSF  $K_{\sigma,\lambda_1^A}^A = 0.0767$  at  $l_{in} = 300 \ \mu\text{m}$  is 36.1% smaller than  $K_{\sigma,\lambda_1^A}^A = 0.120$  at  $l_{in} = 150 \ \mu\text{m}$ . Regarding Mode II ISSF,  $K_{\sigma,\lambda_2^A}^A = 0.139$  at  $l_{in} = 300 \ \mu\text{m}$  is 32.8% smaller than  $K_{\sigma,\lambda_2^A}^A = 0.207$  at  $l_{in} = 150 \ \mu\text{m}$ . As shown in Fig. 2.5 and Table 2.4, the ISSFs  $K_{\tau,\lambda_1^A}^A$  and  $K_{\tau,\lambda_2^A}^A$  are also about 40% smaller than the ISSFs  $K_{\sigma,\lambda_1^A}^A$  and  $K_{\sigma,\lambda_2^A}^A$  for glass fiber/epoxy. Therefore, the ISSFs  $K_{\sigma,\lambda_1^A}^A$  and  $K_{\sigma,\lambda_2^A}^A$  will be mainly discussed.

Mechanical Engineering Dept.

| Chapter 2 | 2 |
|-----------|---|
|-----------|---|

| material comomation in Table 2.1. |                                      |                                      |                                   |                                   |  |  |
|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--|--|
| l <sub>in</sub>                   | $K^{ m A}_{\sigma,\lambda^{ m A}_1}$ | $K^{ m A}_{\sigma,\lambda^{ m A}_2}$ | $K^{ m A}_{	au,\lambda^{ m A}_1}$ | $K^{ m A}_{	au,\lambda^{ m A}_2}$ |  |  |
| [μm]                              | $[MPa \cdot m^{1-0.7632}]$           | $[MPa \cdot m^{1-0.6218}]$           | $[MPa \cdot m^{1-0.7632}]$        | $[MPa \cdot m^{1-0.6218}]$        |  |  |
| 50                                | 0.220                                | 0.343                                | 0.128                             | 0.175                             |  |  |
| 100                               | 0.152                                | 0.258                                | 0.0885                            | 0.131                             |  |  |
| 150                               | 0.120                                | 0.207                                | 0.0696                            | 0.106                             |  |  |
| 200                               | 0.101                                | 0.177                                | 0.0585                            | 0.0905                            |  |  |
| 250                               | 0.0873                               | 0.156                                | 0.0507                            | 0.0796                            |  |  |
| 300                               | 0.0767                               | 0.139                                | 0.0445                            | 0.0706                            |  |  |
| 350                               | 0.0689                               | 0.126                                | 0.0400                            | 0.0641                            |  |  |
| 400                               | 0.0627                               | 0.115                                | 0.0364                            | 0.0587                            |  |  |
| 450                               | 0.0571                               | 0.106                                | 0.0332                            | 0.0538                            |  |  |
| 500                               | 0.0528                               | 0.0980                               | 0.0307                            | 0.0500                            |  |  |
| 1000                              | 0.0296                               | 0.0565                               | 0.0172                            | 0.0288                            |  |  |

**Table 2.4.** ISSFs at Point A\*,  $K_{\sigma,\lambda_1^A}^A$ ,  $K_{\sigma,\lambda_2^A}^A$ ,  $K_{\tau,\lambda_1^A}^A$ ,  $K_{\tau,\lambda_2^A}^A$  in Fig. 2.1 for the material combination in Table 2.1.



Fig. 2.5. ISSFs at Point A\* vs. embedding length for Glass Fiber/Epoxy

# 2.4.2 ISSF at Point E\*

Table 2.5 and Fig. 2.6 show the ISSFs for glass fiber/epoxy. The ISSF at Point E<sup>\*</sup> decreases with increasing  $l_{in}$ . Regarding the first term  $K_{\sigma,\lambda_1^E}^E$  in Equation (2.9) for glass fiber/epoxy,  $K_{\sigma,\lambda_1^E}^E = 0.339$  at  $l_{in} = 300$  µm is 12.9% smaller than  $K_{\sigma,\lambda_1^E}^E = 0.389$  at  $l_{in} = 150$  µm. The ISSF decreasing rate at Point E<sup>\*</sup> becomes smaller than that at Point A<sup>\*</sup> especially when  $l_{in}$  is large. Since the ISSF  $K_{\tau,\lambda_1^E}^E$  is 60% smaller than the ISSF  $K_{\sigma,\lambda_1^E}^E$  for this material combination,  $K_{\sigma,\lambda_1^E}^E$ . is discussed in the next section.

|                         | for the material combination in Table 2.1.                                                |                                                                                           |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| l <sub>in</sub><br>[μm] | $K^{\rm E}_{\sigma,\lambda_1^{\rm E}}  \left[ {\rm MPa} \cdot {\rm m}^{1-0.6591} \right]$ | $K_{\tau,\lambda_{1}^{\rm E}}^{\rm E}  \left[ {\rm MPa} \cdot {\rm m}^{1-0.6591} \right]$ |  |  |  |  |
| 50                      | 0.530                                                                                     | 0.197                                                                                     |  |  |  |  |
| 100                     | 0.433                                                                                     | 0.161                                                                                     |  |  |  |  |
| 150                     | 0.389                                                                                     | 0.144                                                                                     |  |  |  |  |
| 200                     | 0.364                                                                                     | 0.135                                                                                     |  |  |  |  |
| 250                     | 0.349                                                                                     | 0.130                                                                                     |  |  |  |  |
| 300                     | 0.339                                                                                     | 0.126                                                                                     |  |  |  |  |
| 350                     | 0.332                                                                                     | 0.123                                                                                     |  |  |  |  |
| 400                     | 0.326                                                                                     | 0.121                                                                                     |  |  |  |  |
| 450                     | 0.322                                                                                     | 0.120                                                                                     |  |  |  |  |
| 500                     | 0.319                                                                                     | 0.119                                                                                     |  |  |  |  |
| 1000                    | 0.312                                                                                     | 0.116                                                                                     |  |  |  |  |

**Table 2.5.** ISSFs at Point E<sup>\*</sup>,  $K_{\sigma,\lambda_1^{\text{E}}}^{\text{E}}$ ,  $K_{\sigma,\tau_1^{\text{E}}}^{\text{E}}$  in Fig. 2.1



Fig. 2.6. ISSFs at Point E\* vs. embedding length for Glass Fiber/Epoxy
# 2.4.3 Comparison between Point A\* and Point E\*

When the single embedded fiber is under pull-out force, singular stress fields should be compared at Point A<sup>\*</sup> and Point E<sup>\*</sup>. However, those singular stress fields are different in properties, it is not possible to compare those two ISSFs directly. Therefore, the normal stress distributions along the interfaces between the fiber and matrix are focused. The shear-lag theory <sup>40)-42</sup> has been widely used to discussed stress distribution, but is not enough for discuss the singular stress fields. This is because the shear-lag theory is based on a simple one-dimensional approximation of the fiber.



Fig. 2.7. Stress distributions when  $l_{in} = 100 \ \mu m$  for Glass Fiber/Epoxy in Table 2.1



Fig. 2.8. Stress distributions when  $l_{in} = 1000 \ \mu m$  for Glass Fiber/Epoxy in Table 2.1

The comparison of stress distributions along the interfaces are shown in Fig. 2.7 and Fig. 2.8, that is,  $\sigma_y^A(r_1)$  along  $r_1 \Box \sigma_x^A(r_2)$  along  $r_2$  around Point A\* in Fig. 2.1 and  $\sigma_x^E(r_3)$  along  $r_3$  around Point E\*. Equations used in Fig. 2.7 are equations (2.1), (2.2) <sup>31)</sup> and (2.9) <sup>32),33)</sup>, as shown in Fig. 2.1. Since compressive stress  $\sigma_x^A(r_2)$  does not cause the debonding directly,  $\sigma_y^A(r_1)$  and  $\sigma_x^E(r_3)$  are mainly compared in the following discussion. As shown in Fig. 2.7 for glass fiber/epoxy when  $l_{in} = 100 \ \mu\text{m}$ , since the stress  $\sigma_y^A(r_1)$  at Point A\* is larger than the stress  $\sigma_x^E(r_3)$  at Point E\*, debonding may occur at Point A\* earlier. On the other hand, when  $l_{in} = 1000 \ \mu\text{m}$  in Fig. 2.8, since the stress  $\sigma_y^E(r_3)$  at Point E\* is larger than the stress  $\sigma_y^A(r_1)$ at Point A\*, debonding may occur earlier at Point E\*.

Mechanical Engineering Dept.



**Fig. 2.9.** Stress at  $r = 1 \mu m$  of different embedding length for Glass Fiber/Epoxy

Fig. 2.9 shows the comparison of stress  $\sigma_y^A(r_1)$  at  $r_1 = 1\mu m$  close to Point A<sup>\*</sup> and the stress  $\sigma_x^E(r_3)$  at  $r_3 = 1\mu m$  close to Point E<sup>\*</sup> by varying  $l_{in}$ . The fixed position  $r_1 = r_3 =$  $1\mu m$  is selected because the singular stress having different singular indexes. In Fig. 2.9 when  $l_{in} = 125\mu m$ , the severity at Point A<sup>\*</sup> and Point E<sup>\*</sup> is almost the same for glass fiber/epoxy based on the assumption  $\sigma_y^A(r_1)|_{r_1=1\mu m} = \sigma_x^E(r_3)|_{r_3=1\mu m}$ . If the stress at different position  $r_1 = r_3 \neq 1\mu m$  is used, for example, if the stresses at  $r_1 = r_3 = 2\mu m$  are compared, the severities are almost the same when  $l_{in} = 160\mu m$  at Point A<sup>\*</sup> and Point E<sup>\*</sup>.

#### 2.5. Conclusions

In this chapter, a partially-embedded single-fiber under pull-out force was considered focusing on two distinct singular stress fields appearing at fiber end and entry points. To compare the severities, singular stress distributions were obtained analytically along the interfaces along the fiber end and along the fiber entry interface. Then, the following conclusions were obtained.

(1) The mixed-mode ISSFs at the fiber end denoted by  $K_{\sigma,\lambda_1^A}^A \square K_{\sigma,\lambda_2^A}^A$  decrease with increasing the fiber embedded length  $l_{in}$ . Under fixed fiber length l = 600 µm, the ISSFs at  $l_{in} = (1/2)l$  is about 40% smaller than the ISSFs at  $l_{in} = (1/4)l$  for glass fiber/epoxy.

(2) The two ISSFs denoted by  $K_{\sigma,\lambda_1^E}^E \Box K_{\sigma,\lambda_2^E}^E$  at the fiber entry point decrease with increasing the fiber embedded length  $l_{in}$ . For example, the ISSFs at  $l_{in} = (1/2)l$  is about 10% smaller than the ISSFs at  $l_{in} = (1/4)l$  for glass fiber/epoxy. The ISSF decreasing rate at Point E<sup>\*</sup> becomes smaller than that at Point A<sup>\*</sup> especially when  $l_{in}$  is large.

(3) The severities were compared at the fiber end and fiber entry point by focusing on the stress jut 1µm away from the singular point by varying  $l_{in}$  (see Fig. 2.9). For glass fiber/epoxy, the severities at the fiber end and fiber entry Point A<sup>\*</sup> are almost the same when  $l_{in} = 125\mu$ m. For shorter embedded length, the buried fiber end becomes more dangerous.

Chapter 3 Intensity of Singular Stress Field in Micro-bond Test.

# **3.1 Introduction**



**Fig. 3.1.** Modelling of micro-bond test of a fiber with  $D = 20\mu m$  and P/D = 1 [ $N \cdot mm^{-1}$ ]

Fig. 3.1 shows a micro-bond test commonly used to investigate fiber/matrix bonding behavior. The green part represents the fiber and the grey portion represents matrix. Point E denotes the fiber entry point closer to the load and constraints; Point A denotes the fiber exit point. Notation  $l_b$  denotes the axial length of the bonded area from Point A to Point E before applying load *P*. Here, the dark portion means constraints. Notation  $l_g$  denotes the knife gap opening, that is, the horizontal distance from the constraint knife tip to the fiber surface assuming the symmetry on both sides. Fig. 3.2 shows the single fiber pull-out test treated in the previous paper <sup>44),72</sup> whose ISSF will be compared to Fig. 3.1.



Fig. 3.2. Modelling of pull-out test with  $D = 20 \mu m$  and  $P/D = 1 [N \cdot mm^{-1}]^{72}$ 

The micro-bond test in Fig. 3.1 can be used more conveniently than the pull-out test in Fig. 3.2 where large matrix region should be prepared by molding during the cure procedure [2,35]. This is the reason why most of the previous experiments employed the micro-bond test instead of the pull-out test <sup>36</sup>. In the micro-bond test, the experimental results are strongly affected by the equipment geometries. Under the same fiber/matrix combination, the experimental results of in micro-bond test in Fig. 3.1 is quite different from that in pull-out test in Fig. 3.2. The difference can be characterized by the ISSFs controlling the fiber/matrix interface initial debonding.

In this paper, therefore, the ISSF of the micro-bond test will be analyzed at the fiber entry/exit points. Then, the results will be compared with the ISSF of the pull-out test [33,34] to clarify the difference between the two popular testing methods. The effects of major geometries such as bond length  $l_b$  and knife gap opening  $l_g$  on the ISSFs in micro-bond test will be also clarified to establish the most suitable testing conditions. In the previous micro-bond tests, very small knife gap opening  $l_g$  was used without considering the singular stress. The final goal of this study is to clarify the fiber pull out mechanism toward designing suitable fiber reinforced composites.

#### 3.2. Modelling to analyze intensity of singular stress filed (ISSF)

#### 3.2.1 Modelling of micro-bond test in contrast to fiber pull-out test

Fig. 3.1 illustrates the modelling of the micro-bond test to calculate the ISSF. In contrast, Fig. 3.2 illustrates the modelling of the fiber pull-out test whose detail is indicated in the previous paper [33]. As shown in Fig. 3.1 and Fig. 3.2, a similar rectangular shaped fiber is assumed. A smaller rectangular shaped region is assumed for the droplet in Fig. 3.1 in contrast to a larger rectangular shaped region for the matrix in Fig. 3.2. In real micro-bond test, the resin droplet is an irregular sphere shape restrained by the knife-edge. Although the contact angle in microbond test is usually  $\theta_c = \pi/6 \sim \pi/4^{-35}$  in Fig. 3.1, in this simulation the contact angle  $\theta_c =$  $\pi/2$  is assumed to compare with the ISSFs under the pull-out test in Fig. 3.2. Under this assumption, the singular index is the same at Point E and Point E\*. In both models in Fig. 3.1 and Fig. 3.2, perfectly bonded interface is assumed between the resin and the fiber with zero interface thickness. In other words, the material properties around the interface vary in a stepwise manner. Notations  $E_F$ ,  $\nu_F$ ,  $E_M$ ,  $\nu_M$  represent the Young's modulus and Poisson's ratio of fiber and matrix, respectively. Notation D denotes the diameter of the fiber, which is the width of the fiber in the present 2D modelling. A uniform tensile stress is distributed at the end of the fiber, and the total force is P. In other words, P/D = 1 [ $N \cdot mm^{-1}$ ] is normalized to analysis the ISSF. The rectangular shaped droplet is assumed as shown in Fig. 3.1 with the large width of the droplet in the x-direction as  $l_b/2$  on each side. In other words, in this study, the 2D square shape of the droplet is assumed. Usually, the bonded area  $l_b \leq 250 \mu m$  is used in the previous micro-bond experiments 34),35),56),57),73)-75)

In this study, the ISSF in Fig. 3.1 is mainly discussed by varying  $l_b$  and  $l_g$  under plane strain. In the Cartesian x- and y-coordinates shown in Fig. 3.1 and Fig. 3.2, the y-direction corresponds to the axial direction of the fiber, and the x-direction corresponds to the radial direction of the fiber. Notation  $r_i$ ,  $(i = A, E, E^*)$ , denotes the distance from Point i,  $(i = A, E, E^*)$  in the y direction and  $r_i = 0$  means Point i. It should be noted that shear-lag theory is widely used for considering shear stress distributions along fiber interface  $40^{-42}$ .

Mechanical Engineering Dept.

However, this theory is simply based on one dimensional assumption of the fiber and cannot express the ISSF. For example, although experiment results of the IFSS is proportional to the bonded length, the real ISSF at the entry point is not proportional to the bonded length <sup>44),72)</sup>. In this analysis software MSC Marc is used to analyze the micro-bond model in Fig. 3.1.

#### 3.2.2 Singular stress field at the fiber entry/exit points

The normal singular stress, which may cause debonding at the entry point, can be expressed as follows: <sup>12)</sup>

$$\sigma_{\chi}^{i} = \frac{\kappa_{\sigma,\lambda_{1}}^{i}}{r_{i}^{1-\lambda_{1}}} + \frac{\kappa_{\sigma,\lambda_{2}}^{i}}{r_{i}^{1-\lambda_{2}}}, \quad (i = A, E, E^{*})$$
(3.1)

Here  $\lambda_1$  and  $\lambda_2$  are singular indexes, which can be calculated by solving the following characteristic equations <sup>13),14)</sup>. Singular indexes at Point E in Fig. 3.1 and Point E<sup>\*</sup> in Fig. 3.2 are same, but singular indexes at Point A in Fig. 3.1 and Point A<sup>\*</sup> in Fig. 3.2 are different. In micro-bond test, Point A and Point E have same singular indexes. Therefore, the ISSFs at Point A, Point E and Point E<sup>\*</sup> can be compared. But they cannot be directly compared with Point A<sup>\*</sup>.

$$4sin^{2}(\pi\lambda)\left\{sin^{2}\left(\frac{\pi\lambda}{2}\right)-\lambda^{2}\right\}\beta^{2}+4\lambda^{2}sin^{2}(\pi\lambda)\alpha\beta$$
$$+\left\{sin^{2}\left(\frac{\pi\lambda}{2}\right)-\lambda^{2}\right\}\alpha^{2}+4\lambda^{2}sin^{2}(\pi\lambda)\beta$$
$$+2\left\{\lambda^{2}\cos(2\pi\lambda)+sin^{2}\left(\frac{\pi\lambda}{2}\right)\cos(\pi\lambda)+\frac{1}{2}sin^{2}(\pi\lambda)\right\}\alpha$$
$$+sin^{2}\left(\frac{3\pi\lambda}{2}\right)-\lambda^{2}=0$$
(3.2)

Here,  $\alpha$ ,  $\beta$  denote bi-material parameters of Dundurs <sup>15)</sup>, and  $G_F$  and  $G_M$  are shear modulus, which can be transformed from Young's modulus  $E_F$ ,  $E_M$  and Poisson's ratios  $v_F$ ,  $v_M$ . Subscripts M, F represent the matrix and the reinforcing fiber, respectively. In this study, analysis is carried out under plane strain.

$$\alpha = \frac{G_F(\kappa_M + 1) - G_M(\kappa_F + 1)}{G_F(\kappa_M + 1) + G_M(\kappa_F + 1)}, \qquad \beta = \frac{G_F(\kappa_M - 1) - G_M(\kappa_F - 1)}{G_F(\kappa_M + 1) + G_M(\kappa_F + 1)}$$

$$\kappa_i = \begin{cases} (3 - \nu_i)/(1 + \nu_i) & (Plain \ stress) \\ (3 - 4\nu_i) & (Plain \ strain) \end{cases} (i = M, F)$$
(3.3)

For the material combination as shown in Table 3.1,  $\alpha = 0.9071$ ,  $\beta = 0.2016$ ,  $\lambda_1 =$ 

0.6592,  $\lambda_2 = 0.9992$ . Here,  $\lambda_2$  is close to 1, which means that equation (3.1) can be written as equation (3.4).

$$\sigma_{x}^{i} = \frac{\kappa_{\sigma,\lambda_{1}}^{i}}{r_{i}^{1-\lambda_{1}}} + \frac{\kappa_{\sigma,\lambda_{2}}^{i}}{r_{i}^{1-\lambda_{2}}} \cong \frac{\kappa_{\sigma,\lambda_{1}}^{i}}{r_{i}^{1-\lambda_{1}}}, \quad (i = A, E, E^{*})$$
(3.4)

| Table 5.1. Weenament properties of Glass Hoer/Epoxy |                      |                  |  |  |
|-----------------------------------------------------|----------------------|------------------|--|--|
|                                                     | Fiber                | Matrix (Droplet) |  |  |
| Matarial                                            | Glass                | Enour            |  |  |
| Waterial                                            | fiber                | Ероху            |  |  |
| Young's Modulus (GPa)                               | 75                   | 3.3              |  |  |
| Poisson's Ratio                                     | 0.17                 | 0.35             |  |  |
| Dundurg' Doromotor                                  | $\alpha = 0.9071$    |                  |  |  |
| Dunduis Falameter                                   | $\beta = 0.2016$     |                  |  |  |
| Singular Inday                                      | 1                    | $l_1 = 0.6592$   |  |  |
| Singular index                                      | $\lambda_2 = 0.9992$ |                  |  |  |

 Table 3.1. Mechanical properties of Glass fiber/Epoxy

Here,  $K_{\sigma,\lambda_1}^i$  and  $K_{\sigma,\lambda_2}^i$  denote ISSFs for the normal stress at the vicinity of Point *i* on the interface  $r_i$  (*i* = A, E, E<sup>\*</sup>). As the  $\lambda_2$  for most material in reality is close to 1 under this geometry <sup>76</sup>, the second term  $K_{\sigma,\lambda_2}^i$  can be omitted, ISSF  $K_{\sigma}^i$  in this study can be expressed by  $K_{\sigma,\lambda_1}^i$  corresponding with  $\lambda_1$ . Definition of  $K_{\sigma}^i$  are shown in equation (3.5).

$$K_{\sigma}^{i} \cong K_{\sigma,\lambda_{1}}^{i} = \lim_{r \to 0} \left[ \sigma_{x}^{i}(r_{i}) \cdot r_{i}^{1-\lambda_{1}} \right], \quad (i = A, E, E^{*})$$
(3.5)

#### 3.2.3 Proportional method by using FEM

Finite element method (FEM) analysis should be well conducted and may require experience and skills for engineering applications <sup>16)–24)</sup>. In this analysis, a mesh independent proportional method is used to calculate the ISSF  $K_{\sigma}^{i}$  defined in equation (3.5). Since  $\lambda_{2}$  is close to 1, the second term can be omitted, the ISSF can be calculated from the ratio of FEM stress  $\sigma_{x,i}^{FEM}(r_{i})$  as shown in equation (3.6) <sup>12)–14),25)</sup>.

$$\frac{\kappa_{\sigma}^{i}}{\kappa_{\sigma}^{j}} \approx \frac{\sigma_{x,FEM}^{i}(r_{i})}{\sigma_{x,FEM}^{j}(r_{j})}, \quad (i,j = A, E, E^{*})$$
(3.6)

Table 3.2 shows the FEM stress  $\sigma_{x,FEM}^{E}(r_{E})$  near Point E and the FEM stress ratio  $\sigma_{x,FEM}^{E}(r_{E})/\sigma_{x,FEM}^{A}(r_{A})$ . Although  $\sigma_{x,FEM}^{E}(r_{E})$  varies depending on the FEM mesh size, the FEM stress ratio  $\sigma_{x,FEM}^{E}(r_{E})/\sigma_{x,FEM}^{A}(r_{A})$  is almost the same independent of mesh size. This is because the same mesh pattern is applied to the singular stress region to cancel the FEM error. The FEM stress ratio in Table 3.2 can be regarded as the real stress ratio although the FEM stress cannot express the real singular stress. Since the stress ratio can be obtained accurately in Table 3.2, the ISSF can be obtained from the ISSF of reference solutions with the ratio as shown in equation (3.6). The ISSF of the pull-out test in Fig. 3.2 can be used as the reference solutions whose FEM modelling is indicated in the Chapter 2<sup>44),72)</sup>. In Appendix 3.B, an example of the FEM mesh of micro-bond test is indicated in Fig. 3.B.1. It should be noted that the FEM stress  $\sigma_{x,FEM}(r_i)$  indicated in Table 3.2 is mainly controlled by the minimum element size  $e_{min}$  around the singular point.

| Smallest mesh size $-2^{-9}D$ |                             |                             |                | Smallest mesh $\rho = -3^{-10}$ | size<br>תי                  |  |
|-------------------------------|-----------------------------|-----------------------------|----------------|---------------------------------|-----------------------------|--|
|                               | $c_{min} = 0$               | D                           |                | $c_{min} = 0$                   | <i>D</i>                    |  |
| r <sub>i</sub>                | $\sigma^{E}_{x,FEM}(r_{E})$ | $\sigma^{E}_{x,FEM}(r_{E})$ | r <sub>i</sub> | $\sigma^{E}_{x,FEM}(r_{E})$     | $\sigma^{E}_{x,FEM}(r_{E})$ |  |
| e <sub>min</sub>              | [MPa]                       | $\sigma^A_{x,FEM}(r_A)$     | $e_{min}$      | [MPa]                           | $\sigma^A_{x,FEM}(r_A)$     |  |
| 0.0                           | 1.211                       | -1.376                      | 0.0            | 1.724                           | -1.371                      |  |
| 0.5                           | 1.033                       | -1.371                      | 0.5            | 1.469                           | -1.368                      |  |
| 1.0                           | 0.756                       | -1.365                      | 1.0            | 1.075                           | -1.366                      |  |
| 1.5                           | 0.630                       | -1.359                      | 1.5            | 0.896                           | -1.364                      |  |
| 2.0                           | 0.594                       | -1.356                      | 2.0            | 0.845                           | -1.363                      |  |

**Table 3.2.** FEM Stress ratio with  $\lambda_1^i = 0.6592$  when  $l_b = 100 \mu m$ and  $l_g = 20 \mu m$  between Point E and Point A in Fig. 3.1 for the material combination in Table 3.1.

#### 3.3. Results and Discussion

# **3.3.1** Bond length $l_b$ effect on ISSF in micro-bond test

Fig. 3.3 and Table 3.3 indicate the ISSF  $K_{\sigma}^{E}$  at the entry point and the ISSF  $K_{\sigma}^{A}$  of the exit point in comparison with the ISSF  $K_{\sigma}^{E^*}$  of the pull-out test in Fig. 3.2 at the entry point by varying the bond length  $l_b$ . Here, other dimensions are fixed as knife gap opening  $l_g = 20\mu m$ , fiber diameter  $D = 20\mu m$  and contact angle  $\theta_C = \pi/2$  for Glass fiber/Epoxy in Table 3.1. Those ISSFs  $K_{\sigma}^{E}$ ,  $K_{\sigma}^{A}$ ,  $K_{\sigma}^{E^*}$  decrease with increasing  $l_b$ . As shown in the interface stress distribution in Appendix B, the tensile stress appears near the entry Point E and the compressive stress appears near the exit Point A. From Fig. 3.3 and Table 3.3, no matter how the  $l_b$  changes, the entry Point E in micro-bond test is more severe for debonding.

In the pull-out test, a similar tensile ISSF appears the entry point  $E^*$  as shown in Fig. 3.3 and also a similar compressive ISSF appears near the end Point A<sup>\*</sup> in Fig. 3.2. The ISSFs at Point E and Point E<sup>\*</sup> decrease in a similar way by increasing  $l_b$ .



**Fig. 3.3.** ISSF variations  $K_{\sigma}^{A}$ ,  $K_{\sigma}^{E}$ ,  $K_{\sigma}^{E^{*}}$  by varying  $l_{b}$  when  $l_{g} = 20 \mu m$  in micro-bond test

Mechanical Engineering Dept.

### Chapter 3

| 20µm in micro-bond test, (): ISSF ratio variations $K_{\sigma}^{A}/K_{\sigma}^{E}$ and $K_{\sigma}^{E^{*}}/K_{\sigma}^{E}$ by varying $l_{b}$ |                                                  |                                                  |                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--|--|
| $l_b[\mu m]$                                                                                                                                  | $K_{\sigma}^{E} (K_{\sigma}^{E}/K_{\sigma}^{E})$ | $K_{\sigma}^{A} (K_{\sigma}^{A}/K_{\sigma}^{E})$ | $K_{\sigma}^{E^*}$ $\left(K_{\sigma}^{E^*}/K_{\sigma}^{E}\right)$ |  |  |
| 100                                                                                                                                           | 0.680                                            | -0.324                                           | 0.433                                                             |  |  |
| 100                                                                                                                                           | (1.000)                                          | (-0.476)                                         | (0.637)                                                           |  |  |
| 150                                                                                                                                           | 0.562                                            | -0.179                                           | 0.389                                                             |  |  |
| 200                                                                                                                                           | (1.000)                                          | (-0.318)                                         | (0.691)                                                           |  |  |
| 200                                                                                                                                           | 0.515                                            | -0.124                                           | 0.364                                                             |  |  |
|                                                                                                                                               | (1.000)                                          | (-0.240)                                         | (0.707)                                                           |  |  |
| 400                                                                                                                                           | 0.448                                            | -0.0498                                          | 0.326                                                             |  |  |
|                                                                                                                                               | (1.000)                                          | (-0.111)                                         | (0.728)                                                           |  |  |

**Table 3.3.** ISSF variations  $K_{\sigma}^{A}$ ,  $K_{\sigma}^{E}$ ,  $K_{\sigma}^{E^{*}}$  [*MPa* ·  $m^{1-0.6592}$ ] by varying  $l_{b}$  when  $l_{g} = 20 \mu m$  in micro-bond test, (): ISSF ratio variations  $K_{\sigma}^{A}/K_{\sigma}^{E}$  and  $K_{\sigma}^{E^{*}}/K_{\sigma}^{E}$  by varying  $l_{b}$ 

To clarify the relation between  $K_{\sigma}^{E}$  at Point E in micro-bond test and  $K_{\sigma}^{E^{*}}$  at Point E<sup>\*</sup> in pull-out test, Table 3.3 and Fig. 3.4 shows ISSF ratios  $-K_{\sigma}^{A}/K_{\sigma}^{E}$  and  $K_{\sigma}^{E^{*}}/K_{\sigma}^{E}$ . As shown in Table 3.3 and Fig. 3.4, the ratio  $-K_{\sigma}^{A}/K_{\sigma}^{E}$  decreases significantly with increasing  $l_{b}$ . Instead, the ratio  $K_{\sigma}^{E^{*}}/K_{\sigma}^{E}$  is almost constant as  $K_{\sigma}^{E^{*}}/K_{\sigma}^{E} \cong 0.75$ . In other words, the ISSF at Point E in micro-bond test is about 1.5 times of that at Point E<sup>\*</sup> in pull-out test. As, pull-out is relatively complex compared to the micro-bond test. The pull-out test require large size of the matrix and a complex cure procedure <sup>35),39</sup>. While the micro-bond test is relatively simpler and easier compared to the pull-out test. Besides, there is more experiment study of micro-bond tests available. From the ISSF results, the micro-bond test and pull-out test are almost proportional under idealized situation. Therefore, the results of the pull-out test can be predicted by the results of micro-bond test of same material and fiber geometry.



**Fig. 3.4.** ISSF ratio variations by varying  $l_b$  when  $l_g = 20 \mu m$ 

# 3.3.2 Effect of knife gap opening $l_g$ on ISSF in micro-bond test

Table 3.4 and Fig. 3.5 illustrate the ISSF  $K_{\sigma}^{E}$  by varying knife gap opening  $l_{g}$  assuming the droplet dimensions  $l_{b} = 100 \mu m$ , 200 $\mu m$ , 400 $\mu m$ . The result  $l_{b} = 100 \mu m$  can be shown in the range  $l_{g} \le 40 \mu m$  because larger  $l_{g} > 40 \mu m$  cannot support the smaller droplet size  $l_{b} = 100 \mu m$ . In the previous experiment <sup>34),35),56),57),73)-75), the bonded length  $l_{b}$ , which is nearly equal to the droplet size, was in the range  $l_{b} = 50 \mu m \sim 400 \mu m$  in most cases.</sup>

In Fig. 3.5, when  $l_g \leq 10 \mu \text{m}$ , the ISSF  $K_{\sigma}^E$  increases significantly with decreasing the knife gap opening  $l_g$ . In other words, when  $l_g \leq 10 \mu \text{m}$ , the ISSF  $K_{\sigma}^E$  is sensitive to  $l_g$  although when  $l_g \geq 10 \mu \text{m}$ , the ISSF  $K_{\sigma}^E$  is nearly independent of  $l_g$ . When  $l_b = 100 \mu \text{m}$ , the ISSF increases slightly with increasing  $l_g$  because of the bend deformation of the small size droplet  $l_b = 100 \mu \text{m}$ . Since many previous tests were conducted under  $l_g \leq 10 \mu \text{m}^{77)-79}$ , the initial debonding condition varies depending on  $l_g$  whose slight change affects the ISSF. Therefore, as a conclusion, the micro-bond testing geometry  $l_g \geq 10 \mu \text{m}$  is recommended since the ISSF  $K_{\sigma}^E$  becomes almost constant as shown in Fig. 3.5. In the experiments, no droplet fracture should be confirmed instead of the interface debonding since the sphered



droplet shape is deformed due to the knife edge support.

**Fig. 3.5.** ISSF variation  $K_{\sigma}^{E}$  by varying  $l_{g}$  when  $l_{b} = 100 \mu \text{m}$ , 200  $\mu \text{m}$ , 400  $\mu \text{m}$ 

| <b>Chapter</b> | 3 |
|----------------|---|
|----------------|---|

|                     | H       | $K_{\sigma}^{E} _{l_{b}}/K_{\sigma}^{E} _{l_{b}}$ | =100µm· |         | - 0     |       |
|---------------------|---------|---------------------------------------------------|---------|---------|---------|-------|
| l <sub>g</sub> [μm] | 1       | 5                                                 | 10      | 20      | 40      | 80    |
| 100                 | 1.492   | 0.840                                             | 0.700   | 0.637   | 0.656   | _     |
|                     | (1.000) | (1.000)                                           | (1.000) | (1.000) | (1.000) | (-)   |
| 200                 | 1.377   | 0.749                                             | 0.606   | 0.526   | 0.494   | 0.515 |
|                     | (0.923) | (0.891)                                           | (0.866) | (0.826) | (0.753) | (-)   |
| 400                 | 1.337   | 0.718                                             | 0.576   | 0.493   | 0.452   | 0.457 |
|                     | (0.896) | (0.855)                                           | (0.822) | (0.773) | (0.689) | (-)   |

**Table 3.4.** ISSF variation  $K_{\sigma}^{E}$  [*MPa* ·  $m^{1-0.6592}$ ] by varying  $l_{g}$ . ():

#### 3.3.3 Resin deformation and fiber elongation in micro-bond test

To understand the geometrical effect in micro-bond test, the matrix surface deformation is studied in this section. Fig. 3.6 illustrates the displacement  $u_y^E(x)$  when P = 1MPa × 0.02mm × 1mm = 0.02N,  $l_b = 100$ µm and  $l_b = 400$ µm using the cartesian coordinate system in Fig. 3.6 where the x-axis is the distance from Point E (x = 0) until the knife edge ( $x = l_g$ ). At the knife edge  $x \ge l_g$ , the displacement in the y-direction is constrained with no shear stress as  $u_y = 0$ ,  $\tau_{xy} = 0$ . The deformation when  $l_b = 400$ µm is relatively smaller than the deformation when  $l_b = 100$ µm.

Table 3.5 shows displacement  $u_y^E(0)$  at the entry Point E, displacement  $u_y^A(0)$  at the exit Point A, and fiber elongation  $u_y^E(0) - u_y^A(0)$ . Table 3.5 also shows the contact angle change defined as  $\Delta \theta_c = tan^{-1} [du_y^E(0)/dx]$  at Point E. Fig. 3.7 shows  $u_y^E(0)$  and  $u_y^A(0)$  both of which increase with increasing  $l_g$  although Table 3.5 shows  $K_{\sigma}^E$  decreases with increasing  $l_g$ . Since the ratio  $u_y^E(0)/K_{\sigma}^E$  is not constant as shown in Table 3.5,  $u_y^E(0)$  is not controlled by the ISSF  $K_{\sigma}^E$ . Instead, as shown in Table 3.5 and Fig. 3.8, the ratio  $K_{\sigma}^E/\Delta \theta_c$  is almost constant, and therefore,  $K_{\sigma}^E$  is almost controlled by  $\Delta \theta_c$ .





Fig. 3.6. Fiber deformation at the unrestrained surface by varying knife gap opening  $l_g$ for  $l_b = 100 \mu m$  and  $l_b = 400 \mu m$ 

| Chapter | 3 |
|---------|---|
|---------|---|

| ]                                                       | Fable 3.5a | . Fiber def | ormation v | when $l_b =$ | 100µm  |    |                                                 |
|---------------------------------------------------------|------------|-------------|------------|--------------|--------|----|-------------------------------------------------|
| Knife gap opening                                       | 1          | 5           | 10         | 20           | 40     | 80 |                                                 |
| $l_g$ (µm)                                              |            |             |            |              |        |    | _                                               |
| $K^E_\sigma$                                            | 1.492      | 0.840       | 0.700      | 0.637        | 0.656  | —  |                                                 |
| Displacement $u_y^E(0)$                                 | 0.0675     | 0 1041      | 0 1362     | 0 1010       | 0 3042 | _  |                                                 |
| (µm)                                                    | 0.0075     | 0.1041      | 0.1502     | 0.1717       | 0.3042 | _  | $D = 20 \mu m$                                  |
| Displacement $u_y^A(0)$                                 | 0.0593     | 0 0908      | 0 1201     | 0 1729       | 0 2831 | _  | $\frac{P}{D} = 1 \text{N} \cdot \text{mm}^{-1}$ |
| (µm)                                                    | 0.0575     | 0.0700      | 0.1201     | 0.1729       | 0.2051 |    | D A                                             |
| Fiber elongation                                        | 0.0082     | 0.0133      | 0.0161     | 0.0190       | 0.0211 | _  |                                                 |
| $\Delta l_b = u_y^E - u_y^A$                            | 0.0002     | 0.0155      | 0.0101     | 0.0170       | 0.0211 |    |                                                 |
| $\theta_C$ after deformation                            | 67.1°      | 76.7°       | 78.8°      | 79.8°        | 79.5°  | —  | $l_g$ $E$                                       |
| $\Delta 	heta_C$                                        |            |             |            |              |        |    | Р                                               |
| $= tan^{-1} \left[ \frac{du_y^E(0)}{du_y^E(0)} \right]$ | 22.9°      | 13.3°       | 11.2°      | 10.2°        | 10.5°  | —  |                                                 |
| $\begin{bmatrix} dx \end{bmatrix}$                      |            |             |            |              |        |    |                                                 |
| $u_y^E(0)/K_\sigma^E$                                   | 0.0452     | 0.1240      | 0.1945     | 0.3013       | 0.4636 | —  |                                                 |
| $K_{\sigma}^{E}/\Delta\theta_{C}$                       | 0.0652     | 0.0632      | 0.0625     | 0.0625       | 0.0625 | _  | _                                               |

**Table 3.5b.** Fiber deformation when  $l_b = 400 \mu m$ 

|                                                                                  |        |        | ormation | $v_{B}$ | roopin |        |                                                           |
|----------------------------------------------------------------------------------|--------|--------|----------|---------|--------|--------|-----------------------------------------------------------|
| Knife gap opening                                                                | 1      | 5      | 10       | 20      | 40     | 80     |                                                           |
| $l_g$ (µm)                                                                       |        |        |          |         |        |        | _                                                         |
| $K_{\sigma}^{E}$                                                                 | 1.337  | 0.718  | 0.576    | 0.493   | 0.452  | 0.457  |                                                           |
| Displacement $u_y^E(0)$<br>(µm)                                                  | 0.0575 | 0.0821 | 0.1004   | 0.1254  | 0.1628 | 0.2241 | $D = 20 \mu m$<br>$\frac{P}{D} = 1 N \cdot mm^{-1}$       |
| Displacement $u_y^A(0)$<br>(µm)                                                  | 0.0349 | 0.0495 | 0.0611   | 0.0781  | 0.1058 | 0.1566 | $\overline{D} = 1 \mathbf{N} \cdot \mathbf{M} \mathbf{M}$ |
| Fiber elongation<br>$\Delta l_b = u_y^E - u_y^A$                                 | 0.0226 | 0.0326 | 0.0393   | 0.0473  | 0.0570 | 0.0675 | $\theta_c q$                                              |
| $\theta_C$ after deformation                                                     | 70.2°  | 79.2°  | 81.4°    | 82.8°   | 83.5°  | 83.8°  |                                                           |
| $\Delta \theta_{C} = tan^{-1} \left[ \frac{du_{\mathcal{Y}}^{E}(0)}{dx} \right]$ | 19.8°  | 10.8°  | 8.6°     | 7.2°    | 6.5°   | 6.2°   | P<br>P                                                    |
| $u_y^E(0)/K_\sigma^E$                                                            | 0.0430 | 0.1144 | 0.1744   | 0.2545  | 0.3598 | 0.4906 |                                                           |
| $K_{\sigma}^{E}/\Delta\theta_{C}$                                                | 0.0674 | 0.0667 | 0.0672   | 0.0682  | 0.0700 | 0.0740 |                                                           |

The reason why the ISSF  $K_{\sigma}^{E}$  becomes larger as  $l_{g} \to 0$  in Fig. 3.5 can be explained from the surface angle after deformation defined as  $\Delta \theta_{c} = tan^{-1} \left[ \frac{du_{y}^{E}(0)}{dx} \right]$ . When the knife edge gap  $l_{g} \to 0$  in micro-bond test, the surface angle after deformation  $\Delta \theta_{c} = tan^{-1} \left[ \frac{du_{y}^{E}(0)}{dx} \right]$ becomes larger as shown in Table 3.5 and Fig. 3.6. This is because the fiber is pulled-out under the small knife gap opening  $l_g \rightarrow 0$  (see Fig. 6, for example, when  $l_g = 1 \mu m$ ). Some previous experimental studies suggested that the knife edge gap  $l_g$  should be as small as possible <sup>77)–79</sup>. To obtain the general results independent of  $l_g$ , however, a certain gap should be kept in microbond test in Fig. 3.1.



Fig. 3.7. Surface displacement  $u_y^E(0)$  and  $u_y^A(0)$  by varying knife gap opening  $l_g$ when  $l_b = 100 \mu m$  and  $l_b = 400 \mu m$ .



**Fig. 3.8.** ISSF ratio  $K_{\sigma}^{E}/\Delta\theta_{C}$  is almost constant independent of  $l_{g}$ 

#### 3.3.4 Effect of knife edge friction on ISSF in micro-bond test

In the above discussion, no friction condition  $\mu = 0$  is assumed by applying  $u_y = 0$ ,  $\tau_{xy} = 0$  along the knife edge shown in black in Fig. 3.1. In real micro-bond test, however, the knife edge restrains the y-displacement as  $u_y = 0$  with a certain frictional stress as  $\tau_{xy} \neq 0$ . Since the friction coefficient  $\mu$  is unknown, in this section, along the knife edge, assume another condition  $u_y = 0$ ,  $u_x = 0$ , which is corresponding to  $\mu \to \infty$  along the knife edge. Fig. 3.9 compares the two different boundary conditions under the fixed dimensions  $D = 20\mu$ m and  $l_b = 400\mu$ m. The solid line represents the ISSF  $K_{\sigma}^E$  when the droplet is supported as  $u_y = 0$ ,  $\tau_{xy} = 0$  by the knife edge. And the dashed line represents the ISSF  $K_{\sigma}^E$  when the droplet is supported as  $u_y = 0$ ,  $\tau_{xy} = 0$  is the most severe, this boundary condition is adopted in this study.

Mechanical Engineering Dept.



Fig. 3.9. Effect of friction on the knife edge on the ISSF in micro-bond test by comparing  $\mu = 0$  ( $u_y = 0$ ,  $\tau_{xy} = 0$ ) and  $\mu \to \infty$  ( $u_y = 0$ ,  $u_x = 0$ )

#### 3.4. Conclusions

Micro-bond test has been used to investigate fiber/matrix bonding behavior without considering the singular stress. This paper newly analyzed the intensity of singular stress field (ISSF) at the fiber entry point under tension and the ISSF at the fiber exit point under compression. The results showed that no matter how the fiber bond length  $l_b$  changes, the fiber entry point is more dangerous in micro-bond test. Instead, in a fiber pull-out test, the fiber end point can be more dangerous if the embedded length is shorter. The ISSF at the entry point in micro-bond test is about 1.5 times of the ISSF of pull-out test at the entry point under the same geometries D and  $l_b$ . By using this knowledge, the ISSFs of pull-out test can be predicted from micro-bond test. Care should be taken for the small knife gap opening  $l_g \leq 10 \mu m$  popularly used in micro-bond testing because the ISSF  $K_{\sigma}^E$  is sensitive to  $l_g$ . Instead, testing geometry

 $l_g \ge 10 \mu m$  can be recommended since the ISSF  $K_{\sigma}^E$  is nearly independent of  $l_g$ .

#### Appendix 3.A: Modelling of a single fiber pull-out embedded in a semi-infinite region.

Fig. 3.2 shows the pull-out test of a single fiber partially embedded in a semi-infinite resin matrix region studied in the previous paper [33, 34]. Here, Point A\* denotes the fiber end, and Point E\* denotes the fiber/surface entry point. Notation  $l_b$  denotes the axial bonded length from the end Point A\* to the entry Point E\* before applying load P. Notation  $l_M$  denote the size of the matrix. ISSF at Point A\* and Point E\* in pull-out model were discussed. Point E\* is more severe than Point A\*, if  $l_b$  is large enough. A two-dimensional rectangular shaped fiber was considered in the matrix whose size  $l_M$  in Fig. 3.2 is set as  $l_M = 4000D^{-72}$ . Table 3.A.1 shows the stress  $\sigma_{x,FEM}^{E^*}(r_{E^*})$  near Point E\* in Fig. 3.2 by varying the matrix size  $l_M$ . It is seen that  $l_M = 4000D$  is large enough to express the semi-infinite region since the stress  $\sigma_{x,FEM}^{E^*}(r_{E^*})$  is the same when  $l_M \ge 4000D$ .

| l <sub>M</sub>      |     | 2000 <i>D</i> | 4000 <i>D</i> | 6000D |
|---------------------|-----|---------------|---------------|-------|
| $r_{E^*}/e_{min} =$ | 0.0 | 0.763         | 0.771         | 0.771 |
| $r_{E^*}/e_{min} =$ | 0.5 | 0.651         | 0.658         | 0.658 |
| $r_{E^*}/e_{min} =$ | 1.0 | 0.477         | 0.482         | 0.482 |
| $r_{E^*}/e_{min} =$ | 1.5 | 0.397         | 0.401         | 0.401 |
| $r_{E^*}/e_{min} =$ | 2.0 | 0.374         | 0.378         | 0.378 |

**Table 3.A.1** FEM Stress  $\sigma_{x,FEM}^{E^*}(r_{E^*})$  [MPa] in Fig. 3.2.

#### Appendix 3.B: An example of FEM mesh and stress distributions for the micro-bond test.

Fig. 3.B.1 shows an example of FEM mesh. Smaller mesh is applied at the interface corner. The minimum element size  $e_{min} = 3^{-9}D$  and  $e_{min} = 3^{-10}D$  are chosen confirming the mesh independency. To represent the knife edge support in Fig. 3.1, the y-direction displacement is fixed with no shear stress as shown in Fig. 3.B.1. The distance from the knife edge to the fiber surface is denoted by  $l_g$ .

Fig. 3.B.2 (a) shows the FEM stress  $\sigma_{x,FEM}$  distribution when  $e_{min} = 3^{-9}D$ ,  $l_b = 100 \mu m$ and  $l_g = 20 \mu m$  focusing on Point E and Point A. The stress  $\sigma_{x,FEM}$  around Point E is under tension and the stress  $\sigma_{x,FEM}$  around Point A is under compression. Fig. 3.B.3 shows the stress  $\sigma_{x,FEM}(y)$  and the shear stress  $\tau_{yx,FEM}(y)$  along the entire fiber/droplet interface. Here, the y-coordinate indicates the location from Point A at y = 0 to Point E at  $y = 100\mu$ m. Since the stress at the vicinity of Point A and Point E goes to infinity, minimum element size  $e_{min} = 3^{-9}D$  is used around the singular points in Fig. 3.B.1.



Fig. 3.B.1 An example of FEM mesh whose minimum element size  $e_{min} = 3^{-9}D$ .



Fig. 3.B.2 FEM stress  $\sigma_{x,FEM}^{A,E}$  when  $e_{min} = 3^{-9}D$ ,  $l_b = 100 \mu m$  and  $l_g = 20 \mu m$ 



**Fig. 3.B.3** FEM stress  $\sigma_{x,FEM}^{A,E}$  and  $\tau_{xy,FEM}^{A,E}$  when  $e_{min} = 3^{-9}D$ ,  $l_b = 100 \mu m$  and  $l_g = 20 \mu m$  along the entire fiber/matrix interface.

# Chapter 4 Material Combination Effects on ISSFs in Pull-out Test and Micro-bond Test

#### 4.1 Carbon fiber/Epoxy vs. Glass fiber/Epoxy

In Chapter 2, the ISSFs in pull-out test were studied for Glass fiber/Epoxy as shown in Table 4.1. ISSFs in micro-bond test for Glass fiber/Epoxy were studied in Chapter 3. In this chapter, ISSFs in pull-out test and micro-bond test will be studied for Carbon fiber/Epoxy, to investigate the material combination effects on the ISSFs. Detail mechanical properties of the two material are shown in Table 4.1.

| Fiber/Matrix    | (a): Carbon Fiber/ | (b): Glass Fiber/ |
|-----------------|--------------------|-------------------|
| I'IUCI/Iviatiix | Epoxy              | Epoxy             |
| $E_F(GPa)$      | 276                | 75                |
| $E_M$ (GPa)     | 3.03               | 3.3               |
| $ u_F$          | 0.30               | 0.17              |
| $\nu_M$         | 0.35               | 0.35              |
| α               | 0.9775             | 0.9071            |
| β               | 0.2250             | 0.2016            |
| $\lambda_1^A$   | 0.7784             | 0.7632            |
| $\lambda_2^A$   | 0.6158             | 0.6218            |
| $\lambda_1^E$   | 0.6751             | 0.6592            |
| $\lambda^E_2$   | 0.9999             | 0.9992            |
| <i>D</i> (μm)   | 20                 | 20                |

Table 4.1. Mechanical properties

# 4.1 ISSF at Point A in pull-out test

Table 4.2 and Fig. 4.1(a) show the ISSFs denoted by  $K_{\sigma,\lambda_1^A}^A$ ,  $K_{\sigma,\lambda_2^A}^A$ ,  $K_{\tau,\lambda_1^A}^A$ ,  $K_{\tau,\lambda_2^A}^A$ ,  $K_{$ 

By assuming the total fiber length of  $l = 600 \ \mu\text{m}$ , the ISSFs are compared when  $l_{in} = 150 \ \mu\text{m}$  (1/4 embedded length) and  $l_{in} = 300 \ \mu\text{m}$  (1/2 embedded length). As shown in Table 4.2 for carbon fiber/epoxy, mode I ISSF,  $K_{\sigma,\lambda_1^A}^A = 0.0875$  at  $l_{in} = 300 \ \mu\text{m}$  is 30.6% smaller than  $K_{\sigma,\lambda_1^A}^A = 0.126$  at  $l_{in} = 150 \ \mu\text{m}$  and the mode II ISSF  $K_{\sigma,\lambda_2^A}^A = 0.134$  at  $l_{in} = 300 \ \mu\text{m}$  is 27.6% smaller than  $K_{\sigma,\lambda_2^A}^A = 0.185$  at  $l_{in} = 150 \ \mu\text{m}$ .

For glass fiber/epoxy, mode I ISSF  $K_{\sigma,\lambda_1^A}^A = 0.0767$  at  $l_{in} = 300 \ \mu\text{m}$  is 36.1% smaller than  $K_{\sigma,\lambda_1^A}^A = 0.120$  at  $l_{in} = 150 \ \mu\text{m}$ . Regarding Mode IIISSF,  $K_{\sigma,\lambda_2^A}^A = 0.139$  at  $l_{in} = 300 \ \mu\text{m}$  is 32.8% smaller than  $K_{\sigma,\lambda_2^A}^A = 0.207$  at  $l_{in} = 150 \ \mu\text{m}$ .

|                 |                                      | neen Epeny in re                     |                                   |                                   |
|-----------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| l <sub>in</sub> | $K^{ m A}_{\sigma,\lambda^{ m A}_1}$ | $K^{ m A}_{\sigma,\lambda^{ m A}_2}$ | $K^{ m A}_{	au,\lambda^{ m A}_1}$ | $K^{ m A}_{	au,\lambda^{ m A}_2}$ |
| [μm]            | $[MPa \cdot m^{1-0.7784}]$           | $[MPa \cdot m^{1-0.6158}]$           | $[MPa \cdot m^{1-0.7784}]$        | $[MPa \cdot m^{1-0.6158}]$        |
| 50              | 0.214                                | 0.288                                | 0.126                             | 0.182                             |
| 100             | 0.154                                | 0.224                                | 0.0907                            | 0.141                             |
| 150             | 0.126                                | 0.185                                | 0.0742                            | 0.117                             |
| 200             | 0.109                                | 0.163                                | 0.0642                            | 0.103                             |
| 250             | 0.0970                               | 0.147                                | 0.0572                            | 0.0929                            |
| 300             | 0.0875                               | 0.134                                | 0.0516                            | 0.0846                            |
| 350             | 0.0805                               | 0.124                                | 0.0475                            | 0.0785                            |
| 400             | 0.0749                               | 0.116                                | 0.0441                            | 0.0733                            |
| 450             | 0.0698                               | 0.109                                | 0.0411                            | 0.0687                            |
| 500             | 0.0658                               | 0.103                                | 0.0388                            | 0.0650                            |
| 1000            | 0.0430                               | 0.0689                               | 0.0253                            | 0.0435                            |

**Table 4.2.** ISSFs at Point A,  $K_{\sigma,\lambda_1^A}^A$ ,  $K_{\sigma,\lambda_2^A}^A$ ,  $K_{\tau,\lambda_1^A}^A$ ,  $K_{\tau,\lambda_2^A}^A$  in Fig. 2.1 for Carbon fiber/Epoxy in Table 4.1(a).



Fig. 4.1(a). ISSFs at Point A vs. embedding length for Carbon Fiber/Epoxy



Fig. 4.1(b). ISSFs at Point A vs. embedding length for Glass Fiber/Epoxy

# 4.2 ISSF at Point E in Pull-out test

Table 4.3 and Fig. 4.2(a) shows ISSFs  $K_{\sigma,\lambda_1^E}^E \Box K_{\sigma,\lambda_2^E}^E$  at Point E for carbon fiber/epoxy by varying  $l_{in}$  from 50 µm to 1000 µm. Regarding the first term  $K_{\sigma,\lambda_1^E}^E$  in Equation (2.9) for carbon fiber/epoxy,  $K_{\sigma,\lambda_1^E}^E = 0.223$  at  $l_{in} = 300$  µm is 23.4% smaller than  $K_{\sigma,\lambda_1^E}^E = 0.291$  at  $l_{in} = 150$  µm.

For glass fiber/epoxy,  $K_{\sigma,\lambda_1^{\rm E}}^{\rm E} = 0.339$  at  $l_{in} = 300 \ \mu {\rm m}$  is 12.9% smaller than  $K_{\sigma,\lambda_1^{\rm E}}^{\rm E} = 0.389$ at  $l_{in} = 150 \ \mu {\rm m}$ .

|                      | Carbon fiber/Epoxy in Table 4.1(a).                                                          |                                                                                           |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| l <sub>in</sub> [μm] | $K^{\mathrm{E}}_{\sigma,\lambda_{1}^{\mathrm{E}}}$ [MPa · $\mathrm{m}^{\mathrm{1-0.6752}}$ ] | $K_{\tau,\lambda_{1}^{\rm E}}^{\rm E}  \left[ {\rm MPa} \cdot {\rm m}^{1-0.6752} \right]$ |  |  |  |  |  |
| 50                   | 0.470                                                                                        | 0.166                                                                                     |  |  |  |  |  |
| 100                  | 0.346                                                                                        | 0.122                                                                                     |  |  |  |  |  |
| 150                  | 0.291                                                                                        | 0.103                                                                                     |  |  |  |  |  |
| 200                  | 0.259                                                                                        | 0.0915                                                                                    |  |  |  |  |  |
| 250                  | 0.238                                                                                        | 0.0840                                                                                    |  |  |  |  |  |
| 300                  | 0.223                                                                                        | 0.0787                                                                                    |  |  |  |  |  |
| 350                  | 0.212                                                                                        | 0.0747                                                                                    |  |  |  |  |  |
| 400                  | 0.203                                                                                        | 0.0717                                                                                    |  |  |  |  |  |
| 450                  | 0.196                                                                                        | 0.0693                                                                                    |  |  |  |  |  |
| 500                  | 0.191                                                                                        | 0.0674                                                                                    |  |  |  |  |  |
| 1000                 | 0.170                                                                                        | 0.0599                                                                                    |  |  |  |  |  |

**Table 4.3.** ISSFs at point E,  $K_{\sigma,\lambda_1^{\text{E}}}^{\text{E}}$ ,  $K_{\sigma,\tau_1^{\text{E}}}^{\text{E}}$  in Fig. 2.1 for



Fig. 4.2(a). ISSFs at Point E vs. embedding length for Carbon Fiber/Epoxy



Fig. 4.2(b). ISSFs at Point E vs. embedding length for Glass Fiber/Epoxy



Fig. 4.3. Stress distributions when  $l_{in} = 100 \ \mu m$  for Carbon Fiber/Epoxy



Fig. 4.4. Stress distributions when  $l_{in} = 1000 \ \mu m$  for Carbon Fiber/Epoxy

Similar to the Glass fiber/Epoxy, the normal stress distributions along the interfaces between the fiber and matrix are studied for Carbon fiber/Epoxy. Normal stress distribution  $\sigma_y^A(r_1)$  and  $\sigma_x^E(r_3)$  are mainly compared in the following discussion. As shown in Fig. 4.3 for carbon fiber/epoxy when  $l_{in} = 100 \ \mu\text{m}$ , since the stress  $\sigma_y^A(r_1)$  at Point A is larger than the stress  $\sigma_x^E(r_3)$  at Point E, debonding may occur at Point A earlier. On the other hand, when  $l_{in} =$ 1000  $\mu\text{m}$  in Fig. 4.4, since the stress  $\sigma_y^E(r_3)$  at point E is larger than the stress  $\sigma_y^A(r_1)$  at point A, debonding may occur earlier at Point E. These phenomena is same for the two material combination as shown in Table 4.1.

Fig. 4.5 shows the comparison of stress  $\sigma_y^A(r_1)$  at  $r_1 = 1\mu m$  close to Point A and the stress  $\sigma_x^E(r_3)$  at  $r_3 = 1\mu m$  close to Point E by varying  $l_{in}$ . The fixed position  $r_1 = r_3 = 1\mu m$  is selected to compare the different results of Carbon fiber/Epoxy and Glass fiber/Epoxy. In Fig. 4.5(a) when  $l_{in} = 450\mu m$ , the severity at Point A and Point E is almost the same for carbon fiber/epoxy based on the assumption  $\sigma_y^A(r_1)|_{r_1=1\mu m} = \sigma_x^E(r_3)|_{r_3=1\mu m}$ . As shown in Fig. 4.5(b), when  $l_{in} = 150\mu m$ , the severities of Point A and Point E are almost the same for glass fiber/epoxy.



Fig. 4.5(a). Stress at  $r = 1 \mu m$  of different embedding length for Carbon Fiber/Epoxy



Fig. 4.5(b). Stress at  $r = 1 \mu m$  of different embedding length for Glass Fiber/Epoxy

Mechanical Engineering Dept.

# 4.3 ISSF in micro-bond test for Carbon fiber/Epoxy in comparison with Glass fiber/Epoxy

In Chapter 3, for the glass fiber/epoxy in Table 4.1(b), the effect of knife gap opening  $l_g$  on the ISSF  $K_{\sigma}^E$  was discussed. Then, it was found that when  $l_g \leq 10\mu$ m commonly used, the ISSF  $K_{\sigma}^E$  is very sensitive to  $l_g$ . As a conclusion,  $l_g \geq 10\mu$ m is recommended for suitable testing geometry since the ISSF  $K_{\sigma}^E$  becomes almost constant. To verify this conclusion, for carbon fiber/epoxy in Table 4.1(a), the effect of knife gap opening  $l_g$  on the ISSF  $K_{\sigma}^E$  was discussed as shown in Table 4.4 and Fig. 4.6(a). Here, the singular index for Carbon fiber/Epoxy at Point E is  $\lambda_{1,C} = 0.6751$  instead of the singular index for Glass fiber/Epoxy  $\lambda_{1,g} =$ 0.6592. Table 4.4 and Fig. 4.6(a) illustrate the ISSF  $K_{\sigma}^E$  by varying knife gap opening  $l_g$ when the droplet dimensions  $l_b = 100\mu$ m, 200 $\mu$ m, 400 $\mu$ m in a similar way of Fig. 4.6(b) of Glass fiber/Epoxy. Effect of  $l_g$  on the ISSF results in Fig. 4.6(a) is similar to Fig. 4.6(b) since the ISSF  $K_{\sigma}^E$  is sensitive to  $l_g$  when  $l_g \leq 10\mu$ m and almost independent of  $l_g$  when  $\geq$ 10 $\mu$ m. Therefore, to improve the accuracy of micro-bond test, a certain gap  $l_g$  should be kept.





**Fig. 4.6(a).** ISSF  $K_{\sigma}^{E}$  variation by varying  $l_{g}$  for Carbon fiber/Epoxy



**Fig. 4.6(b).** ISSF  $K_{\sigma}^{E}$  variation by varying  $l_{g}$  for Glass fiber/Epoxy

As shown in Table 4.5 and Fig. 4.7 for Carbon fiber/Epoxy in Table 4.1(a), the ISSF ratio  $K_{\sigma}^{E^*}/K_{\sigma}^E \cong 0.60$  for Carbon fiber/Epoxy. In other words, the ISSF at Point E in micro-bond test is about 1.66 times of that at Point E<sup>\*</sup> in pull-out test. For Glass fiber/Epoxy, the ISSF ratio  $K_{\sigma}^{E^*}/K_{\sigma}^E$  is almost constant as  $K_{\sigma}^{E^*}/K_{\sigma}^E \cong 0.75$ . In other words, the ISSF at Point E in micro-bond test is about 1.5 times of that at Point E<sup>\*</sup> in pull-out test. In Fig.4.7, both ISSF ratios are nearly constant independent of  $l_b$  as  $K_{\sigma}^{E^*}/K_{\sigma}^E \cong 0.60 \sim 0.75 \cong 0.66$ . The ISSF of pull-out test can be roughly estimated from the ISSF of microbond test.

| $\frac{1}{10000000000000000000000000000000000$ |         |         |         |         |         |       |  |  |
|------------------------------------------------|---------|---------|---------|---------|---------|-------|--|--|
| $l_g$ [µm]                                     | 1       | 5       | 10      | 20      | 40      | 80    |  |  |
| 100                                            | 1.552   | 0.834   | 0.685   | 0.624   | 0.669   | _     |  |  |
|                                                | (1.000) | (1.000) | (1.000) | (1.000) | (1.000) | (-)   |  |  |
| 200                                            | 1.346   | 0.675   | 0.523   | 0.434   | 0.395   | 0.415 |  |  |
|                                                | (0.867) | (0.809) | (0.763) | (0.696) | (0.591) | (-)   |  |  |
| 400                                            | 1.213   | 0.583   | 0.437   | 0.347   | 0.293   | 0.269 |  |  |
|                                                | (0.782) | (0.699) | (0.638) | (0.556) | (0.438) | (-)   |  |  |

**Table 4.4.** ISSF variation  $K_{\sigma}^{E}$  [*MPa* · *m*<sup>1-0.6751</sup>] by varying  $l_{g}$  for Carbon fiber/Epoxy. ( ):  $K_{\sigma}^{E}|_{l_{h}}/K_{\sigma}^{E}|_{l_{h}=100 \text{ µm}}$ .

# Chapter 4



**Fig. 4.7.** ISSF ratio  $K_{\sigma}^{E^*}/K_{\sigma}^E$  of pull-out test and micro-bond test when  $l_g = 20 \mu m$ 

| and $K_{\sigma}^{E^*}$ in pull-out test of Carbon fiber/Epoxy |       |       |       |       |  |  |  |  |
|---------------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|
| <i>l<sub>b</sub></i> [μm]                                     | 100   | 150   | 200   | 400   |  |  |  |  |
| $K^{E^*}_{\sigma}[MPa\cdot m^{1-0.6751}]$                     | 0.346 | 0.291 | 0.259 | 0.203 |  |  |  |  |
| $K^E_{\sigma}[MPa \cdot m^{1-0.6751}]$                        | 0.624 | 0.491 | 0.434 | 0.347 |  |  |  |  |
| $K_{\sigma}^{E^*}/K_{\sigma}^E$                               | 0.554 | 0.593 | 0.596 | 0.585 |  |  |  |  |

**Table 4.5.** ISSF  $K_{\sigma}^{E}$  in micro-bond test when  $l_{g} = 20 \mu m$ 

# 4.4 ISSFs under Arbitrary Material Combination for a Single Rectangle Fiber in an Infinite Plate Subjected to Remote Tension

In this section, the intensity of singular stress fields (ISSFs) in Fig. 2.2(b) are shown in the  $\alpha - \beta$  space. Here,  $\alpha$ ,  $\beta$  denote Dundurs bimaterial parameters <sup>15</sup>, which are defined by equation (4.1). Here,  $G_F$  and  $G_M$  are shear modulus, which can be transformed from Young's modulus  $E_F$ ,  $E_M$  and Poisson's Ratios  $\nu_F$ ,  $\nu_M$ . Subscripts M, F represent the matrix and reinforcing fiber, respectively. In this study, analysis is carried out on the basis of plane
assumption.

$$\begin{cases} \alpha = \frac{G_F(\kappa_M+1) - G_M(\kappa_F+1)}{G_F(\kappa_M+1) + G_M(\kappa_F+1)} \\ \beta = \frac{G_F(\kappa_M-1) - G_M(\kappa_F-1)}{G_F(\kappa_M+1) + G_M(\kappa_F+1)}, \\ \kappa_i = \begin{cases} (3 - \nu_i)/(1 + \nu_i) & (Plain \ stress) \\ (3 - 4\nu_i) & (Plain \ strain) \end{cases}$$
(*i* = 
$$M, F).$$
(4.1)

By using the BFM coupled with singular integral equation <sup>50),51),55)</sup>, the following ISSFs  $F_{I}^{*}$  and  $F_{II}^{*}$  at Point A\* in Fig. 2.2(b) can be calculated. Here, the fiber's total length is fixed as the aspect ratio l/D = 10. For the material combination (a) in Table 4.1, the convergency of the solution is shown in Table 4.6 by varying the number of collocation M increasing the order of polynomial approximation at each boundary division. Four digits accuracy can be seen. The normalized ISSFs in Fig. 2.2(b) defined by equation (2.5) are shown in Table 4.7 and Fig. 4.8 under arbitrary material combination.

Singular indexes  $\lambda_1^A$  and  $\lambda_2^A$  around the corner A and corner A\*can be calculated by solving equations (4.2a) and (4.2b) on  $\lambda$ , respectively <sup>50),55)</sup>.

Here, the singular indexes  $\lambda_1^A$  and  $\lambda_2^A$  have real values in the range  $0 < \text{Re}(\lambda_i^A) < 1$  if  $\beta(\alpha - \beta) > 0$ . In equations (4.2), we can put  $\gamma = \pi/2$  representing the angle between interfaces  $r_1$  and  $r_2$ .

$$D_{1}(\alpha,\beta,\gamma,\lambda) = (\alpha-\beta)^{2}\lambda^{2}[1-\cos(2\gamma)] - 2\lambda(\alpha-\beta)\sin(\gamma)\{\sin(\lambda\gamma) + \sin[\lambda(2\pi-\gamma)]\} + 2\lambda(\alpha-\beta)\beta \cdot \sin(\gamma)\{\sin[\lambda(2\pi-\gamma)] - \sin(\lambda\gamma)\} + (1-\alpha^{2}) - (1-\beta^{2})\cos(2\lambda\pi) + (\alpha^{2}-\beta^{2})\cos[2\lambda(\gamma-\pi)] = 0$$

$$D_{2}(\alpha,\beta,\gamma,\lambda) = (\alpha - \beta)^{2}\lambda^{2}[1 - \cos(2\gamma)] + 2\lambda(\alpha - \beta)\sin(\gamma)\{\sin(\lambda\gamma) + \sin[\lambda(2\pi - \gamma)]\} -2\lambda(\alpha - \beta)\beta \cdot \sin(\gamma)\{\sin[\lambda(2\pi - \gamma)] - \sin(\lambda\gamma)\} +(1 - \alpha^{2}) - (1 - \beta^{2})\cos(2\lambda\pi) + (\alpha^{2} - \beta^{2})\cos[2\lambda(\gamma - \pi)] = 0$$

(4.2b)

| M | $F_{\mathrm{I}}^{*}$ | ${\pmb F}^*_{\mathrm{II}}$ |  |  |  |  |  |  |  |
|---|----------------------|----------------------------|--|--|--|--|--|--|--|
| 8 | 0.6780               | 1.132                      |  |  |  |  |  |  |  |
| 7 | 0.6782               | 1.133                      |  |  |  |  |  |  |  |
| 6 | 0.6780               | 1.133                      |  |  |  |  |  |  |  |
| 5 | 0.6783               | 1.130                      |  |  |  |  |  |  |  |

**Table 4.6.** Convergence of the ISSFs in Fig. 2.2(b) for the material combination in Table 4.1(a)



Fig. 4.8 ISSFs for a Single Rectangle Fiber in an Infinite Plate Subjected to Remote Tension in Fig. 2.2(b)

**Table 4.7(a).**  $F_{I}^{*}$  for a Single Rectangle Fiber in an Infinite Plate Subjected to

| Remote Tension in Fig. 2.2(b) |               |       |       |       |       |       |       |  |  |
|-------------------------------|---------------|-------|-------|-------|-------|-------|-------|--|--|
|                               | <i>α</i> =0.9 | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.3   |  |  |
| $\beta = 0.1$                 | 0.623         | 0.513 | 0.434 | 0.370 | 0.322 | 0.280 | 0.245 |  |  |
| $\beta = 0.2$                 | 0.584         | 0.484 | 0.412 | 0.353 | 0.304 | 0.265 | -     |  |  |
| $\beta = 0.3$                 | 0.563         | 0.469 | 0.393 | 0.334 | 0.297 | -     | -     |  |  |
| $\beta = 0.4$                 | 0.547         | 0.449 | 0.382 | -     | -     | -     | -     |  |  |

| Remote Tension in Fig. 2.2(b) |               |       |       |       |       |       |       |  |  |
|-------------------------------|---------------|-------|-------|-------|-------|-------|-------|--|--|
|                               | <i>α</i> =0.9 | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.3   |  |  |
| $\beta = 0.1$                 | 1.208         | 1.131 | 1.189 | 1.371 | 1.675 | 2.198 | 3.106 |  |  |
| $\beta = 0.2$                 | 1.019         | 0.993 | 1.086 | 1.290 | 1.629 | 2.141 | -     |  |  |
| $\beta = 0.3$                 | 0.870         | 0.883 | 1.014 | 1.240 | 1.598 | -     | -     |  |  |
| $\beta = 0.4$                 | 0.753         | 0.810 | 0.955 | -     | -     | -     | -     |  |  |

**Table 4.7(b).**  $F_{II}^*$  for a Single Rectangle Fiber in an Infinite Plate Subjected to

## 4.5 ISSFs under Arbitrary Material Combination for a Single Fiber Subjected to Pullout Force from a Semi-Infinite Plate

In this section, the ISSFs in Fig. 2.2(a) at the fiber buried end under pull-out are shown in the  $\alpha - \beta$  space. The fiber embedding length is fixed as  $l_{in}/D = 5$ . Tables 4.8.a, 4.8.b and Fig. 4.9 show the ISSF ratios for Fig. 2.2(a) and (b) obtained by using the proportional method explained in Chapter 2. Table 4.9 and Fig. 4.10 show the normalized ISSFs at Point A in Fig. 2.2(a) calculated from the ISSF ratios and the ISSFs at Point A<sup>\*</sup> shown in Fig. 4.8.

**Table 4.8(a).**  $F_{I}/F_{I}^{*}$  when  $l_{in}/D = 5$  in Fig. 2.2(a) and l/D = 10 in Fig. 2.2(b)

|               | <i>α</i> =0.9 | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.3   |
|---------------|---------------|-------|-------|-------|-------|-------|-------|
| $\beta = 0.1$ | 0.0864        | 0.111 | 0.128 | 0.139 | 0.145 | 0.146 | 0.143 |
| $\beta = 0.2$ | 0.0862        | 0.108 | 0.122 | 0.130 | 0.133 | 0.132 | -     |
| $\beta = 0.3$ | 0.0851        | 0.105 | 0.116 | 0.122 | 0.123 | -     | -     |
| $\beta = 0.4$ | 0.0832        | 0.100 | 0.110 | -     | -     | -     | -     |

**Table 4.8(b).**  $F_{II}/F_{II}^*$  when  $l_{in}/D = 5$  in Fig. 2.2(a) and l/D = 10 in Fig. 2.2(b)

|               | <i>α</i> =0.9 | 0.8    | 0.7    | 0.6   | 0.5   | 0.4   | 0.3   |
|---------------|---------------|--------|--------|-------|-------|-------|-------|
| $\beta = 0.1$ | 0.0766        | 0.0935 | 0.104  | 0.111 | 0.115 | 0.118 | 0.119 |
| $\beta = 0.2$ | 0.0760        | 0.0928 | 0.103  | 0.109 | 0.113 | 0.115 | -     |
| $\beta = 0.3$ | 0.0749        | 0.0915 | 0.101  | 0.107 | 0.111 | -     | -     |
| $\beta = 0.4$ | 0.0733        | 0.0895 | 0.0991 | -     | -     | -     | -     |

Chapter 4



Fig. 4.9(a). FEM stress ratio



Fig. 4.9(b) FEM stress ratio

|               | <i>α</i> =0.9 | 0.8     | 0.7     | 0.6     | 0.5     | 0.4     | 0.3     |
|---------------|---------------|---------|---------|---------|---------|---------|---------|
| $\beta = 0.1$ | 0.05384       | 0.05707 | 0.05569 | 0.05163 | 0.04673 | 0.04099 | 0.03502 |
| $\beta = 0.2$ | 0.05032       | 0.05220 | 0.05019 | 0.04579 | 0.04052 | 0.03501 | -       |
| $\beta = 0.3$ | 0.04792       | 0.04898 | 0.04562 | 0.04065 | 0.03644 | -       | -       |
| $\beta = 0.4$ | 0.04553       | 0.04511 | 0.04209 | -       | -       | -       | -       |

**Table 4.9(a).**  $F_{1}$  when  $l_{in}/D = 5$  in Fig. 2.2(a).

**Table 4.9(b).**  $F_{II}$  when  $l_{in}/D = 5$  in Fig. 2.2(a).

|               | <i>α</i> =0.9 | 0.8     | 0.7     | 0.6     | 0.5     | 0.4     | 0.3     |
|---------------|---------------|---------|---------|---------|---------|---------|---------|
| $\beta = 0.1$ | 0.09249       | 0.10581 | 0.12418 | 0.15250 | 0.19326 | 0.25863 | 0.36925 |
| $\beta = 0.2$ | 0.07743       | 0.09214 | 0.11202 | 0.14115 | 0.18444 | 0.24687 | -       |
| $\beta = 0.3$ | 0.06516       | 0.08079 | 0.10280 | 0.13304 | 0.17696 | -       | -       |
| $\beta = 0.4$ | 0.05519       | 0.07249 | 0.09466 | -       | -       | -       | -       |



**Fig. 4.10(a)**.  $F_{1}$  when  $l_{in}/D = 5$  in Fig. 2.2(a)



**Fig. 4.10(b).**  $F_{II}$  when  $l_{in}/D = 5$  in Fig. 2.2(a).

## 4.6 Conclusions

The ISSFs in pull-out test and micro-bond test are studied for the material combination of Carbon fiber/Epoxy. For pull-out test, the buried fiber end Point A is easier to debond if the bonded length is short. The fiber entry Point E is easier to debond if the bonded length is long. This is same to Carbon fiber/Epoxy and Glass fiber/Epoxy. The ISSF ratio between pull-out test and micro-bond test is within range of 0.55~0.75, which is almost constant for different materials and independent of bonded length. Therefore, the results of pull-out test can be predicted from that of micro-bond test, if same material combination and fiber bonded length are used.

## **Chapter 5 Conclusions.**

In fiber reinforced composites, both the fiber and the matrix retain their original physical and chemical identities, yet together they produce a combination of mechanical properties that cannot be achieved with either of the constituents acting alone. Pull-out test and Micro-bond test are most widely used to gain more insight into the properties of the fiber/matrix interface. However, among those previous studies the singular stress fields have not been considered. In this study, therefore, a partially-embedded single-fiber under pull-out force was analyzed focusing on two distinct singular stress fields appearing at fiber end and entry points in comparison with micro-bond test. Then, the following conclusions were obtained.

(1) In pull-out test, the mixed-mode ISSFs at the fiber end denoted by  $K_{\sigma,\lambda_1^A}^A$ ,  $K_{\sigma,\lambda_2^A}^A$  decrease with increasing the fiber embedded length  $l_{in}$ . Under fixed fiber length  $l = 600 \ \mu\text{m}$ , the ISSFs at  $l_{in} = (1/2)l$  is about 30% smaller than the ISSFs at  $l_{in} = (1/4)l$  for carbon fiber/epoxy, and the ISSFs at  $l_{in} = (1/2)l$  is about 40% smaller than the ISSFs at  $l_{in} = (1/4)l$  for glass fiber/epoxy.

(2) In pull-out test, the two ISSFs denoted by  $K_{\sigma,\lambda_1^E}^E$ ,  $K_{\sigma,\lambda_2^E}^E$  at the fiber entry point decrease with increasing the fiber embedded length  $l_{in}$ . For example, the ISSFs at  $l_{in} = (1/2)l$  is about 20% smaller than at  $l_{in} = (1/4)l$  for carbon fiber/epoxy. The ISSFs at  $l_{in} = (1/2)l$  is about 10% smaller than the ISSFs at  $l_{in} = (1/4)l$  for glass fiber/epoxy. The ISSF decreasing rate at Point E becomes smaller than that at Point A especially when  $l_{in}$  is large.

(3) In pull-out test, the severities were compared at the fiber end and fiber entry point by focusing on the stress just1  $\mu$ m away from the singular point by varying  $l_{in}$  (see Fig. 4.5). For carbon fiber/epoxy, the severities at the fiber end and fiber entry point are almost the same when  $l_{in} = 450\mu$ m. For glass fiber/epoxy, the severities are almost the same when  $l_{in} = 125\mu$ m. For shorter embedded length, the buried fiber end becomes more dangerous.

(4) In micro-bond test, no matter how the fiber bond length  $l_b$  changes, the fiber entry point

is more dangerous in micro-bond test. Instead, in fiber pull-out test, the fiber end point can be more dangerous if the embedded length is shorter. The ISSF at the entry point in micro-bond test is about 1.5 times of the ISSF of pull-out test at the entry point under the same geometries D and  $l_b$ . By using this knowledge, the ISSFs of pull-out test can be predicted from microbond test.

(5) In micro-bond test, care should be taken for the small knife gap opening  $l_g \leq 10 \mu m$ popularly used because the ISSF  $K_{\sigma}^E$  is sensitive to  $l_g$ . Instead, testing geometry  $l_g \geq 10 \mu m$ can be recommended since the ISSF  $K_{\sigma}^E$  is nearly independent of  $l_g$ .

(6) Reference solution coupled with proportional method were indicated to calculate the ISSF conveniently for various fiber with other geometries.

## Reference

- 1) Q. Wu, M. Li, Y. Gu, Y. Li and Z. Zhang, Compos. Part A Appl. Sci. Manuf. 56, 143 (2014).
- F. Teklal, A. Djebbar, S. Allaoui, G. Hivet, Y. Joliff and B. Kacimi, Compos. Struct. 201, 791 (2018).
- 3) B. Banholzer, W. Brameshuber and W. Jung, Cem. Concr. Compos. 28 [6], 564 (2006).
- 4) H. Ho and L. T. Drzal, Compos. Part A Appl. Sci. Manuf. 27 [10], 961 (1996).
- N.-A. Noda, T. Miyazaki, T. Uchikoba, R. Li, Y. Sano and Y. Takase, J. Japan Inst. Electron. Packag. 17 [2], 132 (2014).
- 6) Y. Suzuki, JSME Int. J. 30 [265], 1042 (1987).
- N.-A. Noda, T. Miyazaki, R. Li, T. Uchikoba, Y. Sano and Y. Takase, Int. J. Adhes. Adhes.
  61, 46 (2015).
- T. Miyazaki, N.-A. Noda, F. Ren, Z. Wang, Y. Sano and K. Iida, Int. J. Adhes. Adhes. 77, 118 (2017).
- N.-A. Noda, F. Ren, R. Takaki, Z. Wang, K. Oda, T. Miyazaki and Y. Sano, Int. J. Adhes. Adhes. 85, 234 (2018).
- T. Miyazaki, N.-A. Noda, Z. Wang and Y. Sano, Trans. JSME (in Japanese) 81 [829], 15 (2015).
- N.-A. Noda, R. E. N. Fei, R. Takaki, K. Tsuboi, Y. Sano, Y. Takase and T. Miyazaki, J. Japan Inst. Electron. Packag. 21 [4], 299 (2018).
- 12) T. Miyazaki, N.-A. Noda and Y. Sano, J. Japan Inst. Electron. Packag. 21 [2], 166 (2018).
- 13) D. B. Bogy, J. Appl. Mech. Trans. ASME 35 [3], 460 (1964).
- 14) D. B. Bogy, J. Appl. Mech. Trans. ASME 38 [2], 377 (1971).
- 15) J. Dundurs, J. Compos. Mater. 1 [3], 310 (1967).
- 16) N.-A. Noda, X. Chen, Y. Sano, M. A. Wahab, H. Maruyama, R. Fujisawa and Y. Takase,

Mater. Des. 96, 476 (2016).

- N.-A. Noda, R. Takaki, Y. Shen, A. Inoue, Y. Sano, D. Akagi, Y. Takase and P. Galvez, Mech. Mater. 131, 141 (2019).
- 18) Z. Wang, N.-A. Noda, M. Ueno and Y. Sano, Steel Res. Int. [DOI:10.1002/srin.201600353].
- 19) M. Stern and M. L. Soni, Int. J. Solids Struct. 12 [5], 331 (1976).
- 20) C. Atkinson, J. Avila, E. Betz and R. E. Smelser, J. Mech. Phys. Solids 30 [3], 97 (1982).
- 21) G. L. Povirk and A. Needleman, J. Eng. Mater. Technol. Trans. ASME 115 [3], 286 (1993).
- 22) L. B. Freund, Eur. J. Mech. A/Solids 11 [1], 1 (1992).
- X. Zhang, H.-Y. Liu and Y.-W. Mai, Compos. Part A Appl. Sci. Manuf. 35 [11], 1313 (2004).
- 24) J. W. Hutchinson and H. M. Jensen, Mech. Mater. 9 [2], 139 (1990).
- K. Oda, K. Kamisugi and N. A. Noda, Nihon Kikai Gakkai Ronbunshu, A Hen/Trans Japan Soc. Mech. Eng. Part A 75 [752], 476 (2009).
- 26) W. C. Carpenter and C. Byers, Int. J. Fract. 35 [4], 245 (1987).
- G. B. Sinclair, M. Okajima and J. H. Griffin, Int. J. Numer. Methods Eng. 20 [6], 999 (1984).
- 28) M. L. Williams, Bull. Seismol. Soc. Am. 49 [2], 199 (1959).
- 29) W. C. Carpenter, Int. J. Fract. 26 [3], 201 (1984).
- 30) M. Stern, E. B. Becker and R. S. Dunham, Int. J. Fract. 12 [3], 359 (1976).
- 31) D.-H. Chen and H. Nisitani, J. Appl. Mech. Trans. ASME 60 [3], 607 (1993).
- 32) D.-H. Chen and H. Nisitani, Trans. Japan Soc. Mech. Eng. Ser. A 58 [547], 457 (1992).
- 33) N.-A. Noda, R. Li, T. Miyazaki, R. Takaki and Y. Sano, Int. J. Comput. Methods

[DOI:10.1142/S0219876218500858].

- 34) R. J. Scheer and J. A. Nairn, J. Adhes. 53 [1-2], 45 (1995).
- E. Pisanova, S. Zhandarov, E. M\u00e4der, I. Ahmad and R. J. Young, Compos. Part A Appl. Sci. Manuf. 32 [3–4], 435 (2001).
- 36) S. Zhandarov and E. Mäder, Compos. Sci. Technol. 65 [1], 149 (2005).
- 37) C. Marotzke and L. Qiao, Compos. Sci. Technol. 57 [8], 887 (1997).
- 38) C. Wang, J. Mater. Sci. 32 [2], 483 (1997).
- 39) K.-H. Tsai and K.-S. Kim, J. Mech. Phys. Solids 44 [7], 1147 (1996).
- K. Goda, Nihon Kikai Gakkai Ronbunshu, A Hen/Trans Japan Soc. Mech. Eng. Part A 66 [643], 480 (2000).
- 41) J. M. Hedgepeth and P. Van Dyke, J. Compos. Mater. 1 [3], 294 (1967).
- 42) S. B. Batdorf, Eng. Fract. Mech. 18 [6], 1207 (1983).
- 43) B. Budiansky, A. G. Evans and J. W. Hutchinson, Int. J. Solids Struct. 32 [3-4], 315 (1995).
- N.-A. Noda, D. Chen, R. Takaki, A. Inoue, G. Zhang and Y. Sano, Zair. Soc. Mater. Sci. Japan 67 [12], 1073 (2018).
- 45) Y. Zhang, N.-A. Noda, P. Wu and M. Duan, Int. J. Adhes. Adhes. 57 [March], 105 (2015).
- 46) H. Nisitani and T. Teranishi, Struct. Mater., 2000, 6, 461–469.
- 47) H. Nisitani and T. Teranishi, Eng. Fract. Mech. 71 [4–6], 579 (2004).
- 48) T. Miyazaki, Trans. Soc. Automot. Eng. Japan 45 [5], 895 (2014).
- 49) T. Miyazaki and N.-A. Noda, in Journal of Physics: Conference Series (2017) Vol. 842.
- 50) N.-A. Noda, R. Shirao, J. Li and J.-S. Sugimoto, Int. J. Solids Struct. 44 [13], 4472 (2007).
- N.-A. Noda, Q. Wang, Y. Uemura and Y. Kawashima, JSME Int. Journal, Ser. A Mech. Mater. Eng. 41 [3], 303 (1998).

- N.-A. Noda, Y. Takase and T. Iizuka, Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions Japan Soc. Mech. Eng. Part A 71 [8], 1132 (2005).
- 53) T. Suga, G. Elssner and S. Schmauder, J. Compos. Mater. 22 [10], 917 (1988).
- 54) R. Yuuki, Mechanics of Interface (1993).
- 55) D.-H. Chen and H. Nisitani, Trans. Japan Soc. Mech. Eng. Ser. A 58 [555], 2153 (1992).
- 56) L. P. Hann and D. E. Hirt, Compos. Sci. Technol. 54 [4], 423 (1995).
- J. T. Ash, W. M. Cross, D. Svalstad, J. J. Kellar and L. Kjerengtroen, Compos. Sci. Technol.
  63 [5], 641 (2003).
- 58) H. Brito-Santana, J. L. M. Thiesen, R. de Medeiros, A. J. M. Ferreira, R. Rodríguez-Ramos and V. Tita, Appl. Math. Model. 75, 250 (2019).
- M. Ranjbarian, V. Mechtcherine, Z. Zhang, I. Curosu, J. Storm and M. Kaliske, Cem. Concr. Compos. 103, 318 (2019).
- J. Storm, M. Ranjbarian, V. Mechtcherine, C. Scheffler and M. Kaliske, Theor. Appl. Fract. Mech. [DOI:10.1016/j.tafmec.2019.102294].
- J. M. Vázquez-Rodríguez, E. A. Flores-Johnson, P. J. Herrera-Franco and P. I. Gonzalez-Chi, Polym. Compos. 39, E2397 (2018).
- M. Frikha, H. Nouri, S. Guessasma, F. Roger and C. Bradai, J. Mater. Sci. 52 [24], 13829 (2017).
- 63) J. Serra, C. Bouvet, B. Castanié and C. Petiot, Compos. Struct. 181, 145 (2017).
- 64) Z. Poniznik, Z. Nowak and M. Basista, Int. J. Damage Mech. 26 [5], 711 (2017).
- 65) S. I. Kundalwal and S. Kumar, Mech. Mater. 102, 117 (2016).
- 66) B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy and D. Abbott, IEEE Sens. J. 18 [24], 9948 (2018).
- 67) M. A. Jabin, K. Ahmed, M. J. Rana, B. K. Paul, M. Islam, D. Vigneswaran and M. S.

Uddin, IEEE Photonics J. [ DOI:10.1109/JPHOT.2019.2924825].

- 68) K. Ahmed, M. J. Haque, M. A. Jabin, B. K. Paul, I. S. Amiri and P. Yupapin, Phys. B Condens. Matter 570, 48 (2019).
- 69) K. Ahmed, B. K. Paul, M. A. Jabin and B. Biswas, Ceram. Int. 45 [12], 15343 (2019).
- 70) B. K. Paul, S. Chakma, M. A. Khalek and K. Ahmed, Chinese J. Phys. 56 [6], 2782 (2018).
- T. Miyazaki, N.-A. Noda, R. Li, T. Uchikoba and Y. Sano, J. Japan Inst. Electron. Packag. 16 [2], 143 (2013).
- 72) N. Noda, D. Chen, G. Zhang and Y. Sano, Int. J. Mech. Sci. 165 [August 2019], 105196 (2020).
- 73) C. Baley, Y. Grohens, F. Busnel and P. Davies, Appl. Compos. Mater. 11 [2], 77 (2004).
- 74) B. Miller, P. Muri and L. Rebenfeld, Compos. Sci. Technol. 28 [1], 17 (1987).
- 75) S.-L. Gao, E. Mäder and S. F. Zhandarov, Carbon N. Y. 42 [3], 515 (2004).
- 76) R. Li, N.-A. Noda, R. Takaki, Y. Sano, Y. Takase and T. Miyazaki, Int. J. Adhes. Adhes. 86, 45 (2018).
- 77) C. T. Chou, U. Gaur and B. Miller, Compos. Sci. Technol. 51 [1], 111 (1994).
- 78) R. A. Latour, J. Black and B. Miller, Surf. Interface Anal. 17 [7], 477 (1991).
- 79) V. Rao, P. Herrera-Franco, A. D. Ozzello and L. T. Drzal, J. Adhes. 34 [1-4], 65 (1991).